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STABLE SOLUTIONS FOR EQUATIONS WITH A QUADRATIC
GRADIENT TERM

JOANA TERRA

Abstract. We consider positive solutions to the non-variational family of

equations
−∆u− b(x)|∇u|2 = λg(u) in Ω,

where λ ≥ 0, b(x) is a given function, g is an increasing nonlinearity with
g(0) > 0 and Ω ∈ Rn is a bounded smooth domain. We introduce the def-

inition of stability for non-variational problems and establish existence and
regularity results for stable solutions. These results generalize the classical

results obtained when b(x) = b is a constant function making the problem

variational after a suitable transformation.

1. Introduction

In this article we are interested in the existence and qualitative properties of
positive solutions to equations of the form

−∆u− b(x)|∇u|2 = λg(u)

in a bounded smooth domain Ω of Rn, for λ ≥ 0, b = b(x) a given function and g an
increasing nonlinearity with g(0) > 0. This type of equations arise in different con-
texts from physics to stochastic processes. Equations with the quadratic gradient
term −∆− b(x)|∇u|2 appear in relation to different contexts within the literature.
If b = b(x) is constant and positive, the equation can be thought as the stationary
part of the parabolic equation ut − ε∆u = |∇u|2 which in turn may be seen as
the viscosity approximation, as ε tends to 0+, of Hamilton-Jacobi equations from
stochastic control theory [46]. In [43] the same equation (known in this context as
Kardar-Parisi-Zhang equation) arises related to the physical theory of growth and
roughening on surfaces. Also classical are the existence results for equations involv-
ing a quadratic gradient term and such that b = b(u) (see for instance [44, 45]).
For more on such equations with b = b(u) see for example [1].

If the coefficient function b is constant, the above equation can be transformed,
using the Hopf-Cole transformation, into the equation −∆v = λf(v), where f satis-
fies the same hypothesis as g. This simpler equation for v appears in many different
contexts and has been extensively studied. This family of equations includes, for
example, the Gelfand problem, where f(v) = ev with zero Dirichlet boundary con-
ditions on the boundary of Ω = B1, the unit ball. Some first results concerning this
problem involved the construction of explicit radial solutions in dimensions 2 and
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3, and in the special case where λ = 2 and n = 3 it was established that there are
infinitely many solutions.

The natural question that arises regarding the equation for v is the study of
the solutions (λ, v), their existence and properties. The classical existence result
says there exists a finite extremal parameter λ∗ such that for λ > λ∗ there exist
no bounded solutions v, whereas for 0 < λ < λ∗ there exists a minimal (i.e.,
smallest) bounded solution vλ. Moreover, the branch {vλ} is increasing in λ and
each solution vλ is stable. A more delicate problem is the study of the increasing
limit v∗ = limλ↑λ∗ vλ, which turns out to be a weak solution of the problem with
parameter λ∗. However v∗ may be either bounded or singular, depending on the
domain Ω and the nonlinearity f .

In the case where Ω is the unit ball of Rn and f(v) = ev, Joseph and Lundgren
[42] completely described the existence and regularity of solutions in terms of λ.
Their result also applies to the other classical model, that is, when f(v) = (1 + v)p

and p > 1. For general domains, Crandall and Rabinowitz [27] and Mignot and
Puel [50] gave sufficient conditions for the extremal solution v∗ to be classical, when
the nonlinearity f is either exponential or power like. Regarding more general
f , namely f convex, nonnegative and asymptotically linear, the existence of an
extremal parameter was known. However, the case where λ = λ∗ was first studied
by Mironescu and Radulescu in [51, 52]. They establish two different scenarios,
depending whether f obeyed the monotone case or the non-monotone case (see [52]
for appropriate definitions). These cases implied non existence of extremal solution
and uniqueness of extremal solution respectively. Brezis and Vázquez [17] raised the
question of studying when is the extremal solution bounded for general f convex,
depending on the dimension n and the domain Ω. For n ≤ 3 Nedev [53] proved
that v∗ is bounded for any domain Ω. More recently in [18] Cabré proves that the
extremal solution is bounded if the domain Ω is convex and n ≤ 4. Then, Villegas
[58] established a similar result for convex f rather than convex Ω. For higher
dimensions the only known result so far for general f concerns radial solutions.
Namely, Cabré and Capella [20] prove that if Ω is the unit ball and n ≤ 9 then v∗

is bounded for every f . Boundedness for general domains and n ≤ 9 is still open.
Note that, for n ≥ 10 there exist unbounded solutions.

Assuming some extra conditions on f , on a recent paper by Cabré and Sanchón
[21], L∞ bounds were obtained for dimensions n = 5 and n = 6. They also obtain
very interesting Lp estimates for f ′(v).

In the case where Ω = RN and f is a general convex non-decreasing functions,
Dupaigne and Farina [33] established Liouville type results for stable solutions.

Other lines of research have included equations that can be written as −∆u =
a(x)g(u) + b(x) where g is a continuous nondecreasing non-negative function sat-
isfying some growth conditions at infinity. The power functions g(u) = up for
p > 1 appear as the natural example. Under some conditions on a and b Brezis
and Cabré [16] establish non-existence of weak solutions. If instead we assume
g is non-increasing and unbounded near the origin and furthermore we consider
b = b(u) = λf(u) where f is positive, non-decreasing and such that f(s)/s in non-
increasing, converging to some m, then Cirstea, Ghergu and Radulescu established
in [26] that if m = 0 there is uniqueness of solution (for some range of λ depend-
ing on a) whereas if m > 0 then there exists an extremal parameter λ∗ which is
related to m and the first Dirichlet eigenvalue of the Laplacian in Ω. For a more
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comprehensive reading we recommend the book on singular elliptic problems by
Ghergu and Radulescu [38]. In another direction we point out the results of Dávila
and Dupaigne [30] regarding the classical Gelfand problem but stated in domain
obtained by a perturbation of a ball. They establish existence of singular solutions
for dimensions N ≥ 4 which correspond to the extremal solution in case N ≥ 11.
We also refer to Castorina and Sanchón [25] for results concerning the regularity of
the stable solutions.

In this article we derive results similar to the classical ones but for the case where
b(x) is non-constant, and therefore the problem is not variational. Although there
is no energy functional associated to our problem, and hence there is no quadratic
form, we are still interested in “stable” solutions. To define stability of a solution
to a non-variational problem we will use a different condition than the one used in
the variational setting (see section 2).

The article is organized as follows. In section 2 we introduce the definition of
stability for non-variational problems. In section 3, for some special nonlinearities
g, we derive the stability of the classical solutions. In addition, for the class of stable
solutions, we prove new regularity results involving conditions on the function b(x)
and the dimension n.

