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LOGARITHMICALLY IMPROVED BLOW-UP CRITERIA FOR
THE 3D NONHOMOGENEOUS INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH VACUUM

QIANQIAN HOU, XIAOJING XU, ZHUAN YE

ABSTRACT. This article is devoted to the study of the nonhomogeneous in-
compressible Navier-Stokes equations in space dimension three. By making
use of the “weakly nonlinear” energy estimate approach introduced by Lei and
Zhou in [16], we establish two logarithmically improved blow-up criteria of
the strong or smooth solutions subject to vacuum for the 3D nonhomogeneous
incompressible Navier-Stokes equations in the whole space R3. This results
extend recent regularity criterion obtained by Kim (2006) [13].

1. INTRODUCTION

In this article we study a blow-up criterion of strong solutions to the 3D nonho-
mogeneous incompressible Navier-Stokes equation in the whole space R3,

pe +div(pu) =0,
(pu): + div(pu @ u) — Au+ Vr =0, L1
divu =0, (L.1)
(P, pu)|i=0 = (po; pot0),

where u = u(z,t) = (u1(z,t), ua(z,t), us(x,t)), p = p(x,t) and 7 = w(z,t) denote
the unknown velocity, density and pressure, respectively. The system describes
a fluid which is obtained by mixing two miscible fluids that are incompressible and
that have different densities. It may also describe a fluid containing a melted
substance. One may check [I7] for the detailed derivation.

In the past decades, there has been a lot of literature about the well-posedness
theory of the incompressible Navier-Stokes equations . When the initial density
is strictly positive, there has been proved that there is a unique strong solution to the
problem in dimension three, which is locally defined for large initial data, while
globally defined for the case of small data (see for example [T} 2, [3 [8, 10O, 12} 15]). On
the other hand, for initial data which permits regions of vacuum, i.e. regions where
the density p vanishes on some set, the problem becomes much more complicated.
The global existence of weak solutions of the system has been established
(see [14, 17, [18]). However, the problem of uniqueness and regularity of such weak
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solutions is full of challenge and remains open. Very recently, Craig-Huang-Wang
[7] proved the global existence of strong solution with vacuum of the system
under the assumption that the initial data ||u0||H 1 is small enough. We refer the
interested readers to [4, [5l [6 [IT], @ 2T] for many more results.

Recently, Choe and Kim [4] established an existence result on strong solutions
with nonnegative densities for the system . More precisely, it was proved that

if the data pg and ug satisfy the following regularity condition
0<poelP?NH? e HnH?
and the compatibility condition
—Aug + Vg = /pog, divug =0,

with (mo, g) € H' x L. Then there exist a time T, € (0,7) and a unique strong
solution (p,u, ) to the system (1.1 such that

p € L¥0,T,;L>®NHY), Vu,mecL>®0,Ty;H")NL*0,T,; W°),
pr € L=(0,T,; L?), /pus € L(0,Ty; L?), w € L*(0,T,; Hy),

Here we would like to emphasize that Kim [I3] established the so-called Serrin type
regularity criterion to the system (|1.1)), which reads: If

3 2

then the solution can be extended beyond time 7. Here LP denotes the weak
LP-space.

The aim of this article is to establish the logarithmic Serrin type regularity
criterion, which improves the result of [13]. More precisely,

Theorem 1.1. Suppose that (p,u, ) is the unique local strong solution (established
by Choe and Kim [4]) in time interval [0,T) to the system (L.1). If

T fu®ze
/ Olzs @) dt < oo, (1.2)
o In(e+ [lul®)llLyms))

for % + % =1 with 3 < p < oo, then the solution (p,u, ) can be extended beyond
time T. In other words, if the solution blows up at T, then

/T* Ol
= Q.
0 ln(

e+ [[u(®)l oy, @e))

Our second result concerning the following regularity criterion in the Besov space
with negative index reads as follows.

