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CAUCHY PROBLEM FOR SOME FRACTIONAL NONLINEAR
ULTRA-PARABOLIC EQUATIONS

FATMA AL-MUSALHI, SEBTI KERBAL

ABSTRACT. Blowing-up solutions to nonlocal nonlinear ultra-parabolic equa-
tions is presented. The obtained results will contribute in the development of
ultra-parabolic equations and enrich the existing non-extensive literature on
fractional nonlinear ultra-parabolic problems. Our method of proof relies on
a suitable choice of a test function and the weak formulation approach of the
sought for solutions.

1. INTRODUCTION

This article aims to extend recent results by Kerbal and Kirane [10] by consid-
ering fractional in time and space nonlinear ultra-parabolic equations instead of
classical ones. Indeed, we will present a blow-up result for the nonlocal nonlinear
ultra-parabolic 2-times equation

Lu = g, + Dy, (ful? = ur] ) + (=AY (Jul™) = Ju? (1)

posed for (t1,t2,7) € Q = Ry xRy xRN, N € N and supplemented with the initial
conditions

u(ty, 0;2) = uy(t1;2), w(0,ta;2) = ug(te; x). (1.2)
Here p > m > 1, p > ¢ > 1 are real numbers and where for 0 < o < 1 and D¢

is the fractional derivative in the sense of Riemann-Liouville. Then, we extend our
results to the system of two equations

uey + DY (Jul®* = Jua*) + (= 2)7 2 (Jul™) = o], (1.3)
vey + DG (Jof" — [on]") + (=2)2/2(Jo]") = [ul?, (1.4)

posed for (t1,t2,7) € Q@ = RT x R* x RNV, N € N, and supplemented with the
initial conditions

u(ty, 0;2) = ui(tr; ), u(0,t2;2) = ug(tz; @), (1.5)
v(ty,0;2) = vi(t;z), ©(0,te;2) = va(ta; x). (1.6)

Here p, q,r, s, are positive real numbers and 0 < a1, a0 < 1,0 < (1,82 < 2.
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(o7
o[t

L d [ f)
@ t = Y—_— 7d
(D50 F(l—a)dt/o (t—o)"’
and T'(o) = [ r*~e~"dr is the Euler gamma function. The fractional power of

the Laplacian (—A)?%/2 (0 < 8 < 2) stands for diffusion in media with impurities
and is defined as

The nonlocal operator D
f:Ry =R, by

is defined, for a an absolutely continuous function

(=8)"2u(x) = F (P F0)(©) ) (@),

where F denotes the Fourier transform and F~! denotes its inverse and the operator
Dg“ , counts for the anomalous diffusion, a recently very much studied topic in

probability, physics, chemistry, biology, image processing, etc, see for instance [I,
21, 31, [, Bl 6], 7, [8l [T}, 13, 14, [16] and their references. Classical multi-time or ultra-
parabolic problems have received a special interest and attention by authors due to
their application in real life problems, see for example [9, [10, 12| 17, 19], while the
fractional analog are in their preliminary steps.

2. PRELIMINARIES
Here, we need the right-hand fractional derivative in the sense of Riemann-
Liouville
1 d [T flo)
& t = - — 7d
O e R e

for an absolutely continuous function f : Ry — R. Note that for a differentiable
function f, we have the so-called Caputo’s fractional derivative

57~ 0N = ey | e

(1-« o —t)~

It is shown in [16, Corollary 2, p.46] that for f, g possessing appropriate regularity,
the formula of integration by parts holds true

T T
/ (DG g(t)dt = / g() D3 f (1)t
0 0

We also need some preparatory lemmas based on the function ¢ defined by

1— L)% 0<t<T
t) = ( /o - =7 2.1
() {0’ o 2.1)
where \ > 2.
Lemma 2.1. Let ¢ be as in (2.1). We have

T

DY pg(t)dt = Co T ™7, (2.2)

0

where
A\ —
s (A—a)

AT e+ I(A—2a+1)

For a proof of the above lemma, see [11 [5].
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Lemma 2.2. Let ¢ be as in (2.1) and p > 1. Then for p < A+1,

T
/ $ (B¢ (1) = TP,
0
where
AP
Cp = 1+X—p
For A\ >ap—1,

T
/ o) P |DEpp(t)[Pdt = Cp o T P,
0
where
AP { '\ —a) }p
A+1—pa) ' TA—2a+1)" "~

Cp,a =

For a proof of the above lemma, see [11L [5]. We define the regular function 1):

1, ifo<e<t,
¥(§) = { decreasing, if 1 <& <2 (2.3)
0, if € >2,
which will be used hereafter.
3. REsuLTS

Solutions to (|1.1)) subject to conditions ([1.2)) are meant in the following weak

sense.

