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LOGARITHMICALLY IMPROVED BLOW-UP CRITERIA FOR
THE 3D NONHOMOGENEOUS INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH VACUUM

QIANQIAN HOU, XIAOJING XU, ZHUAN YE

Abstract. This article is devoted to the study of the nonhomogeneous in-
compressible Navier-Stokes equations in space dimension three. By making

use of the “weakly nonlinear” energy estimate approach introduced by Lei and

Zhou in [16], we establish two logarithmically improved blow-up criteria of
the strong or smooth solutions subject to vacuum for the 3D nonhomogeneous

incompressible Navier-Stokes equations in the whole space R3. This results

extend recent regularity criterion obtained by Kim (2006) [13].

1. Introduction

In this article we study a blow-up criterion of strong solutions to the 3D nonho-
mogeneous incompressible Navier-Stokes equation in the whole space R3,

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)−∆u+∇π = 0,
div u = 0,

(ρ, ρu)|t=0 = (ρ0, ρ0u0),

(1.1)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)), ρ = ρ(x, t) and π = π(x, t) denote
the unknown velocity, density and pressure, respectively. The system (1.1) describes
a fluid which is obtained by mixing two miscible fluids that are incompressible and
that have different densities. It may also describe a fluid containing a melted
substance. One may check [17] for the detailed derivation.

In the past decades, there has been a lot of literature about the well-posedness
theory of the incompressible Navier-Stokes equations (1.1). When the initial density
is strictly positive, there has been proved that there is a unique strong solution to the
problem (1.1) in dimension three, which is locally defined for large initial data, while
globally defined for the case of small data (see for example [1, 2, 3, 8, 10, 12, 15]). On
the other hand, for initial data which permits regions of vacuum, i.e. regions where
the density ρ vanishes on some set, the problem becomes much more complicated.
The global existence of weak solutions of the system (1.1) has been established
(see [14, 17, 18]). However, the problem of uniqueness and regularity of such weak
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solutions is full of challenge and remains open. Very recently, Craig-Huang-Wang
[7] proved the global existence of strong solution with vacuum of the system (1.1)
under the assumption that the initial data ‖u0‖

Ḣ
1
2

is small enough. We refer the
interested readers to [4, 5, 6, 11, 9, 21] for many more results.

Recently, Choe and Kim [4] established an existence result on strong solutions
with nonnegative densities for the system (1.1). More precisely, it was proved that
if the data ρ0 and u0 satisfy the following regularity condition

0 ≤ ρ0 ∈ L3/2 ∩H2, u0 ∈ H1
0 ∩H2

and the compatibility condition

−∆u0 +∇π0 =
√
ρ0g, div u0 = 0,

with (π0, g) ∈ H1 × L2. Then there exist a time T? ∈ (0, T ) and a unique strong
solution (ρ, u, π) to the system (1.1) such that

ρ ∈ L∞(0, T?;L∞ ∩H1), ∇u, π ∈ L∞(0, T?;H1) ∩ L2(0, T?;W 1,6),

ρt ∈ L∞(0, T?;L2),
√
ρut ∈ L∞(0, T?;L2), ut ∈ L2(0, T?;H1

0 ),

Here we would like to emphasize that Kim [13] established the so-called Serrin type
regularity criterion to the system (1.1), which reads: If

u ∈ Lq(0, T ;Lpw(R3)),
3
p

+
2
q
≤ 1, 3 < p ≤ ∞,

then the solution can be extended beyond time T . Here Lpw denotes the weak
Lp-space.

The aim of this article is to establish the logarithmic Serrin type regularity
criterion, which improves the result of [13]. More precisely,

Theorem 1.1. Suppose that (ρ, u, π) is the unique local strong solution (established
by Choe and Kim [4]) in time interval [0, T ) to the system (1.1). If∫ T

0

‖u(t)‖r
Lpw(R3)

ln
(
e+ ‖u(t)‖Lpw(R3)

) dt <∞, (1.2)

for 3
p + 2

r = 1 with 3 < p ≤ ∞, then the solution (ρ, u, π) can be extended beyond
time T . In other words, if the solution blows up at T ∗, then∫ T∗

0

‖u(t)‖r
Lpw(R3)

ln
(
e+ ‖u(t)‖Lpw(R3)

) dt =∞.