In the following section we establish an existence theorem in terms of λ. The
result is similar to the one in the classical context with b ≡ 0. Namely we prove the
existence of an extremal parameter λ∗ such that for λ > λ∗ there is no solution,
whereas for 0 < λ < λ∗ there is a minimal classical solution uλ. Moreover, for
g(u) = eu and some dimensions n we are able to prove that the minimal classical
solutions uλ are stable and that the extremal function u∗ = limλ→λ∗ uλ is a weak
solution for λ = λ∗. As before, in the case where b(x) = b is constant, the existence
result coincides with the classical one.

Finally in the last section we establish some sufficient conditions for stable solu-
tions u to be in H1(Ω). Once again we consider two cases separately: b positive and
b negative. On the one hand, we have the case where b(x) = b > 0 is constant and
positive. In this setting we are able to prove an H1(Ω) result following the similar
technique of the classical case (see Brezis-Vázquez [17]) which requires an extra
condition on g. We note here that via the Hopf-Cole transformation, one could use
the classical result to obtain a condition for eu to be in H1(Ω). This would imply,
of course, that u is also in H1(Ω) but this gives a much stronger condition on g
than the more optimal one that we prove. On the other hand, using different tech-
niques, namely truncations as introduced by Boccardo [14], we prove the H1(Ω)
result for every solution (not necessarily stable) with b(x) strictly negative, and any
L1 nonlinearity g.

2. Preliminaries

We are interested in nonnegative solutions of the problem

−∆u− b(x)|∇u|2 = λg(u) in Ω
u = 0 on ∂Ω,

(2.1)

where Ω ⊂ Rn is a bounded smooth domain, g : [0,+∞)→ R is a given nonlinearity,
λ ≥ 0 is a parameter and b = b(x) is a bounded function. The properties of the
solutions u of (2.1) will depend on the coefficient function b and hence we will
distinguish different cases.
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As was discussed in the introduction, in the classical variational setting, the
appropriate class of solutions to work with is that of stable solutions, in the sense
that the second variation of the energy functional associated to the equation is
positive. In our current setting, equation (2.1) is not, in general, of variational
nature and therefore we need to define what we mean by stable solutions. In order
to define stability for a wider family of problems we use the linearized equation.

Definition 2.1. Let u be a classical solution of problem (2.1). We say that u is
stable if there exists a function φ ∈ W 2,p(Ω) for some p > n such that φ > 0 in Ω
and

−∆φ− 2b(x)∇u∇φ ≥ λg′(u)φ in Ω. (2.2)

In the variational setting (for example (2.1) with b ≡ 0), the existence of such
a supersolution φ, positive in Ω, is equivalent to saying that u is stable in the
variational sense, i.e., the quadratic form defined defined obtained from the sec-
ond variation of the energy functional is positive for every test function ξ 6≡ 0.
Equivalently, the first eigenvalue of the linearized problem is positive (see [13]).

However, for a general function b, problem (2.1) is not self-adjoint and therefore
we bypass this difficulty by considering the existence of φ instead of working with
the quadratic form, which makes no sense (or does not exist) for non self-adjoint
problems.

3. Case b(x) ≡ b is constant

In this section we consider the case where the coefficient function b is constant,
that is, we study nonnegative solutions to

−∆u− b|∇u|2 = λg(u) in Ω
u = 0 on ∂Ω.

(3.1)

This problem can be easily transformed into a classical semilinear elliptic equa-
tion for a new function v and a new nonlinearity f = f(v) that depends on g. Since
the transformation, called Hopf-Cole transformation, depends on the sign of the
constant b, we will treat both cases separately in the next two subsections. The
nonlinearities f that arise in these two cases are quite different. Nevertheless, if
g(u) = eβu for some constant β, the classical regularity results for v and our reg-
ularity results for u (that we later generalize to b = b(x)) agree regardless of the
sign of b.

3.1. Case b = ctt > 0. Let b be constant and positive, that is, b(x) ≡ b > 0. In
this special case we can perform the Hopf-Cole transformation v = ebu − 1. The
new nonnegative function v satisfies

−∆v = λb(v + 1)g(
1
b

log(v + 1)) in Ω

v = 0 on ∂Ω.
(3.2)

We will denote by f the nonlinearity appearing on the right-hand side of the equa-
tion above, that is, v satisfies

−∆v = λf(v) in Ω, where f(v) = b(v + 1)g
(1
b

log(v + 1)
)
. (3.3)
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A first example is the one we obtain letting g(u) = ee
bu−1−bu , i.e., considering

the equation
−∆u− b|∇u|2 = λee

bu−1−bu.

For this choice of g the equation for v becomes −∆v = λbev, the classical expo-
nential nonlinearity. We know (see [27]) that every stable weak solution satisfies
v ∈ L∞(Ω) if n ≤ 9.

Another example is the one we obtain letting g(u) = eβu for some constant
β > 0, i.e.,

−∆u− b|∇u|2 = λeβu in Ω
u = 0 on ∂Ω.

(3.4)

Then, the equation for v becomes −∆v = λb(v+ 1)p, where p = 1 + β
b > 1. This is

the classical power nonlinearity case for v. For this equation it is known (see [17])
that, if v is a H1

0 (Ω) semi-stable solution then

v ∈ L∞(Ω) if

{
n ≤ 10 or
n > 10 and p < n−2

√
n−1

n−4−2
√
n−1

;

that is, if n ≤ 10 or 10 < n < 2 + 4p
p−1 + 4

√
p
p−1 . In our case, for p = 1 + β/b we

have

v ∈ L∞(Ω) if n ≤ 10 or 10 < n < 6 + 4
b

β
+ 4

√
1 +

b

β
. (3.5)

Note that our stability assumption on u, that is, the existence of a function φ,
positive in Ω, satisfying (2.2) is equivalent to the existence of a function ψ = ebuφ,
positive in Ω, satisfying

−∆ψ ≥ λf ′(v)ψ,
where v = ebu−1 and f is given by (3.3), which is in turn equivalent to the stability
of v.

Now, since v = ebu − 1 we may conclude that, for every stable classical solution
u of (3.4),

u ∈ L∞(Ω) if n ≤ 10 or 10 < n < 6 + 4
b

β
+ 4

√
1 +

b

β
,

and that this is a uniform L∞ estimate for all stable solutions (as the one for v in
(3.5)). In particular this establishes a uniform bound for all minimal solutions uλ
and therefore yields a sufficient condition for the extremal weak solution u∗ to be
in L∞(Ω). That is, we have the following

Proposition 3.1. Let b > 0 and u a positive classical stable solution to

−∆u− b|∇u|2 = λeβu in Ω
u = 0 on ∂Ω,

where λ > 0 is a parameter. Then

‖u‖L∞(Ω) ≤ C if n ≤ 10 or 10 < n < 6 + 4
b

β
+ 4

√
1 +

b

β
,

where C is a constant depending only on n, b, β and Ω (in particular is independent
of λ).
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Let us now prove directly this result, in the case where β > b/8, by using
the equation for u and the fact that we are assuming u stable. As we will see,
for such β, we reach the same optimal result. The motivation for the following
calculations is that in the case where b(x) is non-constant, we are forced to work
with the equation for u, since there is, in principle, no transformation to a classical
semilinear problem without terms involving the square of the gradient. We begin
by establishing a technical lemma.