Theorem 1.2. Suppose that (p,u, ) is the unique local strong solution (established
by Choe and Kim [4]) in time interval [0,T) to the system (L.1). If

2
T fu@®)E
/ Boooe®) g1t < o0, (13)
o In(e+[u®)llpzs_ (gsy)
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for 0 < § < 1, then the solution (p,u, ) can be extended beyond time T. In other
words, if the solution blows up at T™, then

. F=r}
/T [[u(t)] Bl (R3) dt = oo.
o In(e+llu®)lpzs ms)

Remark 1.3. At the moment we are not able to show above Theorem [ still
holds for the case d = 0, even we replace the logarithmic type assumption (|1.3) by

T
/O 0% gy dt < o0 (1.4)
Fortunately, we established a regularity criteria which are slightly weaker than (1.4]),
T T
/O o) By oyt <0 and [ ) o e < 0 (see [1).

Let us state the following result corresponding to the case 6 = 1.

Theorem 1.4. Suppose that (p,u, ) is the unique local strong solution (established
by Choe and Kim [4]) in time interval [0,T) to the system (1.1). If there exists a
small constant n such that

sup [|u(t)ll o1 gy < 1. (1.5)
0<t<T ’

then the solution (p,u, ) can be extended beyond time T .

2. PROOF oF THEOREM [L.1]

The proof is based on the “weakly nonlinear” energy estimate approach intro-
duced firstly by Lei and Zhou in [I6]. Since the local strong or smooth solutions to
the system was established by Choe and Kim [4], the key step in the proof of
Theorem is to prove a priori estimates.

If holds, one can deduce that for any small € > 0, there exists Ty = Tp(e) <

T such that . .

/ Hu(t)HLﬁ(Rs) dt < e. (2.1)
7 In (e + [lut)|| rr r2))

In what follows, we choose some suitable €. In sequel, C stands for some real positive

constant which may be different in each occurrence and depend on pg, ug, 1o, T and

so on. It is easy to show the following the basic estimates

t
Ivpu®)z: +/0 IVu(s)[1Z2 ds < C(po, uo) < oo,

o)z < llpollze < oo, (2.2)

for any 2 < ¢ < o0.
Testing the second equation of (I.1)) by u; and integrating over R?®, we see that
by using the mass equation ([1.1); and divergence-free condition

1d
§EHVU(75)||2L2 + [lvpuel72 < | / pu - Vu - uy da|. (2.3)
R3

It follows from [I3] 209)] that

[ [ on- V- wede] < Ot Jullyg)[Vulf
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For any t € (Tp,T), we denote

( )
y(t) ;= max HA“SP w(™) g2, 3<p < oo
TG[TO

It should be noted that the function y(¢) is nondecreasing. As a consequence of
Gronwall inequality, we can conclude that

t
IVu(t)|2: + /T | /Fus(s) 122 ds

t
< IVu(T)|3exp 4

To

(1 u(s) ) ds)

b llu(e)llzy

T Tty ™ (e o)) )
lu(s)l

/TO (e + ut)ig) ™
C g
/. e Ty MU
A (

CEl -
e Ty & e+ ve)]

< O|IVu(Ty) |22 exp | A

u(s) | p2) ds| (2

< C|[Vu(To)l[72 exp | A
A

< C|IVu(To)|[7» exp

< CI[Vu(To)|l3= exp |

< Ce+y(t)",

where A is an absolute constant and we have used the following facts

3(p—2)

llull e, sy < CllullLrmsy < Cl|A™ 2 ul|p2(rs)-

Thus, we infer that

IVu(t)|2. + /T I /Bua(s) 22 ds < Ce +y(£) ™. (2.5)

In view of the mass equation (1.1]);, we can rewrite the second equation of (1.1 as
—Au+ V71 = —puy — pu- Vu.
Applying the Helmholtz-Weyl operator to above equation, then using the bound-

edness of Calderén-Zygmund (or the Stokes theorem), it is not hard to deduce
that

JAullzz < C(lpurllzs + lpu- Vul12)
< Clllputll 2 + ol lull < [ Vul 1)
< C(lypuelize + ol llullZs | Aul 2] Vu] 1) (2.6)
< C(ly/puellze + ool = | Vull 21| Aul 2 |Vl 2)

1
< lAule + ClIVpuillzz + [ Vulze),
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and for any p > 3,

2p+3

80l 3z, < CClounl, e, + llow- Yl _e.)
< C(IVoll | s lVpuellzz +llpllce lull e | Vull 22)
< C(IVpoll ez Ivputllz + llpoll o[V 2 [ V]| 22)
< C(IVpuellcz + [ VullZ2).
Combining (2.6 and (2.7)) leads to

1Aullzz + [[Aull s < C(lvpuel Lz + [Vulzz + [ VullZe).

