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EXISTENCE OF SOLITONS FOR DISCRETE NONLINEAR
SCHRÖDINGER EQUATIONS

HAIPING SHI, YUANBIAO ZHANG

Abstract. By using the Mountain Pass Lemma, we establish sufficient condi-

tions for the existence of solitons for the discrete nonlinear Schrödinger equa-
tions.

1. Introduction

The discrete nonlinear Schrödinger (DNLS) equation is one of the most impor-
tant inherently discrete models. DNLS equations play a crucial role in the modeling
of a great variety of phenomena, ranging from solid state and condensed matter
physics to biology [7, 8, 9]. For example, they have been successfully applied to
the modeling of localized pulse propagation optical fibers and wave guides, to the
study of energy relaxation in solids, to the behavior of amorphous material, to the
modeling of self-trapping of vibrational energy in proteins or studies related to the
denaturation of the DNA double strand [9].

Below N, z and R denote the sets of all natural numbers, integers and real
numbers respectively. For a and b in z, define z(a, b) = {a, a + 1, . . . , b} when
a ≤ b. This article concerns the DNLS equation

iψ̇n = −∆ψn + εnψn − fn(ψn), n ∈ z, (1.1)

where ∆ψn = ψn+1+ψn−1−2ψn is discrete Laplacian operator, εn is real valued for
each n ∈ z, fn ∈ C(R,R), fn(0) = 0 and the nonlinearity fn(u) is gauge invariant,
that is,

fn(eiθu) = eiθfn(u), θ ∈ R. (1.2)
Since solitons are spatially localized time-periodic solutions and decay to zero at

infinity. Thus, ψn has the form

ψn = une
−iωt,

and
lim
|n|→∞

ψn = 0,

where ψn is real valued for each n ∈ z and ω ∈ R is the temporal frequency. Then
(1.1) becomes

−∆un + εnun − ωun = fn(un), n ∈ z, (1.3)
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and
lim
|n|→∞

un = 0 (1.4)

holds.
Actually, our methods allow us to consider the following more general equation

−∆(pn(∆un−1)δ) + qnu
δ
n = fn(un+T , un, un−T ), n ∈ z, (1.5)

with the same boundary condition (1.4). Here, ∆ is the forward difference operator
∆un = un+1 − un, ∆2un = ∆(∆un), pn and qn are real valued for each n ∈ z,
δ > 0 is the ratio of odd positive integers, fn ∈ C(R4,R), T is a given nonnegative
integer. When δ = 1, pn ≡ 1, qn ≡ εn − ω and T = 0, we obtain (1.3). Naturally,
if we look for solitons of (1.1), we just need to get the solutions of (1.5) satisfying
(1.4).

When fn(un+T , un, un−T ) = 0, n ∈ z(0), (1.5) reduces to the equation

∆(pn(∆un−1)δ) + qnu
δ
n = 0, (1.6)

which has been studied in [16] for results on oscillation, asymptotic behavior and
the existence of positive solutions.

In 2008, Cai and Yu [1] obtained some sufficient conditions for the existence of
periodic solutions of the nonlinear difference equation

∆(pn(∆un−1)δ) + qnu
δ
n = fn(un), n ∈ z. (1.7)

It is well known that critical point theory is an effective approach to study the
behavior of differential equations [10, 11, 12, 13, 24, 27]. Only since 2003, critical
point theory has been employed to establish sufficient conditions on the existence
of periodic solutions for second order difference equations [14, 15]. Along this direc-
tion, Ma and Guo [20] (without periodicity assumption) and [21] (with periodicity
assumption) applied variational methods to prove the existence of homoclinic orbits
for the special form of (1.5) (with δ = 1 and T = 0). Chen and Wang [6] studied
the existence infinitely many homoclinic orbits of the following nonlinear difference
equation

∆(pn(∆un−1)δ)− qnuδn + fn(un) = 0, n ∈ z, (1.8)

by using the Symmetric Mountain Pass Lemma.
In the past decade, the existence of solitons of the DNLS equations has drawn

a great deal of interest [17, 18, 22, 23, 25, 26, 31, 32, 33, 34, 35]. The existence
for the periodic DNLS equations with superlinear nonlinearity [22, 23, 25, 26], and
with saturable nonlinearity [34, 35] has been studied. And the existence results of
solitons of the DNLS equations without periodicity assumptions were established
in [17, 18, 31, 32, 33]. As for the existence of the homoclinic orbits of nonlinear
Schrödinger equations, we refer to [5, 28, 29, 30].