Our second result concerning the following regularity criterion in the Besov space
with negative index reads as follows.

Theorem 1.2. Suppose that (ρ, u, π) is the unique local strong solution (established
by Choe and Kim [4]) in time interval [0, T ) to the system (1.1). If

∫ T

0

‖u(t)‖
2

1−δ

Ḃ−δ∞,∞(R3)

ln
(
e+ ‖u(t)‖Ḃ−δ∞,∞(R3)

) dt <∞, (1.3)
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for 0 < δ < 1, then the solution (ρ, u, π) can be extended beyond time T . In other
words, if the solution blows up at T ∗, then∫ T∗

0

‖u(t)‖
2

1−δ

Ḃ−δ∞,∞(R3)

ln
(
e+ ‖u(t)‖Ḃ−δ∞,∞(R3)

) dt =∞.

Remark 1.3. At the moment we are not able to show above Theorem 1.2 still
holds for the case δ = 0, even we replace the logarithmic type assumption (1.3) by∫ T

0

‖u(t)‖2
Ḃ0
∞,∞(R3)

dt <∞. (1.4)

Fortunately, we established a regularity criteria which are slightly weaker than (1.4),∫ T

0

‖u(t)‖2
Ḃ0
∞,2(R3)

dt <∞ and
∫ T

0

‖u(t)‖2BMO(R3) dt <∞ (see [19]).

Let us state the following result corresponding to the case δ = 1.

Theorem 1.4. Suppose that (ρ, u, π) is the unique local strong solution (established
by Choe and Kim [4]) in time interval [0, T ) to the system (1.1). If there exists a
small constant η such that

sup
0≤t≤T

‖u(t)‖Ḃ−1
∞,∞(R3) ≤ η, (1.5)

then the solution (ρ, u, π) can be extended beyond time T .

2. Proof of Theorem 1.1

The proof is based on the “weakly nonlinear” energy estimate approach intro-
duced firstly by Lei and Zhou in [16]. Since the local strong or smooth solutions to
the system (1.1) was established by Choe and Kim [4], the key step in the proof of
Theorem 1.1 is to prove a priori estimates.

If (1.2) holds, one can deduce that for any small ε > 0, there exists T0 = T0(ε) <
T such that ∫ T

T0

‖u(t)‖r
Lpw(R3)

ln
(
e+ ‖u(t)‖Lpw(R3)

) dt ≤ ε. (2.1)

In what follows, we choose some suitable ε. In sequel, C stands for some real positive
constant which may be different in each occurrence and depend on ρ0, u0, T0, T and
so on. It is easy to show the following the basic estimates

‖√ρu(t)‖2L2 +
∫ t

0

‖∇u(s)‖2L2 ds ≤ C(ρ0, u0) <∞,

‖ρ(t)‖Lq ≤ ‖ρ0‖Lq <∞, (2.2)

for any 2 ≤ q ≤ ∞.
Testing the second equation of (1.1) by ut and integrating over R3, we see that

by using the mass equation (1.1)1 and divergence-free condition
1
2
d

dt
‖∇u(t)‖2L2 + ‖√ρut‖2L2 ≤

∣∣ ∫
R3
ρu · ∇u · ut dx

∣∣. (2.3)

It follows from [13, 209)] that∣∣ ∫
R3
ρu · ∇u · ut dx

∣∣ ≤ C(1 + ‖u‖rLpw)‖∇u‖2L2 .
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For any t ∈ (T0, T ), we denote

y(t) := max
τ∈[T0, t]

‖Λ
3(p−2)

2p u(τ)‖L2 , 3 < p ≤ ∞.

It should be noted that the function y(t) is nondecreasing. As a consequence of
Gronwall inequality, we can conclude that

‖∇u(t)‖2L2 +
∫ t

T0

‖√ρut(s)‖2L2 ds

≤ ‖∇u(T0)‖2L2 exp
[
A

∫ t

T0

(1 + ‖u(s)‖rLpw) ds
]

≤ C‖∇u(T0)‖2L2 exp
[
A

∫ t

T0

‖u(s)‖r
Lpw

ln
(
e+ ‖u(s)‖Lpw

) ln
(
e+ ‖u(s)‖Lpw

)
ds
]