2p+3

Note that by (2.5, we obtain

t t

[Au(s)]|Z2 ds < C/T (Ivpuellze + IVullze + [Vul22)(s) ds
0

3Ae

To

< C(e+y(t))

Combining ([2.5)) and , we obtain
t

IVu(t)[|72 +/T (Ivpuelle + [Aull7z)(s) ds < C(e+ y(t))
0

3Ae

2.7)

(2.10)

Differentiating the momentum equation with respect to ¢, multiplying by u:, and

then integrating over whole space, one can obtain that

1d
i%ﬂﬁut(t)ﬂﬁz + [|[Vue||22 = —/]Rz Py - Ug dT —/ (pu)t - Vu - up do

R2
= J1 + JQ.

By the mass equation, we derive

J1 = div(pu)us - up dx
R2

< 2‘/ puNVuy - ug dx
R2
< Cllullzs Vel L2 [lv/pull s
1 1
< O Vull2 (V|| 2 [|Vpuel| 72 |V puel| 7o
1 1
< ClIVullp2[[Vuel| 22 |Vl 72 l[ue 7o
1 1
< OVl L2 Vel 22 [|puel 72 [ Ve 2
1
< IVuliza + ClIVaullzallvoue 7=

Again we resort to the mass equation to obtain

J2:7/ Put'untdx*/ peu - Vu - uy d
R2 R?

—/ pug - Vu - uy de + / div(pu)u - Vu - uy dx
R2 R2

—/ put~Vu'utdm—/ (pu)V(u-Vu-uy)dx
R2 R2
= Jo1 + Joo.

(2.11)

(2.12)
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The Young inequality and Sobolev embedding theorem entail us to obtain
Ja1 < Clly/pu|| 74|Vl 2
< Cllpudl f Ivpuell o) Vulls
< Clly/puel  llusl 21 Va2
< Cllypull 2 Vw3 Va2
< SIVuls + OVl |yl
Similarly, we obtain by using Young inequality and Sobolev embedding theorem

Jag < ‘/ (pu)Vu - Vu - uy de| +|/ (pu)u - Vu - uy da|
R2 R?

+| / (pu)u - Vu - Vuy da|
R2

< Cllull e [Vullis luell e + Cllullgs | Aul e luel o + CllullZe [ Vull Lol Ve | 2
< C||Vul L: || Aull 2 | Vel 2

1
< lIVulzz + ClIVullza || Aul|Z..
Plugging the above estimates into inequality (2.11) we arrive at
d
ZiIVPu @Il + [Vuelzz < ClVulza(lvoulz: + [1AulZe)- (2.13)
Integrating above differential inequality and using the estimate (2.10)), it gives

t
Vo (Ol+ [ 1903 ds
0

t
< C/T IVl (lvpuelZ: + | Aulz2) ds

t
2Ae
<C [ (ety(s) " (IVpuellie + |Aull72) ds

To

t
2Ae
<Cleru®)*™ [ (1vpulfs +1Ault) ds
0

5Ae

(2.14)

< Cle+y(t)
Next, we split the range 3 < p < oo into two cases, namely 6 < p < oo and
3<p<6.
Case: 6 < p < co. We can show that

3(p—2) s £
IS5 ull o) < OVl Fig 1 Al gy, 6 < p < oo,
Recalling estimate (|2.8|)
AUl 2 < C(llVpuellcz + [ VullZe + (| VulZ2), (2.15)
we can conclude that

A5 | 2

p—=6

p+6
< CIVull F (Ivpwllis + Vulze + [Vulz2) 5
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p—6
P+6A ap

< Clety®) ™ (e +y®)™ + (e +y(0) ™ + (e +y(1)*™)

PE6 pe

< Cle+y() T (e + y(t)) T
< Cle+y(t)) A

Finally, we infer from above inequality that

y(t) < Cle+y(t))
Selecting € < 3%4 such that %Ae < 1, it is easy to get
y(t) < C(To, T, ||Vu(To)||r2), YVTo <t<T.