Definition 3.1. A function v € L™(Q) () LP(Q) is called a weak solution to (|1.1)
if
[ edr+ [ a0t 300 aPs + [ fuler,0:0)]D8 o dP
Q S Q
(3.1)
- 7/ upy, dP+/ |u|? Dy dP +/ lu|™ (=A)P2p dP
Q Q Q
for any test function ¢ € C$°(Q); S = Ry x RN, P = (t1,t9,2) and P = (ta,7),
such that o(T,te;x) = p(t1,T;2) = 0.

Note that every weak solution is a classical solution near the points (t1,t2,)
where u(t1,ta,x) is positive.

Our main result dealing with equation subject to is given by the
following theorem.

Theorem 3.2. Assume that

/ (0, ta;2)p(0,to; x)dPy > 0, / lu(t1, 0;2) "Dy, po dP > 0.

S Q

If1 < p < min (1 + ﬁ,q(l + m),m(l + %2_5)), then Problem (|1.1))-(1.2))
does not admit global weak solutions.

For the proof, we need to recall the following proposition from [8, proposition
3.3].



4 F. AL-MUSALHI, S. KERBAL EJDE-2016/172

Proposition 3.3 ([§]). Suppose that § € [0,2], B+1 >0, and 6 € C(RY). Then,
the following point-wise inequality holds:

2 1 2 2
16()|76(2)(—2)"/%6(z) > m(—A)‘” 16(x)7*2.

Proof of Theorem[3.4 Our strategy of proof is to use the weak formulation of the
solution with a suitable choice of the test function (see for example [15]). We assume
that the solution is nontrivial and global. We choose the test function (1, t2, )
in the form

p(t1,t2; ) = @1(t1)pa(tz)ps(z) (3.2)

where @1 (t1) = ¥(t1/T), pa(t2) = (1 — t2/T)* and ps(x) = ¢(|z*/T?).
Now, replacing ¢ by ¢* in (3.1), we estimate fQT up} dP using the e-Young
inequality as follows

/ ul |l | dP < g/ luPH dP + CE/ P T |y, | 75T dP. (3.3)
Q Q Q
Similarly, we have
/ [ul1DE, gt dP < e/ Pt dP + ca/ ID§ P P, (3.4)
Q Q Q
where p > ¢q. Observe that

[ u(tr,0:0)07 D2 e ap
Q
T (3.5)
= ([ Dryrttaiats) [ e, osoloh o) b
0 s
with the help of Lemma [2.1] one can rewrite the equation (3.5 as

/ [ultr, 0; 2)|7D i dP = Coy e TV / lu(tr, 0: 2) [t (@)l (1) APy, (3.6)
Q S

where P = (t1,2). Using the convexity inequality in proposition and the e-
Young inequality, the last term in the right hand side of equation (3.1) can be
estimated by

/ ™ (~ D)2 AP
Q

< / ot uf ™ (— A2 dP (3.7)
Q

< e/ o ul” dp + 0(5)/ |(=2) 72| g1 5 5 ap,
Q Q
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Now, using (3.3), (3.4), (3.5), and (3.7), we obtain
/ |u|PeH dP + / (0, ta; )" (0, ta; x) d Py
Q s
- Ca)\MTl_a/ lu(ts, 0; )| "0k (2) ¢y (1) dPy
s
§36/ |u|p<p“dP+CE</ <p”7%|<ptl|ﬁ dP (3.8)
Q Qr
+ [ 1Dt ap
Q
+/ |(_A)ﬂ/2w|ﬁw(p(#*l)*mu)ﬁ dp)_
Q
If we choose € = 1/6 (for example), then we obtain the estimate
/ |ulP " dP + 2/ w(0,t2; )" (0, ta; ) dPy
Q s
+Can 0 [ Jultr, 052 @) (1) dPy
o (3.9)
<o [ ool ap+ [ Do iPtep % ap
Q Q
+/ (= A)B/2 |72 Pl =mu) 2 dp)
Q

for some positive constant C. The right hand side of (3.9) is now free of the
unknown function w. Let us now pass to the new variables

=T, =T Y%, y=T 'z (3.10)
‘We have

T » .
/ O |y, [PT AP = (/ wéwé‘dl’z) (/ oy Iw,tllfﬁdtl)
Q s 0 (3.11)