≤ C‖∇u(T0)‖2L2 exp
[
A

∫ t

T0

‖u(s)‖r
Lpw

ln
(
e+ ‖u(s)‖Lpw

) ln
(
e+ ‖Λ

3(p−2)
2p u(s)‖L2

)
ds
]

≤ C‖∇u(T0)‖2L2 exp
[
A

∫ t

T0

‖u(s)‖r
Lpw

ln
(
e+ ‖u(s)‖Lpw

) ln
(
e+ y(s)

)
ds
]

≤ C‖∇u(T0)‖2L2 exp
[
A

∫ t

T0

‖u(s)‖r
Lpw

ln
(
e+ ‖u(s)‖Lpw

) ds · ln (e+ y(t)
)]

≤ C
(
e+ y(t)

)Aε
,

(2.4)

where A is an absolute constant and we have used the following facts

‖u‖Lpw(R3) ≤ C‖u‖Lp(R3) ≤ C‖Λ
3(p−2)

2p u‖L2(R3).

Thus, we infer that

‖∇u(t)‖2L2 +
∫ t

T0

‖√ρut(s)‖2L2 ds ≤ C
(
e+ y(t)

)Aε
. (2.5)

In view of the mass equation (1.1)1, we can rewrite the second equation of (1.1) as

−∆u+∇π = −ρut − ρu · ∇u.

Applying the Helmholtz-Weyl operator to above equation, then using the bound-
edness of Calderón-Zygmund (or the Stokes theorem), it is not hard to deduce
that

‖∆u‖L2 ≤ C(‖ρut‖L2 + ‖ρu · ∇u‖L2)

≤ C(‖ρut‖L2 + ‖ρ‖L∞‖u‖L∞‖∇u‖L2)

≤ C(‖√ρut‖L2 + ‖ρ‖L∞‖u‖
1
2
L6‖∆u‖

1
2
L2‖∇u‖L2)

≤ C(‖√ρut‖L2 + ‖ρ0‖L∞‖∇u‖
1
2
L2‖∆u‖

1
2
L2‖∇u‖L2)

≤ 1
2
‖∆u‖L2 + C(‖√ρut‖L2 + ‖∇u‖3L2),

(2.6)
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and for any p > 3,
‖∆u‖

L
3p

2p+3
≤ C(‖ρut‖

L
3p

2p+3
+ ‖ρu · ∇u‖

L
3p

2p+3
)

≤ C(‖√ρ‖
L

6p
p+6
‖√ρut‖L2 + ‖ρ‖Lp‖u‖L6‖∇u‖L2)

≤ C(‖√ρ0‖
L

6p
p+6
‖√ρut‖L2 + ‖ρ0‖Lp‖∇u‖L2‖∇u‖L2)

≤ C(‖√ρut‖L2 + ‖∇u‖2L2).

(2.7)

Combining (2.6) and (2.7) leads to

‖∆u‖L2 + ‖∆u‖
L

3p
2p+3

≤ C(‖√ρut‖L2 + ‖∇u‖2L2 + ‖∇u‖3L2). (2.8)

Note that by (2.5), we obtain∫ t

T0

‖∆u(s)‖2L2 ds ≤ C
∫ t

T0

(‖√ρut‖2L2 + ‖∇u‖4L2 + ‖∇u‖6L2)(s) ds

≤ C
(
e+ y(t)

)3Aε
.

(2.9)

Combining (2.5) and (2.9), we obtain

‖∇u(t)‖6L2 +
∫ t

T0

(‖√ρut‖2L2 + ‖∆u‖2L2)(s) ds ≤ C
(
e+ y(t)

)3Aε
. (2.10)

Differentiating the momentum equation with respect to t, multiplying by ut, and
then integrating over whole space, one can obtain that

1
2
d

dt
‖√ρut(t)‖2L2 + ‖∇ut‖2L2 = −

∫
R2
ρtut · ut dx−

∫
R2

(ρu)t · ∇u · ut dx

:= J1 + J2.
(2.11)

By the mass equation, we derive

J1 =
∫

R2
div(ρu)ut · ut dx

≤ 2
∣∣∣ ∫

R2
ρu∇ut · ut dx

∣∣∣
≤ C‖u‖L6‖∇ut‖L2‖√ρut‖L3

≤ C‖∇u‖L2‖∇ut‖L2‖√ρut‖
1
2
L2‖
√
ρut‖

1
2
L6

≤ C‖∇u‖L2‖∇ut‖L2‖√ρut‖
1
2
L2‖ut‖

1
2
L6

≤ C‖∇u‖L2‖∇ut‖L2‖√ρut‖
1
2
L2‖∇ut‖

1
2
L2

≤ 1
8
‖∇ut‖2L2 + C‖∇u‖4L2‖

√
ρut‖2L2 .