Noticing that the righthand of above estimate is independent of ¢ for all Ty <t < T,
it is easy to observe that

max y(t) < C(To, T, ||Vu(To)|2) < oo.
T€[To,T)

By (2.10]), we obtain

e [[Vu(r) 2 < O(To, T, [Vu(Ty)] 12) < oc.
TE[T07T]

Njw

3
5 Ae

Consequently, it also holds that

max [Vu(mlle: < C(To, T po, o, [IVulTh) | 12) < oo

By the embedding inequality
||UHL6(R3) S CHVUHLz(R?’);

one can obtain that

2
u € L*0,T; L5(R?)), % +7=L

Now the regularity criterion established in [I3] allows us to extend the solution
(p,u, ) beyond time T
Case: 3 < p < 6. The embedding inequality

1A

3(p—2)
2p UHLQ(]R3) S CHAUHL2;§—3 (R3)

direct yields
3(p—2)
1A 5wl 2 < CllAul
< O(lvpurl ez + [IVulZ2)
5A/2 Ae
< C((e+y(t)) 4 (e+y(t)) )
<C(e+ y(t))5A€/2.

It is worth noting that the case 6 < p < oo can also be handled by the argument
used for the case 3 < p < 6. Again, we arrive at

y(t) < Cle+y(t))

The remainder proof is the same as the previous case. Thus, this completes the
proof of Theorem [1.1

5A/2
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3. PROOF OF THEOREM

As above, under the condition (1.2]), we can infer that for any small € > 0, there
exists Ty = To(e) < T such that

_2
T w5
/ Bew®) gt <. (3.1)

7, In (e + ”u(t)HBgo‘foo(R?’)) a

The well-known Stokes theorem ensures that

|Aul 2 < Clpuillzs + lpu - Vall12)
< Clllpudllzz + Ipll=llu - Vul z2)
< C(lypullzs + V- (@ w)z2) (divu =0)
< C(lypuillze + uul )
< C(l/purllze + llunl gy ) (3.2)
< C(Ipmllze + lull sl )
< CIpurllee + llull pos_IVulli2®IAul2) (0 <6 <1)

1
< glAufrz + C(lVpuel 2 + IIUHB-?OCHVUHH),
where we have used the following facts

1 F sy, < Clfllpze Nl pyses  for any a> 0, (see, e.g., [20])
-
1l = 1 Fll gy, and Jlull s < CIVul 21 Au]gz, 0 <6 <1

Applying Stokes theorem once again gives

[Aull, ap < Cllpuell, yop + llou-Vull a)

LZ2+3

< C(II\fIILW IWpudllez + ol g llulles [Vl =) (3.3)
< C(IVpuellcz + | VullZ2).

Thus, one deduces from and . that

1Aullzz + [[Aull, s < Cllvpuellzz + [ VulZe + [ VulZ2). (3-4)
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Multiplying the second equation of (1.1) by w; and integrating over whole space,
one can obtain that for any 0 < 6 < 1,

1d
5 5 IVuOl32 + 1l /pull3s

g\ pu~Vu-utdx}
R3

< OlValle= - Vaul 2]l Vourll 2

< V- (o w2 vpude (dive=0)

< Clluul| gy , llv/puel 2

< Cllullps_lul gy /Pl 12 (3:5)