Our main results are the following theorems.

Theorem 1.1. Suppose that the following hypotheses are satisfied:
(A1) for any n ∈ Z, pn > 0;
(A2) for any n ∈ Z, q = infn∈Z qn > 0 and lim|n|→+∞ qn = +∞;
(A3) there exists a function Fn(v1, v2) ∈ C1(R3,R) satisfies

∂Fn−T (v2, v3)
∂v2

+
∂Fn(v1, v2)

∂v2
= fn(v1, v2, v3),
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lim
β1→0

Fn(v1, v2)
βδ+1

1

= 0 uniformly for n ∈ Z \M, β1 = (vδ+1
1 + vδ+1

2 )
1
δ+1 ,

lim
β2→0

fn(v1, v2, v3)
βδ2

= 0 uniformly for n ∈ Z \M, β2 = (vδ+1
1 + vδ+1

2 + vδ+1
3 )

1
δ+1 ;

(A4) for each n ∈ Z, Fn(v1, v2) = Wn(v2) − Hn(v1, v2), W,H are continuously
differentiable in v2 and v1, v2 respectively. Moreover, there is a bounded set
M ⊂ Z such that Hn(v1, v2) ≥ 0;

(A5) there is a constant µ > δ + 1 such that

0 < µWn(v2) ≤ ∂Wn(v2)
∂v2

v2, ∀(n, v2) ∈ Z× (R \ {0});

(A6) Hn(0, 0) = 0 and there is a constant % ∈ (δ + 1, µ) such that

∂Hn(v1, v2)
∂v1

v1 +
∂Hn(v1, v2)

∂v2
v2 ≤ %Hn(v1, v2);

(A7) there exists a constant c such that

Hn(v1, v2) ≤ c(vδ+1
1 + vδ+1

2 )
%
δ+1 for n ∈ Z, vδ+1

1 + vδ+1
2 > 1.

Then (1.5) has a nontrivial solution satisfying (1.4).

Theorem 1.2. Suppose that (A1)–(A3), (A5)–(A8), and the following hypothesis
are satisfied:

(A4’) for each n ∈ Z, Fn(v1, v2) = Wn(v2) − Hn(v1, v2), W,H are continuously
differentiable in v2 and v1, v2 respectively;

or

lim
β1→0

Fn(v1, v2)
βδ+1

1

= 0 uniformly for n ∈ Z, β1 = (vδ+1
1 + vδ+1

2 )
1
δ+1 .

Then (1.5) has a nontrivial solution satisfying (1.4).

Remark 1.3. Equations similar in structure to (1.5) are discussed by Zhang et al
[31, 32] under the assumption that f satisfies:

0 < (q − 1)f(u)u ≤ f ′(u)u2, ∀u 6= 0

holds for some constant q ∈ (2,+∞). This is a stronger condition than the classical
Ambrosetti- Rabinowitz superlinear condition, i.e., there exist constants q > 2 and
r > 0 such that

0 < q

∫ u

0

f(s)ds ≤ uf(u), ∀|u| ≥ r.

Thus, our results improves the corresponding results in [31, 32].

As it is well known, critical point theory is a powerful tool to deal with the
homoclinic solutions of differential equations [10, 11, 12, 13] and is used to study
homoclinic solutions of discrete systems in recent years [2, 3, 4, 6, 20, 21, 34]. Our
aim in this article is to obtain the existence results of solitons for the discrete
nonlinear Schrödinger equations by using the Mountain Pass Lemma. The main
idea is to transfer the problem of solutions in E (defined in Section 2) of (1.5)
into that of critical points of the corresponding functional. The motivation for the
present work stems from the recent papers [3, 6, 11].
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2. Preliminaries

In order to apply the critical point theory, we establish the variational frame-
work corresponding to (1.5) and give some lemmas which will be of fundamental
importance in proving our main results. We start by some basic notation.