Lemma 3.2. Let b > 0 and u be a positive classical solution to

−∆u− b|∇u|2 = λeβu in Ω
u = 0 on ∂Ω,

where λ > 0 is a parameter and β > 0. For γ ∈ N satisfying γ ≥ 2, we have∫
Ω

|∇u|2eγbu(ebu − 1)2α−2dx ≤ λ

b(2α+ γ − 3)

∫
Ω

e(β+(2α+γ−2)b)udx+ λLγ , (3.6)

where α > 3−γ
2 is a parameter and Lγ is a linear combination of the γ− 2 integrals∫

Ω
e(β+(2α+k)b)udx, k = 0, 1, . . . , γ − 3, with coefficients depending only on b, α and

γ.

Proof. Let 2α > 1 and γ ≥ 2 an integer. We have∫
Ω

|∇u|2eγbu(ebu − 1)2α−2 =
∫

Ω

∇ue(γ−1)bu∇uebu(ebu − 1)2α−2

=
∫

Ω

∇ue(γ−1)bu∇(ebu − 1)2α−1

b(2α− 1)

=
∫

Ω

e(γ−1)bu(ebu − 1)2α−1

b(2α− 1)
(−∆u− (γ − 1)b|∇u|2).

Using the equation for u we have∫
Ω

|∇u|2eγbu(ebu − 1)2α−2

=
∫

Ω

e(γ−1)bu(ebu − 1)2α−1

b(2α− 1)
(λeβu − (γ − 2)b|∇u|2)

≤ λ

b(2α− 1)

∫
Ω

e(β+(2α+γ−2)b)u − γ − 2
2α− 1

∫
Ω

|∇u|2eγbu(ebu − 1)2α−2

+
γ − 2

2α− 1

∫
Ω

|∇u|2e(γ−1)bu(ebu − 1)2α−2.

This yields, adding the left hand side to the second term on the right hand side,
and since 2α+ γ − 3 > 0,∫

Ω

|∇u|2eγbu(ebu − 1)2α−2 ≤ λ

b(2α+ γ − 3)

∫
Ω

e(β+(2α+γ−2)b)u

+
γ − 2

2α+ γ − 3

∫
Ω

|∇u|2e(γ−1)bu(ebu − 1)2α−2.

(3.7)

If γ = 2 the second term on the right hand side of (3.7) is zero and we conclude
(3.6) (as desired) with Lγ = 0. Otherwise, for γ ∈ N, γ ≥ 3, we may repeat the
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computations above with γ replaced by γ − 1 to obtain∫
Ω

|∇u|2e(γ−1)bu(ebu − 1)2α−2 ≤ λ

b(2α+ γ − 4)

∫
Ω

e(β+(2α+γ−3)b)u

+
γ − 3

2α+ γ − 4

∫
Ω

|∇u|2e(γ−2)bu(ebu − 1)2α−2.

Note that the left hand side is the second integral on the right hand side of (3.7),
which remains to be controlled. Note also that the exponent of the exponential
function in the first integral on the right hand side decreases on each iteration.
We may continue this process until we are left with the integral of |∇u|2e2bu(ebu −
1)2α−2. For this integral,∫

Ω

|∇u|2e2bu(ebu − 1)2α−2 ≤ λ

b(2α− 1)

∫
Ω

e(β+2αb)u.

Hence,∫
Ω

|∇u|2eγbu(ebu − 1)2α−2dx ≤ λ

b(2α+ γ − 3)

∫
Ω

e(β+(2α+γ−2)b)udx+ λLγ ,

where Lγ is a linear combination of the γ − 2 integrals
∫

Ω
e(β+(2α+k)b)udx, k =

0, 1, . . . , γ − 3, with coefficients depending only on b, α and γ. �

Next we use the assumption that u is stable according to Definition 2.1, that is,
there exists a positive function φ in Ω such that

−∆φ− 2b∇u∇φ ≥ λβeβuφ.

We multiply the previous inequality by (ebu − 1)2αe2bu/φ for α > 0 and integrate
by parts to obtain

λβ

∫
Ω

e(β+2b)u(ebu − 1)2α ≤

≤
∫

Ω

∇φ∇
(e2bu(ebu − 1)2α

φ

)
−
∫

Ω

2b
∇u∇φ
φ

e2bu(ebu − 1)2α

= −
∫

Ω

|∇φ|2

φ2
e2bu(ebu − 1)2α +

∫
Ω

2b
∇u∇φ
φ

e2bu(ebu − 1)2α

+
∫

Ω

2αb
∇u∇φ
φ

ebue2bu(ebu − 1)2α−1 −
∫

Ω

2b
∇u∇φ
φ

e2bu(ebu − 1)2α

= −
∫

Ω

|∇φ|2

φ2
e2bu(ebu − 1)2α +

∫
Ω

2αb
∇u∇φ
φ

e2buebu(ebu − 1)2α−1

≤ −
∫

Ω

|∇φ|2

φ2
e2bu(ebu − 1)2α + α2b2

∫
Ω

|∇u|2e4bu(ebu − 1)2α−2

+
∫

Ω

|∇φ|2

φ2
e2bu(ebu − 1)2α

= α2b2
∫

Ω

|∇u|2e4bu(ebu − 1)2α−2.

(3.8)

Using Lemma 3.2 with γ = 4 we obtain, if α > 0,∫
Ω

|∇u|2e4bu(ebu − 1)2α−2dx ≤ λ

b(2α+ 1)

∫
Ω

e(β+(2α+2)b)udx+ λL4,
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where L4 is a linear combination of
∫

Ω
e(β+2αb)udx and

∫
Ω
e(β+(2α+1)b)udx with

coefficients depending only on b and α.
Therefore, replacing (ebu − 1)2α by e2αbu on the left hand side of (3.8) and

combining all the remaining terms with L4 from above and denoting it by L, we
obtain

λβ

∫
Ω

e(β+(2α+2)b)u ≤ λ α2b

2α+ 1

∫
Ω

e(β+(2α+2)b)u + λL. (3.9)

Note that L represents a linear combination of integrals involving the exponential
function eδu with exponent δ < β+ (2α+ 2)b. Such terms can be absorbed into the
left hand side of (3.9). In fact, if 0 < a1 < a2 then, for every ε > 0 there exists a
constant Cε > 0 such that ea1u ≤ εea2u + Cε for all u ∈ (0,+∞). Hence, for every
δ as above and every ε there exists Cε,δ such that∫

Ω

eδu ≤ ε
∫

Ω

e(β+(2α+2)b)u + Cε,δ|Ω|

Thus, if α > 0 satisfies
α2b

2α+ 1
< β,

then e(β+(2α+2)b)u ∈ L1(Ω). Solving for α we obtain

α <
β +

√
β(β + b)
b

. (3.10)

Therefore

eβu ∈ Lq(Ω) for 1 + 3
b

β
< q = 2

(α+ 1)b
β

+ 1 < 3 + 2
b

β
+ 2

√
1 +

b

β
.