< Cllull s NVl 12 [ Aullye | /ouel 2
< Cllull s IVl (1Bl 2 + 1o $x||vu||m)6||\/ﬁut||m
< Cllullgzs IVull 2 lVeul 2 + Cllull 575 _IVullzallvpud 22
*H\fUtH[ﬁ +C||U||B—a IVull7-.
For any t € (Ty,T), we denote

t) .= A .
) = max A5 2u(r)]

Applying Gronwall inequality to (3.5)), we conclude
¢
IVt + [ IVFule ds
0

t 2
< I9u(T) e exp[4 [ 7 ds

_2
()15

< || Vu(Ty)|[32 exp n (e + [Ju(s)] s
Bo_o,oc

) In (e + ||U(3)HB;%C> ds}

A
< CIIVu(To)|3: exp | / el In (e + [[A29(s) | 2) ds|  (3:6)

(e+llu(s)l p=s)

16
Bé

n (e + fJu(s)ll 525

[[u(s)

< C||Vu(Ty)||32 exp ) In (e +y(s)) ds}

16
Bé

(e + llu(s)ll p=s

[[u(s)

< O Vu(Ty)|2 exp 5 ds - In (e + y(t))]

< Cle+y(t)™,
where we have used

3 _
HUHB;%O(RE') < O”A2 6’u||L2(]R3)7



10 Q. HOU, X. XU, Z. YE EJDE-2016/192

which can be easily derived by the Littlewood-Paley technique with the Berstein
inequality. By (3.4)), it is easy to see that

t t
3Ae
/T | Auf22(s) ds < C /T (I/Buel2s + [VulS2)(s) ds < C e+ y(1)*,
which together with (3.6]) imply
t
3Ae
IVu(®)]S: + /T (lv/puelZ + |1 AulZ)(s) ds < Cle+y(®)* .  (3.7)

With the same argument as in Section 2, one can infer that

d
—IVeu @7z + IVuliz < ClIVulla (lvpul|Z: + | Aul72).
Thus, integrating the above inequality over [Tp,t] results in (see also (2.14]))

IVou(Ol+ [ 19us)1ds < O+ y()™" (3.5)

which along with (3.4) give
5Ae
1AullZe +[[Aul? s < CUVpullZz + [Vulze +[IVullze) < Cle+y(1)™™. (3.9)
Note the interpolation inequality

1A2~%u] 2 es) < CllAwl], 0<d<1 (3.10)

5 (®3)’
Thus, we conclude the following by combining the inequalities (3.9) and (3.10)
5Ae
y(t) < Cle+y(t)™™".
The remainder proof is the same as the previous section. Thus, this completes the
proof of Theorem [T.2]
4. ROOF OF THEOREM [ 4]

As above, we only establish several a priori estimates for the strong solutions.
Now we recall the following bilinear estimate which is an easy consequence of [20,
Lemma 1],

176y, < CUFllpmr 1 Fllsz - (4.1)
Applying the Stokes theorem (or (2.6))) yields
[AullL> < ([lpuell L2 + [lpu - Vul[L2)
< (IpuellL2 + llpllzeellu - Vul|z2)
< C(Ivpuellpz + V- (u@u)llz2)  (dive=0)
Cllvpuellzz + lluwll ) (4.2)
Ol /puelze + luull g5 )
C(lvpudllze + llull pos _llull g ) (see (EI))
Clivpuile + Cllull gz | Aul[2.
Thanks to condition , one has

IN N

IN

IN

)

DO | =

Cllull gz <
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which leads to
|Aul|p2 < Clly/puel| 2. (4.3)
As a consequence, this gives

1d
5 VU + IVl <| [ pu Ve ud
R3

< /Al e - Val g |/l 2

<V e w)uelyvpulz: (dive=0)
< Clluull gy | /A 2

< Cllull sl gz /5 2

< Cllull g[8l 22l /pucll 2

< Cllullps _[Iv/purll3

1
<3 IvpudlZ,
which implies

d
£||Vu(t)||21:2 + [[vpuel|32 < 0.
Thus

t
Va3 + / IVpur($)]3 ds < [ Vugll3a < € < oo

for any 0 <t < T'. As in proving Theorem we get the desired result. The proof
of Theorem [T.4] is complete.
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