(2.12)

Again we resort to the mass equation to obtain

J2 = −
∫

R2
ρut · ∇u · ut dx−

∫
R2
ρtu · ∇u · ut dx

= −
∫

R2
ρut · ∇u · ut dx+

∫
R2

div(ρu)u · ∇u · ut dx

= −
∫

R2
ρut · ∇u · ut dx−

∫
R2

(ρu)∇(u · ∇u · ut) dx

= J21 + J22.
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The Young inequality and Sobolev embedding theorem entail us to obtain

J21 ≤ C‖
√
ρut‖2L4‖∇u‖L2

≤ C(‖√ρut‖
1
4
L2‖
√
ρut‖

3
4
L6)2‖∇u‖L2

≤ C‖√ρut‖
1
2
L2‖ut‖3/2L6 ‖∇u‖L2

≤ C‖√ρut‖
1
2
L2‖∇ut‖3/2L2 ‖∇u‖L2

≤ 1
8
‖∇ut‖2L2 + C‖∇u‖4L2‖

√
ρut‖2L2 .

Similarly, we obtain by using Young inequality and Sobolev embedding theorem

J22 ≤
∣∣ ∫

R2
(ρu)∇u · ∇u · ut dx

∣∣+
∣∣ ∫

R2
(ρu)u · ∇2u · ut dx

∣∣
+
∣∣ ∫

R2
(ρu)u · ∇u · ∇ut dx

∣∣
≤ C‖u‖L6‖∇u‖2L3‖ut‖L6 + C‖u‖2L6‖∆u‖L2‖ut‖L6 + C‖u‖2L6‖∇u‖L6‖∇ut‖L2

≤ C‖∇u‖2L2‖∆u‖L2‖∇ut‖L2

≤ 1
8
‖∇ut‖2L2 + C‖∇u‖4L2‖∆u‖2L2 .

Plugging the above estimates into inequality (2.11) we arrive at
d

dt
‖√ρut(t)‖2L2 + ‖∇ut‖2L2 ≤ C‖∇u‖4L2(‖√ρut‖2L2 + ‖∆u‖2L2). (2.13)

Integrating above differential inequality and using the estimate (2.10), it gives

‖√ρut(t)‖2L2 +
∫ t

T0

‖∇ut(s)‖2L2 ds

≤ C
∫ t

T0

‖∇u‖4L2(‖√ρut‖2L2 + ‖∆u‖2L2) ds

≤ C
∫ t

T0

(
e+ y(s)

)2Aε(‖√ρut‖2L2 + ‖∆u‖2L2) ds

≤ C
(
e+ y(t)

)2Aε ∫ t

T0

(‖√ρut‖2L2 + ‖∆u‖2L2) ds

≤ C
(
e+ y(t)

)5Aε
.

(2.14)

Next, we split the range 3 < p ≤ ∞ into two cases, namely 6 ≤ p ≤ ∞ and
3 < p < 6.
Case: 6 ≤ p ≤ ∞. We can show that

‖Λ
3(p−2)

2p u‖L2(R3) ≤ C‖∇u‖
p+6
2p

L2(R3)‖∆u‖
p−6
2p

L2(R3), 6 ≤ p ≤ ∞.

Recalling estimate (2.8)

‖∆u‖L2 ≤ C(‖√ρut‖L2 + ‖∇u‖2L2 + ‖∇u‖3L2), (2.15)

we can conclude that

‖Λ
3(p−2)

2p u‖L2

≤ C‖∇u‖
p+6
2p

L2 (‖√ρut‖2L2 + ‖∇u‖4L2 + ‖∇u‖6L2)
p−6
4p
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≤ C
(
e+ y(t)

) p+6
4p Aε

((
e+ y(t)

)5Aε +
(
e+ y(t)

)2Aε +
(
e+ y(t)

)3Aε) p−6
4p

≤ C
(
e+ y(t)

) p+6
4p Aε

(
e+ y(t)

) p−6
4p 5Aε

≤ C
(
e+ y(t)

) 3
2Aε.