Let S be the vector space of all real sequences of the form

u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . . ) = {un}+∞n=−∞,

namely
S = {{un} : un ∈ R, n ∈ z}.

Define

E =
{
u ∈ S :

+∞∑
n=−∞

[
pn(∆un−1)δ+1 + qnu

δ+1
n

]
< +∞

}
.

The space is a Hilbert space with the inner product

〈u, v〉 =
+∞∑

n=−∞

[
pn(∆un−1)δ∆vn−1 + qnu

δ
nvn
]
, ∀u, v ∈ E, (2.1)

and the corresponding norm

‖u‖ =
{ +∞∑
n=−∞

[
pn(∆un−1)δ+1 + qnu

δ+1
n

]} 1
δ+1

, ∀u ∈ E. (2.2)

On the other hand, we define the space of real sequences,

ls =
{
u ∈ S : ‖u‖s = (

+∞∑
n=−∞

|un|s)1/s < +∞
}
, 1 ≤ s < +∞,

with ‖u‖∞ = supn∈Z |un| when s = +∞.
For all u ∈ E, define the functional J on E as follows:

J(u) :=
1

δ + 1

+∞∑
n=−∞

[
pn(∆un−1)δ+1 + qnu

δ+1
n

]
−

+∞∑
n=−∞

Fn(un+T , un)

=
1

δ + 1
‖u‖δ+1 −

+∞∑
n=−∞

Fn(un+T , un).

(2.3)

Standard arguments show that the functional J is a well-defined C1 functional
on E and (1.5) is easily recognized as the corresponding Euler-Lagrange equation
for J . Thus, to find nontrivial solutions to (1.5) satisfying (1.4), we need only to
look for nonzero critical points of J in E.

For the derivative of J we have the following formula,

〈J ′(u), v〉 =
+∞∑

n=−∞

[
pn(∆un−1)δ∆vn−1 + qnu

δ
nvn − fn(un+T , un, un−T )vn

]
, (2.4)

for all u, v ∈ E.
Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-

differentiable functional defined on E. J is said to satisfy the Palais-Smale condition
((PS) condition for short) if any sequence {un} ⊂ E for which {J(un)} is bounded
and J ′(un)→ 0 (n→∞) possesses a convergent subsequence in E.
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Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its
boundary.

Lemma 2.1 (Mountain Pass Lemma [27]). Let E be a real Banach space and
J ∈ C1(E,R) satisfy the (PS) condition. If J(0) = 0 and

(1) there exist constants ρ, α > 0 such that J |∂Bρ ≥ α, and
(2) there exists e ∈ E \Bρ such that J(e) ≤ 0.

Then J possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

J(g(s)), (2.5)

where
Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}. (2.6)

Lemma 2.2. For u ∈ E,

q‖u‖δ+1
∞ ≤ q‖u‖δ+1

δ+1 ≤ ‖u‖
δ+1. (2.7)

Proof. Since u ∈ E, it follows that lim|n|→∞ |un| = 0. Hence, there exists n∗ ∈ Z
such that

‖u‖∞ = |un∗ | = max
n∈Z
|un|.

By (A2) and (2.2), we have

‖u‖δ+1 =
∑
n∈Z

[
pn(∆un−1)δ+1 + qnu

δ+1
n

]
≥ q

∑
n∈Z

uδ+1
n ≥ q‖u‖δ+1

∞ .

The proof is complete. �

Lemma 2.3. Suppose that (A5) holds. Then for each (n, u) ∈ Z× R, s−µWn(su)
is nondecreasing on (0,+∞).

The proof of the above lemma is routine and so we omit it.

Lemma 2.4. Suppose that (A1)–(A8) are satisfied. Then J satisfies the (PS)
condition.