Note that the function v = ebu − 1 defined at the beginning of this section is thus
in Lr1=qβ/b(Ω) and v satisfies −∆v = λb(v + 1)p where p = 1 + β/b. Therefore
(v + 1)p ∈ Lr1/p and hence, using the equation for v, we have that v ∈ W 2,r1/p.
Since W 2,r ⊂ Ls if 1/s = 1/r−2/n we obtain that v ∈ Ls for s = (nr1)/(pn−2r1).
If s > r1, that is, n < 2q, then v is bounded by an iterative procedure. Hence,
v ∈ L∞(Ω) if

n < 6 + 4
b

β
+ 4

√
1 +

b

β
,

as we already knew from (3.5). This was totally expected since both results are
achieved using equivalent assumptions.

Finally, as an example, consider the case β = 1 and b ≡ 1 in the expression
above. The equation for u becomes

−∆u− |∇u|2 = eu.

The stable solutions u of this equation satisfy

u ∈ L∞(Ω) if n < 10 + 4
√

2, that is n ≤ 15,

with a uniform L∞ bound as in Proposition 3.1.
For another example let β = 1 and b tend to 0. The equation becomes

−∆u = eu

and the result above yields u ∈ L∞(Ω) if and only if n < 10, which coincides with
the result of [27].
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Remark 3.3. We note here that by perturbing the equation −∆u = eu with a
quadratic gradient term we actually obtain more regularity for stable solutions u.

3.2. Case b = ctt < 0. In this case we use a modified Hopf-Cole transformation
v = 1 − ebu. If u is bounded, the new function v is positive and bounded by 1,
that is, 0 < v < 1 for u bounded. We note here that v = 1 corresponds to u =∞.
Moreover, v satisfies

−∆v = λ|b|(1− v)g(
1
b

log(1− v)) in Ω

v ≥ 0 in Ω
v = 0 on ∂Ω,

(3.11)

We will again denote by f the nonlinearity appearing on the right-hand side of the
equation above, that is, v satisfies

−∆v = λf(v) in Ω, where f(v) = |b|(1− v)g(
1
b

log(1− v)).

Considering the same typical example as in the previous section, we let g(u) = eβu

for some constant β > 0,
−∆u− b|∇u|2 = eβu.

The equation for v becomes

−∆v = λ|b|(1− v)p,

where p = 1+ β
b . If β > −b = |b| then p < 0. This is the case studied by Mignot and

Puel [50] and more recently by Esposito in [34]. They prove that stable solutions v
satisfy

v < 1 in Ω if n < 2 +
4p
p− 1

+ 4
√

p

p− 1
,

with a bound for v away from 1, uniform in v. In our case, for p = 1 + β/b and
β > −b we have that

v < 1 in Ω if n < 6 + 4
b

β
+ 4

√
1 +

b

β
.

Proposition 3.4. Let b < 0 be a constant, β > −b and u a positive classical stable
solution to

−∆u− b|∇u|2 = λeβu in Ω
u = 0 on ∂Ω,

where λ > 0 a parameter. Then

‖u‖L∞(Ω) ≤ C if n < 6 + 4
b

β
+ 4

√
1 +

b

β
,

where C is a constant depending only on n, b, β and Ω (in particular is independent
of λ).

It is a nontrivial fact to note that, since b < 0, this result yields less regularity
for stable solutions than the one obtained for b > 0 (recall Proposition 3.1). Note
that the condition on the exponent β is more restrictive than the one we have in



10 J. TERRA EJDE-2016/196

the case of b > 0. For example, if we consider the case b = −1, that is, if u satisfies
the equation

−∆u+ |∇u|2 = eβu,

we find the assumption β > 1 in Proposition 3.4, which means that we can not
apply the previous result to the equation −∆u+ |∇u|2 = eu. Nevertheless, for this
particular case, the equation for v would be a linear Poisson equation −∆v = λ|b|,
and therefore u would be bounded for all dimensions.

4. General b(x)

In this section we study the case of a general bounded function b = b(x). Let u
be a positive solution to the equation

−∆u− b(x)|∇u|2 = λg(u) (4.1)

with Dirichlet boundary conditions. We denote by b and b the infimum and the
supremum of b(x) respectively, that is,

b ≤ b(x) ≤ b for every x ∈ Ω.

Equation (4.1) can no longer be transformed into a classical one, and there are
no known regularity results for stable solutions. Following the computations we
introduced in the previous sections we will study this equation directly, only with
the assumptions on u, that is, u is stable as defined in Definition 2.1.

We consider the special case where g(u) = eβu. Then, there exists φ > 0 in Ω
such that

−∆φ− 2b(x)∇u∇φ ≥ λeβuφ. (4.2)
The first result that we prove is the following.

Proposition 4.1. Let b = b(x) be a bounded function such that b ≤ b(x) ≤ b for
some constants b and b with b > 0 and u a positive classical stable solution to

−∆u− b(x)|∇u|2 = λeβu in Ω
u = 0 on ∂Ω,

where Ω ⊂ Rn is a smooth bounded domain and λ > 0 is a parameter. Then, for
every positive constants δ and η with δ2 + η2 ≤ 1, if (b− b) < δ2

η2 (η2 − b
8 ),

‖eu‖Lq(Ω) ≤ C for q < β + 2βη2 + 2b+ 2

√
βη2(βη2 + b)− 2b(b− b)η

2

δ2
,

where C depends only on n, b and Ω (in particular is independent of λ).