Finally, we infer from above inequality that

y(t) ≤ C
(
e+ y(t)

) 3
2Aε.

Selecting ε < 2
3A such that 3

2Aε < 1, it is easy to get

y(t) ≤ C(T0, T, ‖∇u(T0)‖L2), ∀T0 ≤ t < T.

Noticing that the righthand of above estimate is independent of t for all T0 ≤ t ≤ T ,
it is easy to observe that

max
τ∈[T0,T ]

y(t) ≤ C(T0, T, ‖∇u(T0)‖L2) <∞.

By (2.10), we obtain

max
τ∈[T0,T ]

‖∇u(τ)‖L2 ≤ C(T0, T, ‖∇u(T0)‖L2) <∞.

Consequently, it also holds that

max
τ∈[0,T ]

‖∇u(τ)‖L2 ≤ C(T0, T, ρ0, u0, ‖∇u(T0)‖L2) <∞.

By the embedding inequality

‖u‖L6(R3) ≤ C‖∇u‖L2(R3),

one can obtain that

u ∈ L4(0, T ;L6(R3)),
3
6

+
2
4

= 1.

Now the regularity criterion established in [13] allows us to extend the solution
(ρ, u, π) beyond time T .
Case: 3 < p < 6. The embedding inequality

‖Λ
3(p−2)

2p u‖L2(R3) ≤ C‖∆u‖
L

3p
2p+3 (R3)

direct yields

‖Λ
3(p−2)

2p u‖L2 ≤ C‖∆u‖
L

3p
2p+3

≤ C(‖√ρut‖L2 + ‖∇u‖2L2)

≤ C
((
e+ y(t)

)5A/2 +
(
e+ y(t)

)Aε)
≤ C

(
e+ y(t)

)5Aε/2
.

It is worth noting that the case 6 ≤ p ≤ ∞ can also be handled by the argument
used for the case 3 < p < 6. Again, we arrive at

y(t) ≤ C
(
e+ y(t)

)5A/2
.

The remainder proof is the same as the previous case. Thus, this completes the
proof of Theorem 1.1.
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3. Proof of Theorem 1.2

As above, under the condition (1.2), we can infer that for any small ε > 0, there
exists T0 = T0(ε) < T such that

∫ T

T0

‖u(t)‖
2

1−δ

Ḃ−δ∞,∞(R3)

ln
(
e+ ‖u(t)‖Ḃ−δ∞,∞(R3)

) dt ≤ ε. (3.1)

The well-known Stokes theorem ensures that

‖∆u‖L2 ≤ C(‖ρut‖L2 + ‖ρu · ∇u‖L2)

≤ C(‖ρut‖L2 + ‖ρ‖L∞‖u · ∇u‖L2)

≤ C(‖√ρut‖L2 + ‖∇ · (u⊗ u)‖L2)
(

div u = 0
)

≤ C(‖√ρut‖L2 + ‖uu‖Ḣ1)

≤ C(‖√ρut‖L2 + ‖uu‖Ḃ1
2,2

)

≤ C(‖√ρut‖L2 + ‖u‖Ḃ−δ∞,∞‖u‖Ḃ1+δ
2,2

)

≤ C(‖√ρut‖L2 + ‖u‖Ḃ−δ∞,∞‖∇u‖
1−δ
L2 ‖∆u‖δL2)

(
0 < δ < 1

)
≤ 1

2
‖∆u‖L2 + C(‖√ρut‖L2 + ‖u‖

1
1−δ

Ḃ−δ∞,∞
‖∇u‖L2),

(3.2)

where we have used the following facts

‖ff‖Ḃ1
2,2
≤ C‖f‖Ḃ−α∞,∞‖f‖Ḃ1+α

2,2
, for any α > 0, (see, e.g., [20])

‖f‖Ḣ1 ≈ ‖f‖Ḃ1
2,2

and ‖u‖Ḃ1+δ
2,2
≤ C‖∇u‖1−δL2 ‖∆u‖δL2 , 0 < δ < 1.