Proof. Let {u(k)}k∈N ⊂ E be such that {J(u(k))}k∈N is bounded and J ′(u(k))→ 0
as k →∞. Then there is a positive constant K such that

|J(u(k))| ≤ K, ‖J ′(u(k))‖E∗ ≤ ρK for k ∈ N.

Thus, by (2.3), (A5) and (A6), we have

(δ + 1)K + (δ + 1)K‖u(k)‖

≥ (δ + 1)J(u(k))− (δ + 1)
%
〈J ′(u(k)), u(k)〉

=
%− (δ + 1)

%
‖u(k)‖δ+1 − (δ + 1)

+∞∑
n=−∞

[
Wn(u(k)

n )− 1
%

∂Wn(u(k)
n )

∂v2
u(k)
n

]
+ (δ + 1)

+∞∑
n=−∞

Hn(u(k)
n+T , u

(k)
n )

− (δ + 1)
%

+∞∑
n=−∞

[∂Hn(u(k)
n+T , u

(k)
n )

∂v1
u

(k)
n+T +

∂Hn(u(k)
n+T , u

(k)
n )

∂v2
u(k)
n

]
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≥ %− (δ + 1)
%

‖u(k)‖δ+1.

Since % > δ + 1, it is not difficult to know that {u(k)}k∈N is a bounded sequence in
E, i.e., there exists a constant K1 > 0 such that

‖u(k)‖ ≤ K1, k ∈ N. (2.8)

So passing to a subsequence if necessary, it can be assumed that u(k) ⇀ u(0) in E.
For any given number ε > 0, by (A3), we can choose ζ > 0 such that

|fn(un+T , un, un−T )| ≤ ε(uδ+1
n+T + uδ+1

n + uδ+1
n−T )

δ
δ+1 , ∀n ∈ Z \M, u ∈ R, (2.9)

where (uδ+1
n+T + uδ+1

n + uδ+1
n−T )

1
δ+1 ≤ ζ.

By (A2), we can also choose a positive integer D > max{max{|n| : n ∈ M}, T}
such that

qn ≥
Kδ+1

1

ζδ+1
, |n| ≥ D. (2.10)

By (2.8) and (2.10), we obtain

(u(k)
n )δ+1 =

1
qn
qn(u(k)

n )δ+1 ≤ ζδ+1

Kδ+1
1

‖u(k)‖δ+1 ≤ ζδ+1, |n| ≥ D. (2.11)

Since u(k) ⇀ u(0) in E, it is easy to verify that u(k)
n converges to u(0)

n pointwise for
all n ∈ Z; that is,

lim
k→∞

u(k)
n = u(0)

n , ∀n ∈ Z. (2.12)

Combining with (2.11), we have

(u(0)
n )δ+1 ≤ ζδ+1, |n| ≥ D. (2.13)

It follows from (2.12) and the continuity of fn(v1, v2, v3) on v1, v2, v3 that there
exists k0 ∈ N such that

D∑
n=−D

∣∣fn(u(k)
n+T , u

(k)
n , u

(k)
n−T

)
− fn

(
u

(0)
n+T , u

(0)
n , u

(0)
n−T

)∣∣ < ε, k ≥ k0. (2.14)
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On the other hand, it follows from (A3), (2.7), (2.8), (2.9), (2.11) and (2.13) that∑
|n|≥D

∣∣fn(u(k)
n+T , u

(k)
n , u

(k)
n−T

)
− fn

(
u

(0)
n+T , u

(0)
n , u

(0)
n−T

)∣∣|u(k)
n − u(0)

n |

≤
∑
|n|≥D

[∣∣fn(u(k)
n+T , u

(k)
n , u

(k)
n−T

)∣∣+
∣∣fn(u(0)

n+T , u
(0)
n , u

(0)
n−T

)∣∣](|u(k)
n |+ |u(0)

n |)

≤ ε
∑
|n|≥D

{[
(u(k)
n+T )δ+1 + (u(k)

n )δ+1 + (u(k)
n−T )δ+1

] δ
δ+1

+
[
(u(0)
n+T )δ+1 + (u(0)

n )δ+1 + (u(0)
n−T )δ+1

] δ
δ+1
}

(|u(k)
n |+ |u(0)

n |)

≤ 3ε
+∞∑

n=−∞

[
|u(k)
n |δ + |u(0)

n |δ
]
(|u(k)

n |+ |u(0)
n |)

≤ 6ε
+∞∑

n=−∞

[
(u(k)
n )δ+1 + (u(0)

n )δ+1
]

≤ 6ε
q

(Kδ+1
1 + ‖u(0)‖δ+1).