We note that we have made no assumptions on the sign of the function b(x). In
fact, the only condition we have on b(x) is the oscillation condition involving b and
b, (b − b) < δ2

η2 (η2 − b
8 ). This condition guarantees that the expression inside the

square root above is nonnegative.
In the case that b > 0 is constant we have that b ≡ b = b > 0 and hence b− b = 0

and we may choose η ↑ 1 and δ ↓ 0 to obtain

eβu ∈ Lq(Ω), for q < 3 + 2
b

β
+ 2

√
b

β
+ 1,

if b < 8, which coincides with the result of Proposition 3.1.
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The same regularity result still holds if b has oscillation of order ε, since we may
choose δ2 = 2b

√
b− b which is again of order ε and therefore we can let η tend to

1 and δ tend to 0. As before, we begin by establishing the following estimate:

Lemma 4.2. Let b(x) ≤ b with b > 0 and u be a positive solution to

−∆u− b(x)|∇u|2 = λeβu in Ω
u = 0 on ∂Ω,

where λ > 0 is a parameter and β > 0. For γ ∈ N satisfying γ ≥ 2 have∫
Ω

|∇u|2eγbu(ebu − 1)2α−2dx ≤ λ

b(2α+ γ − 3)

∫
Ω

e(β+(2α+γ−2)b)udx+ λLγ , (4.3)

where α > 1
2 is a parameter and Lγ is a linear combination of the γ − 2 integrals∫

Ω
e(β+(2α+k)b)udx, k = 0, 1, . . . , γ − 3, with coefficients depending only on b, α and

γ.

Proof. Let 2α > 1 and γ ≥ 2 an integer. We have∫
Ω

|∇u|2eγbu(ebu − 1)2α−2 =
∫

Ω

∇ue(γ−1)bu∇uebu(ebu − 1)2α−2

=
∫

Ω

∇ue(γ−1)bu∇(ebu − 1)2α−1

b(2α− 1)

=
∫

Ω

e(γ−1)bu(ebu − 1)2α−1

b(2α− 1)
(−∆u− (γ − 1)b|∇u|2).

Using the equation for u and the fact that b(x) ≤ b with b > 0 we have∫
Ω

|∇u|2eγbu(ebu − 1)2α−2

=
∫

Ω

e(γ−1)bu(ebu − 1)2α−1

b(2α− 1)
(λeβu − (γ − 2)b|∇u|2)

+
∫

Ω

e(γ−1)bu(ebu − 1)2α−1

b(2α− 1)
(b− b)|∇u|2

≤ λ

b(2α− 1)

∫
Ω

e(β+(2α+γ−2)b)u−

− γ − 2
2α− 1

∫
Ω

|∇u|2eγbu(ebu − 1)2α−2 +
γ − 2

2α− 1

∫
Ω

|∇u|2e(γ−1)bu(ebu − 1)2α−2.

This yields, adding the left hand side to the second term on the right hand side,
and since 2α+ γ − 3 > 0,∫

Ω

|∇u|2eγbu(ebu − 1)2α−2 ≤ λ

b(2α+ γ − 3)

∫
Ω

e(β+(2α+γ−2)b)u

+
γ − 2

2α+ γ − 3

∫
Ω

|∇u|2e(γ−1)bu(ebu − 1)2α−2.

(4.4)

If γ = 2 the second term on the right hand side of (4.4) is zero and we conclude
(4.3) (as desired) with L = 0. Otherwise, for γ ∈ N, γ ≥ 3, we may repeat the
computations above with γ replaced by γ − 1 to obtain∫

Ω

|∇u|2e(γ−1)bu(ebu − 1)2α−2
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≤ λ

b(2α+ γ − 4)

∫
Ω

e(β+(2α+γ−3)b)u +
γ − 3

2α+ γ − 4

∫
Ω

|∇u|2e(γ−2)bu(ebu − 1)2α−2.

Note that the left hand side is the second integral on the right hand side of (4.4),
which remains to be controlled. Note also that the exponent of the exponential
function in the first integral on the right hand side decreases on each iteration.
We may continue this process until we are left with the integral of |∇u|2e2bu(ebu −
1)2α−2. For this integral,∫

Ω

|∇u|2e2bu(ebu − 1)2α−2 ≤ λ

b(2α− 1)

∫
Ω

e(1+2αb)u.

Hence,∫
Ω

|∇u|2eγbu(ebu − 1)2α−2dx ≤ λ

b(2α+ γ − 3)

∫
Ω

e(β+(2α+γ−2)b)udx+ λLγ ,

where Lγ is a linear combination of the γ − 2 integrals
∫

Ω
e(β+(2α+k)b)udx for k =

0, 1, . . . , γ − 3, with coefficients depending only on b, α and γ. �

We now prove the proposition. We follow the computations as in the proof of
Proposition 3.1.

Proof. The assumption we have made on u is that it is stable according to Definition
2.1, that is, there exists a positive function φ in Ω such that

−∆φ− 2b(x)∇u∇φ ≥ λβeβuφ.

We multiply the previous inequality by (ebu − 1)2αe2bu/φ for α > 0 and integrate
by parts to obtain

λβ

∫
Ω

e(β+2b)u(ebu − 1)2α

≤
∫

Ω

∇φ∇
(e2bu(ebu − 1)2α

φ

)
−
∫

Ω

2b
∇u∇φ
φ

e2bu(ebu − 1)2α

= −
∫

Ω

|∇φ|2

φ2
e2bu(ebu − 1)2α +

∫
Ω

2b
∇u∇φ
φ

e2bu(ebu − 1)2α

+
∫

Ω

2αb
∇u∇φ
φ

ebue2bu(ebu − 1)2α−1 −
∫

Ω

2b
∇u∇φ
φ

e2bu(ebu − 1)2α

= −
∫

Ω

|∇φ|2

φ2
e2bu(ebu − 1)2α +

∫
Ω

2αb
∇u∇φ
φ

e2buebu(ebu − 1)2α−1

+
∫

Ω

2(b− b)∇u∇φ
φ

e2bu(ebu − 1)2α

≤ (δ2 + η2 − 1)
∫

Ω

|∇φ|2

φ2
e2bu(ebu − 1)2α

+
2b(b− b)

δ2

∫
Ω

|∇u|2e2bu(ebu − 1)2α +
α2b

2

η2

∫
Ω

|∇u|2e4bu(ebu − 1)2α−2

= (δ2 + η2 − 1)
∫

Ω

|∇φ|2

φ2
e2bu(ebu − 1)2α+

+ (
2b(b− b)

δ2
+
α2b

2

η2
)
∫

Ω

|∇u|2e4bu(ebu − 1)2α−2,
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where δ > 0 and η > 0 are constants. Using Lemma 4.2 with γ = 4 we obtain, for
α > 0, ∫

|∇u|2e4bu(ebu − 1)2α−2dx ≤ λ

b(2α+ 1)

∫
e(1+(2α+2)b)udx+ λL4,

where L4 is a linear combination of
∫

Ω
e(β+(2α)b)udx and

∫
Ω
e(β+(2α+1)b)udx with

coefficients depending only on b and α.
Therefore, replacing (ebu − 1)2α by e2αbu on the left hand side of (3.8) and

combining all the remaining terms with L4 from above and denoting it by L, we
obtain

λβ

∫
e(β+(2α+2)b)u ≤ (δ2 + η2 − 1)

∫
|∇φ|2

φ2
e2bu(ebu − 1)2α

+ (
2b(b− b)

δ2
+
α2b

2

η2
)

λ

b(2α+ 1)

∫
e(β+(2α+2)b)u + λL.