Applying Stokes theorem once again gives

‖∆u‖
L

3
2+δ
≤ C(‖ρut‖

L
3

2+δ
+ ‖ρu · ∇u‖

L
3

2+δ
)

≤ C(‖√ρ‖
L

6
1+2δ
‖√ρut‖L2 + ‖ρ‖

L
3
δ
‖u‖L6‖∇u‖L2)

≤ C(‖√ρut‖L2 + ‖∇u‖2L2).

(3.3)

Thus, one deduces from (2.6) and (3.3) that

‖∆u‖L2 + ‖∆u‖
L

3
2+δ
≤ C(‖√ρut‖L2 + ‖∇u‖2L2 + ‖∇u‖3L2). (3.4)
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Multiplying the second equation of (1.1) by ut and integrating over whole space,
one can obtain that for any 0 < δ < 1,

1
2
d

dt
‖∇u(t)‖2L2 + ‖√ρut‖2L2

≤
∣∣ ∫

R3
ρu · ∇u · ut dx

∣∣
≤ C‖√ρ‖L∞‖u · ∇u‖L2‖√ρut‖L2

≤ C‖∇ · (u⊗ u)‖L2‖√ρut‖L2

(
div u = 0

)
≤ C‖uu‖Ḃ1

2,2
‖√ρut‖L2

≤ C‖u‖Ḃ−δ∞,∞‖u‖Ḃ1+δ
2,2
‖√ρut‖L2

≤ C‖u‖Ḃ−δ∞,∞‖∇u‖
1−δ
L2 ‖∆u‖δL2‖

√
ρut‖L2

≤ C‖u‖Ḃ−δ∞,∞‖∇u‖
1−δ
L2

(
‖√ρut‖L2 + ‖u‖

1
1−δ

Ḃ−δ∞,∞
‖∇u‖L2

)δ‖√ρut‖L2

≤ C‖u‖Ḃ−δ∞,∞‖∇u‖
1−δ
L2 ‖
√
ρut‖1+δL2 + C‖u‖

1
1−δ

Ḃ−δ∞,∞
‖∇u‖L2‖√ρut‖L2

≤ 1
2
‖√ρut‖2L2 + C‖u‖

2
1−δ

Ḃ−δ∞,∞
‖∇u‖2L2 .

(3.5)

For any t ∈ (T0, T ), we denote

y(t) := max
τ∈[T0, t]

‖Λ 3
2−δu(τ)‖L2 .

Applying Gronwall inequality to (3.5), we conclude

‖∇u(t)‖2L2 +
∫ t

T0

‖√ρut(s)‖2L2 ds

≤ ‖∇u(T0)‖2L2 exp
[
A

∫ t

T0

‖u(s)‖
2

1−δ

Ḃ−δ∞,∞
ds
]

≤ C‖∇u(T0)‖2L2 exp
[
A

∫ t

T0

‖u(s)‖
2

1−δ

Ḃ−δ∞,∞

ln
(
e+ ‖u(s)‖Ḃ−δ∞,∞

) ln
(
e+ ‖u(s)‖Ḃ−δ∞,∞

)
ds
]

≤ C‖∇u(T0)‖2L2 exp
[
A

∫ t

T0

‖u(s)‖
2

1−δ

Ḃ−δ∞,∞

ln
(
e+ ‖u(s)‖Ḃ−δ∞,∞

) ln
(
e+ ‖Λ 3

2−δ(s)‖L2

)
ds
]

≤ C‖∇u(T0)‖2L2 exp
[
A

∫ t

T0

‖u(s)‖
2

1−δ

Ḃ−δ∞,∞

ln
(
e+ ‖u(s)‖Ḃ−δ∞,∞

) ln
(
e+ y(s)

)
ds
]

≤ C‖∇u(T0)‖2L2 exp
[
A

∫ t

T0

‖u(s)‖
2

1−δ

Ḃ−δ∞,∞

ln
(
e+ ‖u(s)‖Ḃ−δ∞,∞

) ds · ln (e+ y(t)
)]

≤ C
(
e+ y(t)

)Aε
,

(3.6)

where we have used

‖u‖Ḃ−δ∞,∞(R3) ≤ C‖Λ
3
2−δu‖L2(R3),
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which can be easily derived by the Littlewood-Paley technique with the Berstein
inequality. By (3.4), it is easy to see that∫ t

T0

‖∆u‖2L2(s) ds ≤ C
∫ t

T0

(‖√ρut‖2L2 + ‖∇u‖6L2)(s) ds ≤ C
(
e+ y(t)

)3Aε
,

which together with (3.6) imply

‖∇u(t)‖6L2 +
∫ t

T0

(‖√ρut‖2L2 + ‖∆u‖2L2)(s) ds ≤ C
(
e+ y(t)

)3Aε
. (3.7)

With the same argument as in Section 2, one can infer that
d

dt
‖√ρut(t)‖2L2 + ‖∇ut‖2L2 ≤ C‖∇u‖4L2(‖√ρut‖2L2 + ‖∆u‖2L2).