(2.15)

Since ε is arbitrary, we obtain
+∞∑

n=−∞

∣∣fn(u(k)
n+T , u

(k)
n , u

(k)
n−T

)
− fn

(
u

(0)
n+T , u

(0)
n , u

(0)
n−T

)∣∣→ 0, k →∞. (2.16)

It follows from (2.2), (2.4) and (2.7) that

〈J ′(u(k))− J ′(u(0)), u(k) − u(0)〉

= ‖u(k) − u(0)‖δ+1

−
+∞∑

n=−∞

[
fn
(
u

(k)
n+T , u

(k)
n , u

(k)
n−T

)
− fn

(
u

(0)
n+T , u

(0)
n , u

(0)
n−T

)]
(u(k) − u(0)).

Therefore,

‖u(k) − u(0)‖δ+1

≤ 〈J ′(u(k))− J ′(u(0)), u(k) − u(0)〉

+
+∞∑

n=−∞

[
fn
(
u

(k)
n+T , u

(k)
n , u

(k)
n−T

)
− fn

(
u

(0)
n+T , u

(0)
n , u

(0)
n−T

)]
(u(k) − u(0)).

Since 〈J ′(u(k)) − J ′(u(0)), u(k) − u(0)〉 → 0 as k → ∞, we have u(k) → u(0) in E.
The proof is complete. �

3. Proofs of theorems

In this section, we shall obtain the existence of a nontrivial solution of (1.5)
satisfying (1.4) by using the critical point method.

Proof of Theorem 1.1. We shall prove the existence of a nontrivial solution to (1.5)
satisfying (1.4). It is clear that J(0) = 0. We have already known that J ∈ C1(E,R)
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and J satisfies the (PS) condition. Hence, it suffices to prove that J satisfies the
conditions for the (PS) condition. By (A3), there exists η ∈ (0, 1) such that

|Fn(un+T , un)| ≤ 1
4(δ + 1)

(uδ+1
n+T + uδ+1

n ), ∀n ∈ Z \M, (uδ+1
n+T + uδ+1

n )
1
δ+1 ≤ η.

(3.1)
Set

G = sup{Wn(v2)|v2 ∈ R, vδ+1
2 = 1}, (3.2)

and
θ = min

{
[

q

8(δ + 1)(G+ 1)
]µ−(δ+1), η

}
.

If ‖u‖ = q
1
δ+1 θ := ρ, then by Lemma 2.3, |un| ≤ θ ≤ η < 1 for n ∈ Z. By (A3),

(3.1), (3.2) and Lemma 2.3, we have∑
n∈M

Wn(un) ≤
∑

n∈M, un 6=0

Wn(
un
|un|

)|un|µ

≤ G
∑
n∈M

|un|µ

≤ Gθµ−(δ+1)
∑
n∈M

uδ+1
n

≤ Gθµ−(δ+1)

q

∑
n∈M

qnu
δ+1
n

≤ 1
8(δ + 1)

∑
n∈M

qnu
δ+1
n .

(3.3)

Set α = 1
2(δ+1)θ

δ+1. Hence, from (2.3), (3.1), (3.2), (A2)–(A4), we have

J(u) ≥ 1
δ + 1

‖u‖δ+1 −
∑

n∈Z\M

Fn(un+T , un)−
∑
n∈M

Fn(un+T , un)

≥ 1
δ + 1

‖u‖δ+1 − 1
8(δ + 1)

∑
n∈Z\M

(uδ+1
n+T + uδ+1

n )−
∑
n∈M

Wn(un)

+
∑
n∈M

Hn(un+T , un)

≥ 1
δ + 1

‖u‖δ+1 − 1
4(δ + 1)

∑
n∈Z\M

qnu
δ+1
n − 1

4(δ + 1)

∑
n∈M

qnu
δ+1
n

≥ 1
δ + 1

‖u‖δ+1 − 1
4(δ + 1)

‖u‖δ+1 − 1
4(δ + 1)

‖u‖δ+1

=
1

2(δ + 1)
‖u‖δ+1 = α.