(4.5)

Note that L represents a linear combination of integrals involving the exponential
function eδu with exponent δ < β+ (2α+ 2)b. Such terms can be absorbed into the
left hand side of (4.5). In fact, if 0 < a1 < a2 then, for every ε > 0 there exists a
constant Cε > 0 such that ea1u ≤ εea2u + Cε for all u ∈ (0,+∞). Hence, for every
δ as above and every ε there exists Cε,δ such that∫

Ω

eδu ≤ ε
∫

Ω

e(β+(2α+2)b)u + Cε,δ|Ω|

Thus, if δ2 + η2 ≤ 1 and α > 1/2 satisfies

(
2b(b− b)

δ2
+
α2b

2

η2
)

1
b(2α+ 1)

< β,

then e(β+(2α+2)b)u ∈ L1(Ω). Solving for α we obtain

1
2
< α <

βη2 +
√
βη2(βη2 + b)− 2b(b− b)η2

δ2

b
. (4.6)

This inequality is satisfied for some α since (b− b) < δ2

η2 (η2 − b
8 ). Therefore

‖eu‖Lq(Ω) ≤ C for q < β + 2βη2 + 2b+ 2

√
βη2(βη2 + b)− 2b(b− b)η

2

δ2
, (4.7)

where C is independent of λ. �

Remark 4.3. We note that we can perform all the computations if we assume only
that there exists a function φε, positive in Ω, such that

−∆φε − 2b(x)∇u∇φε ≥ (λ− ε)euφε,

for some small ε > 0. Letting ε tend to 0 we obtain the result above with the
constant C independent of ε.
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5. Further regularity for b(x) ≥ 0

In the case where the function b is non-negative, we can reach further regularity
and prove a similar result to the one where b is constant, even though we are not
able to transform the equation into a classical one. Using a well chosen Hopf-
Cole transformation we can construct a subsolution of the classical equation with a
power nonlinearity. Using a bootstrap argument and Proposition 4.1 this is enough
to conclude about the regularity of u.

Proposition 5.1. Let b(x) ≥ 0 and 0 ≤ b ≤ b(x) ≤ b in Ω for some constants b
and b, and u a positive classical stable solution of

−∆u− b(x)|∇u|2 = λeu in Ω
u = 0 on ∂Ω,

and λ > 0 a parameter. For every positive constants δ and η with δ2 + η2 ≤ 1, let

(b − b) < δ2

η2 (η2 − b
8 ) and n < 2 + 4η2 + 4b + 4

√
η2(η2 + b)− 2b(b− b)η2

δ2 . Then,
‖u‖L∞(Ω) ≤ C, where C depends only on n, b and Ω.

Proof. Consider the Hopf-Cole transformation v = ebu − 1. We have that

−∆v = bebu(−∆u− b|∇u|2)

= bebu(λeu + (b(x)− b)|∇u|2)

≤ λbebueu

= λb(v + 1)
b+1
b

which means that v is a positive subsolution of the classical equation, i.e.,

−∆v ≤ λb(v + 1)p in Ω,

for p = (b+ 1)/b. Let w be the solution to the linear problem

−∆w = λb(v + 1)p in Ω
w = v in ∂Ω.

Then, trivially −∆v ≤ −∆w and hence, by the maximum principle

0 ≤ v ≤ w.

If v ∈ Ls(Ω) then, using the equation for w we obtain that w ∈W 2,s/p(Ω) ⊂ Lr(Ω)
for r = (ns)/(np − 2q). Now, r > s if n < 2s/(p − 1). Therefore, by a bootstrap
argument, w and hence v is in L∞(Ω) if n < 2s/(p− 1), that is, n < 2bs.

From the previous section we know that eu ∈ Lq(Ω) for q given by (4.7). Given
the definition of v we obtain that v ∈ Lq/b(Ω), i.e., we can replace s = q/b in the
discussion above. Thus we obtain that v and hence u are in L∞(Ω) if n < 2q, that
is,

u ∈ L∞(Ω) if n < 2 + 4η2 + 4b+ 4

√
η2(η2 + b)− 2b(b− b)η

2

δ2
,

with δ2 + η2 ≤ 1. �
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6. Existence for b(x) ≥ 0

In this section we prove an existence theorem, in terms of λ, for solutions to the
problem

−∆u− b(x)|∇u|2 = λg(u) in Ω
u ≥ 0 in Ω
u = 0 on ∂Ω,

(6.1)

where g is a nonlinearity with assumptions to be detailed later, b(x) ≥ 0 and Ω ⊂ Rn
is a smooth bounded domain with n ≥ 2.

If b(x) = b is constant, using the Hopf-Cole transformation we reach an equation
for v of the form

−∆v = λf(v) in Ω
v = 0 in ∂Ω.

(6.2)

where f(v) = b(v + 1)g( 1
b ln(v + 1)). Equations of the type (6.2) have been exten-

sively studied. Under the following conditions on f :

f is C1, convex, nondecreasing f(0) > 0 and lim
v→+∞

f(v)
v

= +∞, (6.3)

there exists a finite parameter λ∗ > 0 such that, for λ > λ∗ there is no bounded
solution to (6.2). On the other hand, for 0 < λ < λ∗ there exists a minimal bounded
solution vλ, where minimal means smallest.

These conditions hold for f if we assume that g satisfies:

g is C1 convex, nondecreasing, g(0) > 0 and lim
u→+∞

g(u) = +∞. (6.4)

In the general case for a non-negative function b we prove the following theorem.

Theorem 6.1. Let b = b(x) ≥ 0 be a Cα(Ω) function defined in a smooth bounded
domain Ω ⊂ Rn, and let g be a nondecreasing C1 function with g(0) > 0 and
limu→+∞ g(u)/u = +∞. Then, there exists a parameter 0 < λ∗ <∞ such that:

(a) If λ > λ∗ then there is no classical solution of (6.1).
(b) If 0 ≤ λ < λ∗ then there exists a minimal classical solution uλ of (6.1).

Moreover, uλ < uµ if λ < µ < λ∗.
In addition, if g(u) = eu and for every positive constants δ and η with δ2 + η2 ≤
1, the function b satisfies 0 ≤ b ≤ b ≤ b in Ω for constants b and b such that

(b − b) < δ2

η2 (η2 − b
8 ) and n < 2 + 4η2 + 4b + 4

√
η2(η2 + b)− 2b(b− b)η2

δ2 , then uλ
is semi-stable. Moreover, the limit u∗ = limλ→λ∗ uλ is a weak solution of (6.1) for
λ = λ∗. That is, it satisfies

−
∫

Ω

u∗∆ξ −
∫

Ω

b(x)|∇u∗|2ξ = λ∗
∫

Ω

eu
∗
ξ,

for every ξ ∈ C2(Ω) with ξ = 0 on ∂Ω. In addition, the estimates of Proposition
5.1 apply to u∗.