Thus, integrating the above inequality over [T0, t] results in (see also (2.14))

‖√ρut(t)‖2L2 +
∫ t

T0

‖∇ut(s)‖2L2 ds ≤ C
(
e+ y(t)

)5Aε
, (3.8)

which along with (3.4) give

‖∆u‖2L2 +‖∆u‖2
L

3
2+δ
≤ C(‖√ρut‖2L2 +‖∇u‖4L2 +‖∇u‖6L2) ≤ C

(
e+y(t)

)5Aε
. (3.9)

Note the interpolation inequality

‖Λ 3
2−δu‖L2(R3) ≤ C‖∆u‖

L
3

2+δ (R3)
, 0 < δ < 1. (3.10)

Thus, we conclude the following by combining the inequalities (3.9) and (3.10)

y(t) ≤ C
(
e+ y(t)

)5Aε
.

The remainder proof is the same as the previous section. Thus, this completes the
proof of Theorem 1.2.

4. roof of Theorem 1.4

As above, we only establish several a priori estimates for the strong solutions.
Now we recall the following bilinear estimate which is an easy consequence of [20,
Lemma 1],

‖ff‖Ḃ1
2,2
≤ C‖f‖Ḃ−1

∞,∞
‖f‖Ḃ2

2,2
. (4.1)

Applying the Stokes theorem (or (2.6)) yields

‖∆u‖L2 ≤ (‖ρut‖L2 + ‖ρu · ∇u‖L2)

≤ (‖ρut‖L2 + ‖ρ‖L∞‖u · ∇u‖L2)

≤ C(‖√ρut‖L2 + ‖∇ · (u⊗ u)‖L2)
(

div u = 0
)

≤ C(‖√ρut‖L2 + ‖uu‖Ḣ1)

≤ C(‖√ρut‖L2 + ‖uu‖Ḃ1
2,2

)

≤ C(‖√ρut‖L2 + ‖u‖Ḃ−1
∞,∞
‖u‖Ḃ2

2,2
)
(
see (4.1)

)
≤ C‖√ρut‖L2 + C‖u‖Ḃ−1

∞,∞
‖∆u‖L2 .

(4.2)

Thanks to condition (1.5), one has

C‖u‖Ḃ−1
∞,∞
≤ 1

2
,
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which leads to
‖∆u‖L2 ≤ C‖√ρut‖L2 . (4.3)

As a consequence, this gives
1
2
d

dt
‖∇u(t)‖2L2 + ‖√ρut‖2L2 ≤

∣∣∣ ∫
R3
ρu · ∇u · ut dx

∣∣∣
≤ ‖√ρ‖L∞‖u · ∇u‖L2‖√ρut‖L2

≤ ‖∇ · (u⊗ u)‖L2‖√ρut‖L2

(
div u = 0

)
≤ C‖uu‖Ḃ1

2,2
‖√ρut‖L2

≤ C‖u‖Ḃ−1
∞,∞
‖u‖Ḃ2

2,2
‖√ρut‖L2

≤ C‖u‖Ḃ−1
∞,∞
‖∆u‖L2‖√ρut‖L2

≤ C‖u‖Ḃ−1
∞,∞
‖√ρut‖2L2

≤ 1
2
‖√ρut‖2L2 ,

(4.4)

which implies
d

dt
‖∇u(t)‖2L2 + ‖√ρut‖2L2 ≤ 0.

Thus

‖∇u(t)‖2L2 +
∫ t

0

‖√ρut(s)‖2L2 ds ≤ ‖∇u0‖2L2 ≤ C <∞

for any 0 ≤ t < T . As in proving Theorem 1.1, we get the desired result. The proof
of Theorem 1.4 is complete.
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