(3.4)

This inequality shows that ‖u‖ = ρ implies that J(u) ≥ α, i.e., J satisfies assump-
tion (1) in Lemma 2.1.

Next we shall verify the condition (2). Take τ ∈ E such that

|τn| =

{
1, for |n| ≤ 1,
0, for |n| ≥ 2,

(3.5)



EJDE-2016/173 EXISTENCE OF SOLITONS 9

and |τn| ≤ 1 for |n| ∈ (1, 2). For any u ∈ E, it follows from (2.7) and (A7) that
2∑

n=−2

Hn(un+T , un)

=
∑

n∈Z(−2,2), uδ+1
n+T+uδ+1

n >1

Hn(un+T , un) +
∑

n∈Z(−2,2), uδ+1
n+T+uδ+1

n ≤1

Hn(un+T , un)

≤ c
∑

n∈Z(−2,2), uδ+1
n+T+uδ+1

n >1

(uδ+1
n+T + uδ+1

n )
%
δ+1

+
∑

n∈Z(−2,2), uδ+1
n+T+uδ+1

n ≤1

Hn(un+T , un)

≤ 2cq−
%
δ+1 ‖u‖% +K2,

(3.6)
where

K2 =
∑

n∈Z(−2,2), uδ+1
n+T+uδ+1

n ≤1

Hn(un+T , un).

For σ > 1, by Lemma 2.4 and (3.5), we have
1∑

n=−1

Wn(σun) ≥ σµ
1∑

n=−1

Wn(un) = K3σ
µ, (3.7)

where K3 =
∑1
n=−1Wn(un) > 0. By (2.3), (3.5), (3.6) and (3.7), for σ > 1, we

have

J(στ) =
1

δ + 1
‖στ‖δ+1 +

+∞∑
n=−∞

[Hn(στn+T , στn)−Wn(στn)]

≤ σδ+1

δ + 1
‖τ‖δ+1 +

2∑
n=−2

Hn(στn+T , στn)−
1∑

n=−1

Wn(στn)

≤ σδ+1

δ + 1
‖τ‖δ+1 + 2cq−

%
δ+1 ‖u‖% +K2 −K3σ

µ.

(3.8)

Since µ > % > δ + 1 and K3 > 0, (3.8) implies that there exists σ0 > 1 such
that σ0τ > ρ and J(σ0τ) < 0. Set e = σ0τ . Then e ∈ E, ‖e‖ = ‖σ0τ‖ > ρ and
J(e) = J(σ0τ) < 0. By Lemma 2.1, J possesses a critical value d ≥ α given by

d = inf
g∈Γ

max
s∈[0,1]

J(g(s)),

where
Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}.

Hence, there exists u∗ ∈ E such that

J(u∗) = d, J ′(u∗) = 0.

Then function u∗ is a desired solution of (1.5) satisfying (1.4). Since d > 0, u∗ is a
nontrivial solution. The desired results follow. �

Proof of Theorem 1.2. In the proof of Theorem 1.1, the condition that Hn(v1, v2) ≥
0 for (n, v1, v2) ∈M ×R2, β1 = (vδ+1

1 + vδ+1
2 )

1
δ+1 in (A4) is only used in the proof
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of hypothesis (1) of Lemma 2.1. Thus, we only prove hypothesis (1) of Lemma 2.1
still hold replacing (A4) by (A4’). By (A4’), we have

|Fn(un+T , un)| ≤ 1
4(δ + 1)

(uδ+1
n+T + uδ+1

n ), ∀n ∈ Z, (uδ+1
n+T + uδ+1

n )
1
δ+1 ≤ η. (3.9)

If ‖u‖ = q
1
δ+1 η := ρ, then by Lemma 2.3, |un| ≤ η for n ∈ Z. Set α = 1

2(δ+1)η
δ+1.