Proof. First, we prove that there is no classical solution for large λ. Let uλ be
a bounded solution corresponding to λ. Then, since b ≥ 0 this function uλ is a
supersolution of the classical problem

−∆u ≥ λg(u) in Ω
u = 0 on ∂Ω.
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Since g(0) > 0, u = 0 is a strict subsolution for every λ > 0. This would imply the
existence of a classical solution corresponding to λ between 0 and our supersolution
uλ. We know this is only possible for λ smaller than a finite extremal parameter,
hence the same applies for the solutions to our problem (6.1).

Next, we prove the existence of a classical solution of (6.1) for small λ. For gen-
eral λ, the existence of a bounded supersolution implies the existence of a minimal
(smallest) classical solution uλ. This solution is obtained by monotone iteration
starting from 0. That is, uλ is the increasing limit of um where the functions um
are defined as u0 ≡ 0 and, for m ≥ 1

−∆um − b(x)|∇um|2 = λg(um−1) in Ω
um = 0 on ∂Ω.

The equation for um may be written as

−∆um = F (x, um,∇um)

where F satisfies
|F (x, um, ξ)| ≤ K(1 + |ξ|2),

for some constant K, since b is a bounded function and, at step m, the function
um−1 is known and bounded. For this equation and under such conditions on F
we have existence of solution um ∈ W 2,p(Ω) for every p > 1 (see [7]) and this
implies, for p large, that um ∈ C1,α(Ω). Moreover C1,α(Ω) is compactly embedded
in C1(Ω).

We will prove by induction that this sequence um is increasing. For m = 1 we
have that

−∆u1 − b(x)|∇u1|2 = λg(0) > 0 = −∆u0 − b(x)|∇u0|2,

which implies, for b(x) ≥ 0 and since u0 ≡ 0,

−∆u1 > −∆u0.

By the classical maximum principle we have u1 ≥ u0.
Now assume um ≥ um−1. Then

−∆um+1 − b(x)|∇um+1|2 = λg(um)

≥ λg(um−1)

= −∆um − b(x)|∇um|2,

where we have used that g is nondecreasing. Let w = um+1−um. From the previous
inequality we derive an inequality satisfied by w. Namely,

−∆w − ~B(x) · ∇w ≥ 0,

where ~B(x) = b(x)∇(um+1 + um). By the maximum principle we have that w ≥ 0,
that is, um+1 ≥ um. Therefore we have constructed an increasing sequence um.

Let now u be the solution of

−∆u− b(x)|∇u|2 = 1 in B1

u = 0 on ∂B1.

This u is a bounded supersolution of (6.1) for small λ, whenever λg(maxu) < 1.
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Using induction and the maximum principle as above we can prove that the
sequence is bounded by u, i.e.,

u0 ≤ u1 ≤ · · · ≤ um ≤ um+1 ≤ · · · ≤ u.
This implies there exists a limit,

uλ := lim
m→∞

um,

and moreover, uλ is a solution to (6.1). In fact, since um ∈ W 2,p(Ω) we obtain
that, for p large, um ∈ C1,α(Ω). Using the equation and the fact that b ∈ Cα(Ω),
we obtain that um ∈ C2,α(Ω) and hence converges to a solution of (6.1).

The extremal parameter λ∗ is now defined as the supremum of all λ > 0 for
which (6.1) admits a classical solution. Hence, both 0 < λ∗ < ∞ and part (a) of
the proposition holds.

(b) Next, if λ < λ∗ there exists µ with λ < µ < λ∗ and such that (6.1) admits
a classical solution uµ. Since g > 0, uµ is a bounded supersolution of (6.1), and
hence the same monotone iteration argument used above shows that (6.1) admits
a classical solution uλ with uλ ≤ u. In addition, we have shown that uλ is smaller
than any classical supersolution of (6.1). It follows that uλ is minimal (i.e., the
smallest solution) and that uλ < uµ.

Consider now the case where g(u) = eu, and assume that for every positive
constants δ and η with δ2 + η2 ≤ 1 we have

(b− b) < δ2

η2
(η2 − b

8
) and n < 2 + 4η2 + 4b+ 4

√
η2(η2 + b)− 2b(b− b)η

2

δ2
.

First we prove that uλ is semi-stable, meaning by semi-stable that the first eigen-
value λ1 of the linearized operator Lλ is non-negative. That is,

λ1(Lλ) ≥ 0 where Lλ := −∆− 2b(x)∇uλ∇− λeuλ .
We have seen that uλ forms an increasing sequence with respect to λ. For δ > 0 let
vδ = uλ+δ − uλ > 0. Using the equations for uλ+δ and uλ we have that vδ satisfies
−∆vδ − 2b(x)∇(uλ+δ+uλ

2 )∇vδ − λeuλvδ > 0, where η is between uλ and uλ+δ and
we have used that δ > 0. Therefore, if we define the linear operator

Lλ,δ := −∆− 2b(x)∇
(uλ+δ + uλ

2

)
∇− λeuλ ,

we have that, at vδ,

Lλ,δvδ = −∆vδ − 2b(x)∇
(uλ+δ + uλ

2

)
∇vδ − λeuλvδ > 0 in Ω,

and thus vδ is a strict supersolution positive in Ω of Lλ,δ = 0 in Ω and hence
λ1(Lλ,δ) > 0.

Now we pass to the limit in δ and obtain that λ1(Lλ) ≥ 0, that is, uλ is semi-
stable as defined above. This can be done using Propositions 2.1 and 5.1 of [13]
which establishes that, for bounded coefficients, λ1 is Lispchitz continuous with
respect to both the first and the zeroth order coefficients.

For every ε > 0, since λ1(Lλ) ≥ 0 we have that λ1(Lλ − ε) > 0. This implies
there exists a function φε, positive in Ω, as in Remark 4.3. Hence we have that
‖uλ‖L∞(Ω) ≤ C, where C is independent of λ.

Under the same conditions as above, we can establish that the limiting function
u∗ = limλ→λ∗ uλ is a weak solution to (6.1) with λ = λ∗. Just use the weak
formulation for uλ and the fact that uλ ∈ L∞(Ω), so that we can take limits in λ
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and obtain that u∗ is a weak solution. Therefore using the L∞ uniform bound on
uλ we have ‖u∗‖L∞ ≤ C. �

7. H1 regularity

In this section we study the H1 regularity of positive solutions to the equation

−∆u− b(x)|∇u|2 = λg(u) in Ω, (7.1)

such that u ≡ 0 on ∂Ω, Ω ⊂ Rn is a bounded domain, g ≥ 0 and g′ > 0 in Ω.
We consider two cases.