Hence, from (2.3) and (3.9), we have

J(u) ≥ 1
δ + 1

‖u‖δ+1 −
+∞∑

n=−∞
Fn(un+T , un)

≥ 1
δ + 1

‖u‖δ+1 − 1
4(δ + 1)

+∞∑
n=−∞

(uδ+1
n+T + uδ+1

n )

≥ 1
δ + 1

‖u‖δ+1 − 1
2(δ + 1)

+∞∑
n=−∞

qnu
δ+1
n

≥ 1
δ + 1

‖u‖δ+1 − 1
2(δ + 1)

‖u‖δ+1

=
1

2(δ + 1)
‖u‖δ+1 = α.

(3.10)

This inequality shows that ‖u‖ = ρ implies that J(u) ≥ α, i.e., J satisfies assump-
tion (1) of Lemma 2.1. The proof is complete. �

References

[1] X. C. Cai, J. S. Yu; Existence theorems of periodic solutions for second-order nonlinear

difference equations, Adv. Difference Equ., 2008 (2008), 1-11.
[2] Chen, X. H. Tang; Existence of infinitely many homoclinic orbits for fourth-order difference

systems containing both advance and retardation, Appl. Math. Comput., 217(9) (2011), 4408-

4415.
[3] Chen, X. H. Tang; Existence and multiplicity of homoclinic orbits for 2nth-order nonlinear

difference equations containing both many advances and retardations, J. Math. Anal. Appl.,
381(2) (2011), 485-505.

[4] P. Chen, X. Tang; Existence of homoclinic solutions for some second-order discrete Hamil-

tonian systems, J. Difference Equ. Appl., 19(4) (2013), 633-648.
[5] P. Chen, C. Tian; Infinitely many solutions for Schrödinger-Maxwell equations with indefinite

sign subquadratic potentials, Appl. Math. Comput., 226(1) (2014), 492-502.

[6] P. Chen, Z. M. Wang; Infinitely many homoclinic solutions for a class of nonlinear difference
equations, Electron. J. Qual. Theory Differ. Equ., (47) (2012), 1-18.

[7] D. N. Christodoulides, F. Lederer, Y. Silberberg; Discretizing light behaviour in linear and

nonlinear waveguide lattices, Nature, 424 (2003), 817-823.
[8] S. Flach, A. Gorbach; Discrete breakers-Advances in theory and applications, Phys. Rep.,

467(1-3) (2008), 1-116.

[9] J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides; Observation of two-
dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422

(2003), 147-150.

[10] C. J. Guo, D. O’Regan, C. J. Wang; The existence of homoclinic orbits for a class of first
order superquadratic Hamiltonian systems, Mem. Differential Equations Math. Phys., 61

(2014), 83-102.
[11] C. J. Guo, D. O’Regan, C. J. Wang, R. P. Agarwal; Existence of homoclinic orbits of su-

perquadratic second-order Hamiltonian systems, Z. Anal. Anwend., 34(1) (2015), 27-41.



EJDE-2016/173 EXISTENCE OF SOLITONS 11

[12] C. J. Guo, D. O’Regan, Y. T. Xu, R. P. Agarwal; Existence of homoclinic orbits of a class

of second order differential difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B

Appl. Algorithms, 20(6) (2013), 675-690.
[13] C. J. Guo, D. O’Regan, Y. T. Xu, R. P. Agarwal; Homoclinic orbits for a singular second-

order neutral differential equation, J. Math. Anal. Appl., 366(2) (2010), 550-560.

[14] Z. M. Guo, J. S. Yu; Existence of periodic and subharmonic solutions for second-order su-
perlinear difference equations, Sci. China Math., 46(4) (2003), 506-515.

[15] Z. M. Guo, J. S. Yu; The existence of periodic and subharmonic solutions of subquadratic

second order difference equations, J. London Math. Soc., 68(2) (2003), 419-430.
[16] X. Z. He; Oscillatory and asymptotic behavior of second order nonlinear difference equations,

J. Math. Anal. Appl., 175(2) (1993), 482-498.

[17] M. H. Huang, Z. Zhou; Standing wave solutions for the discrete coupled nonlinear Schrödinger
equations with unbounded potentials, Abstr. Appl. Anal., 2013 (2013), 1-6.

[18] M. H. Huang, Z. Zhou; On the existence of ground state solutions of the periodic discrete
coupled nonlinear Schrödinger lattice, J. Appl. Math., 2013 (2013), 1-8.

[19] Y. S. Kivshar, G. P. Agrawal; Optical Solitons: From Fibers to Photonic Crystals, Academic

Press: San Diego, 2003.
[20] M. J. Ma, Z. M. Guo; Homoclinic orbits for second order self-adjoint difference equations, J.

Math. Anal. Appl., 323(1) (2006), 513-521.

[21] M. J. Ma, Z. M. Guo; Homoclinic orbits and subharmonics for nonlinear second order dif-
ference equations, Nonlinear Anal., 67(6) (2007), 1737-1745.

[22] A. Mai, Z. Zhou; Discrete solitons for periodic discrete nonlinear Schrödinger equations,

Appl. Math. Comput., 222(1) (2013), 34-41.
[23] A. Mai, Z. Zhou; Ground state solutions for the periodic discrete nonlinear Schrödinger

equations with superlinear nonlinearities, Abstr. Appl. Anal., 2013 (2013), 1-11.

[24] J. Mawhin, M. Willem; Critical Point Theory and Hamiltonian Systems, Springer: New
York, 1989.

[25] A. Pankov; Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity,
19(1) (2006), 27-41.

[26] A. Pankov; Gap solitons in periodic discrete nonlinear Schrödinger equations II: A general-

ized Nehari manifold approach, Discrete Contin. Dyn. Syst., 19(2) (2007), 419-430.
[27] P. H. Rabinowitz; Minimax Methods in Critical Point Theory with Applications to Differen-

tial Equations, Amer. Math. Soc., Providence, RI: New York, 1986.

[28] X. H. Tang; Non-Nehari manifold method for asymptotically periodic Schrödinger equations,
Sci. China Math., 58(4) (2015), 715-728.

[29] X. H. Tang; New conditions on nonlinearity for a periodic Schrödinger equation having zero

as spectrum, J. Math. Anal. Appl., 413(1) (2014), 392-410.
[30] X. H. Tang; Infinitely many solutions for semilinear Schrödinger equations with sign-

changing potential and nonlinearity, J. Math. Anal. Appl., 401(1) (2013), 407-415.

[31] G. P. Zhang; Breather solutions of the discrete nonlinear Schrödinger equations with un-
bounded potentials, J. Math. Phys., 50 (2009), 013505.

[32] G. P. Zhang, F. S. Liu; Existence of breather solutions of the DNLS equations with unbounded
potentials, Nonlinear Anal., 71(12) (2009), 786-792.

[33] Z. Zhou, D. F. Ma; Multiplicity results of breathers for the discrete nonlinear Schrödinger

equations with unbounded potentials, Sci. China Math., 58(4) (2015), 781-790.
[34] Z. Zhou, J. S. Yu; On the existence of homoclinic solutions of a class of discrete nonlinear

periodic systems, J. Differential Equations, 249(5) (2010), 1199-1212.
[35] Z. Zhou, J. S. Yu, Y. M. Chen; On the existence of gap solitons in a periodic discrete nonlinear

Schrödinger equation with saturable nonlinearity, Nonlinearity, 23(7) (2010), 1727-1740.

Haiping Shi

Modern Business and Management Department, Guangdong Construction Polytechnic,
Guangzhou 510440, China

E-mail address: shp7971@163.com

Yuanbiao Zhang
Packaging Engineering Institute, Jinan University, Zhuhai 519070, China

E-mail address: abiaoa@163.com


	1. Introduction
	2. Preliminaries
	3. Proofs of theorems
	References