Case 1: b(x) = b > 0 is constant. In this setting one can use the Hopf-Cole
transformation and study the resulting equation for the new function v. Then,
using the results of [17], we have that v is in H1 if it is stable and the nonlinearity
f satisfies

lim inf
s→∞

f ′(s)s
f(s)

> 1. (7.2)

This condition could be rewritten in terms of the nonlinearity g(u) allowing us
to conclude that eu, and hence u, is in H1. It is natural to expect that such
assumptions on g will be too restrictive, since they give a condition for eu, and not
just u, to be in H1. In what follows we study directly the problem for u and find
the natural conditions to impose on g.

Proposition 7.1. Let b > 0 be a constant and u a positive classical solution of the
problem −∆u− b|∇u|2 = λg(u) with zero Dirichlet boundary conditions, g ≥ 0 and
g′ > 0 in Ω and λ > 0 a parameter. Assume that u is a stable solution Then, if

lim inf
s→∞

g′(s)(ebs − 1)
bg(s)

> 1,

we have that ‖u
|H1(Ω) ≤ C where C is independent of λ.

To better understand the above condition on g, let us consider the case where
equality holds, i.e.,

g′(s)(ebs − 1)
bg(s)

= 1.

Integrating we obtain log g(s) = log(ebs − 1) − bs + C for some constant C and
hence, g(s) = C(1− e−bs). Recall that b > 0 so g is bounded.

As we mentioned before, this condition on g is less restrictive than the one
imposed via f . In fact, if g(u) = eu then u is in H1 by the previous theorem.
However, if we pass to the equation for v = ebu − 1 we have that −∆v = λf(v)
with f(v) = b(v + 1)p, p = 1 + 1/b and f does not satisfy condition (7.2) of [17].

Proof of Proposition 7.1. Since u is stable there exists a positive function φ on Ω
such that

−∆φ− 2b∇u∇φ ≥ λg′(u)φ.
Multiplying by (ebu − 1)2/φ and integrate in Ω.

λ

∫
Ω

g′(u)(ebu − 1)2

≤
∫

Ω

−|∇φ|
2

φ2
(ebu − 1)2 +

∫
Ω

2b
∇φ
φ
∇uebu(ebu − 1)−

∫
Ω

2b
∇φ
φ
∇u(ebu − 1)2
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=
∫

Ω

−|∇φ|
2

φ2
(ebu − 1)2 +

∫
Ω

2b
∇φ
φ
∇u(ebu − 1)

≤
∫

Ω

b2|∇u|2.

On the other hand, multiplying (7.1) by ebu − 1 and integrating we obtain

λ

∫
Ω

g(u)(ebu − 1) =
∫

Ω

∇u∇(ebu − 1)− b|∇u|2(ebu − 1) = b

∫
Ω

|∇u|2. (7.3)

Thus, we have

λ

∫
Ω

g′(u)(ebu − 1)2 ≤ λb
∫

Ω

g(u)(ebu − 1). (7.4)

Assume that
bg(s)(ebs − 1) ≤ δg′(s)(ebs − 1)2 + C (7.5)

for some constant δ < 1 and some constant C. Then, from (7.4) we obtain that∫
Ω

g′(u)(ebu − 1)2 ≤ C,

which implies both∫
Ω

g(u)(ebu − 1) ≤ C and
∫

Ω

|∇u|2 ≤ C, by (7.3).

Now, going back to (7.5) we see that, for s small it is always possible to find δ
and C. The problem occurs when s tends to infinity (that is, when u is unbounded).
It is easy to see that (7.5) holds if

lim inf
s→∞

g′(s)(ebs − 1)
bg(s)

≥ 1
δ
> 1. (7.6)

�

Case 2: b(x) ≤ −ε < 0. This case is, in some sense, more general than the previous
one since we do not need to assume that u is a stable solution. The proof uses a
technique due to Boccardo (see [14]) involving truncations. For a function u we
define the truncation T1u as

T1u =


1, u > 1
u, |u| ≤ 1
−1, u < −1.

(7.7)

We have ∇T1u = ∇u where |u| ≤ 1 and ∇T1 = 0 otherwise.

Proposition 7.2. Let b(x) ≤ −ε < 0 for some ε > 0 and u a positive classical
solution to the problem −∆u − b(x)|∇u|2 = λg(u) with zero Dirichlet boundary
conditions, λ > 0 a parameter, and assume that g(u) ∈ L1(Ω). Then, ‖u‖H1(Ω) ≤
C, where C is independent of λ.

Proof. We multiply equation (7.1) by T1u and integrate by parts∫
Ω

∇u∇T1u−
∫

Ω

b(x)|∇u|2T1u = λ

∫
Ω

g(u)T1u.

Given the definition of T1u this yields∫
{|u|≤1}

|∇u|2 = λ

∫
Ω

g(u)T1u+
∫

Ω

b(x)T1u|∇u|2.



20 J. TERRA EJDE-2016/196

Since u is assumed to be positive, b(x) ≤ −ε < 0 for some ε > 0 and 0 ≤ T1u ≤ 1
we obtain ∫

{u≤1}
|∇u|2 + ε

∫
{u>1}

|∇u|2 ≤ λ
∫

Ω

|g(u)|.

�

Acknowledgements. I would like to express my gratitude to Prof. Xavier Cabré
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[9] H. Berestycki, X. Cabré, L. Ryzhik; Bounds for the explosion problem in a flow, in prepara-
tion.

[10] H. Berestycki, L. Caffarelli, L. Nirenberg; Further qualitative properties for elliptic equations

in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 69–94.
[11] H. Berestycki, F. Hamel, N. Nadirashvili; The speed of propagation for KPP type problems.

I. Periodic framework, J. Eur. Math. Soc.,7,(2005), no 2, 173–21.

[12] H. Berestycki, F. Hamel, L. Rossi; Louville type results for semilinear elliptic equations in
unbounded domains, to appear Ann. Mat. Pura Appl.

[13] H. Berestycki, L. Nirenberg, S. R. S. Varadhan; The Principal Eigenvalue and Maximum

Principle for Second-Order Elliptic Operators in General Domains, Comm. Pure Appl. Math,
47, (1994), 47–92.

[14] L. Boccardo; T-minima: An approach to minimization problems in L1, Contributi dedicati
alla memoria di Ennio De Giorgi, Rich. Mat. 49 (2000), 135–154.

[15] E. Bombieri, E. De Giorgi, E. Giusti; Minimal cones and the Bernstein problem, Inv. Math.
7 (1969), 243–268.
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[49] L. Modica, S. Mortola; Un esempio di Γ−-convergenza, Boll. Un. Mat. Ital. B 14 (1977),

285–299.

[50] F. Mignot, J.-P. Puel; Sur une classe de problèmes non linéaires avec nonlinéarité positive,
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