_ ClT2+N—ﬁ

Ch = (/Q goggogdph)(/ol Y|, [7Tdn ) < oo
)

with p > -E5 and Pr, = (72,9), Q2 = {1 < 72 + [y| < 2}. Similarly, we obtain

where

| 1D Pt ap
Q

T ua L 3.12
= ([ eterar)( [ o Dy el (3-12)
S 0
= C,T* N7
where

1 _ kg
Co= ([ etehirs)( [ on D517 dr) < 0
Q1 0
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and P, = (11,y), Q1 = {1 <71 + |y| <2}, and

/ |(_A)B/2<p|,%Lm(p(p(ufl)fmu)p,%m dP
Q

p (p(p—1)—m, )ﬁ
= (/RN O N e dw)(/ ey dty)  (513)

Qr

Bp

= 03T2+N7 p—m

where

D

Cs :/ |(*Ay)ﬁ/2¢|”*mw(p(“_l)ﬂ”“)ﬁdy/ il drdry < oo
support ) Q

T
with p > FLm and Qr = [0,T] x [0,T]. By (3.11)-(3.13)), we obtain for (3.9) the

following estimate

/ P o dP + 2 / (0, 15 2)" (0, t2; ) d P,
Q S

+ Coz,AMTl—oc / |u(ty, 0; x)|q<pg (m)Qle(tl) dP; (3.14)
S

ap Bp

< O\ T N7 4 TN 72 4 Oy T2

then
/|u|p<p“dP—|—2/u(O,tQ;x)cp“(O,tg;m)dPg
Q S

+Ca,AuT1_°‘/ |u(ts, 03 2) |75 (2)¢f (t1) dPr (3.15)
S
< C‘(T”N*p’%l + TN 4 T2+pr€”m)

where C' = max{Cy, Cs, C5}. Now, for the first case, we require:

(a) 2+N71%<Oor1<p§1+ﬁ,forp>qandm>l.

(b) 2+N—%<Oor1<p§q(1+m),forp>m>l.

(c) 24 N =22 <0or1<p<m(l+ y5—)
Letting T" aproach infinity in (3.15)), we obtain a contradiction as the left hand side
is positive while the right hand side goes to zero.

For the second case, we assume the exponents of T" in (3.15]) are zeros. Applying

Holder’s inequality to the right hand side of inequality (3.9]), we obtain

/ P o dP + 2 / (0, 15 2)" (0, £2: ) d Py
Q S

G T /S (b, 0; )|t () ot (11) P, (3.16)

1/p
< ([ turerar) et
Cr
where

o) =c( [ e ultitar s [ Dgpeistee o

_|_/ |(_A)ﬂ/2<p|ﬁ<p(p(u*1)*mu)ﬁ dp).
Q
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Whereupon, using Lebesgue’s dominated convergence theorem we have

/ﬁMngézélm lulPdP = 0,
Q

T—o0 CT
where CT = {(tl,t2,$)| T S t1 + t2 + |117| S 2T}
Then, letting T appraoch infinity in (3.16)), the right-hand side approaches zero,
which is again contradiction. O

4. A 2 X 2 SYSTEM WITH A 2-DIMENSIONAL FRACTIONAL TIME

‘We consider

wy + DG (ul® = Jua[*) + (=222 (™) = o, (4.1)
vey + D3, (fol” = [or]") + (=2)%/2(o]") = [ul?, (1.2)

posed for (t1,ts,2) € Q = RT x RT x RV, N € N, and supplemented with the
initial conditions

u(ty, 0;2) = ua(t;@), w0, ta; @) = ua(ta; @), (4.3)
v(t1,0;z) = v1(t1;2), v(0,ta; ) = va(te;x). (4.4)

Here p, q,r, s, are positive real numbers and 0 < aq,as < 1, 0 < 1, 82 < 2. Let us
set

10:/u2(0,t271')g0(0,t2,$)dpz+/ |U1‘SDtO;I|Tg0dP
S Q

Jo= [ va(0,ta,2)p(0.t2,0)aPs + [ forl" Dty dP
S Q

Definition 4.1. We say that (u,v) € (LPNL™) x (LYN L") is a weak formulation

to system (4.1)-(4.2)) if
/|U|q<PdP+Io=—/ U Pty dP+/ |u|st21‘Tgde+/ u|™ (_A)ﬁl/Q(pdp
Q Q Q Q

/\u|pgde+Jo=—/v<ptl dP+/ |U|TD?22|T<de_|_/ lo|™ (—A)P2/2 4P
Q Q Q Q

(4.5)
for any test function ¢ € C§°. Now, set

_q[lfp(N+1)]+N+2

01 = )
pg—1
5y — —dlor = P(N +1)] +7“(N+2),
pg—rT
oy — _qlB —p(N-i—l)]-i—n(N-l—Q),
pg—n
o dls—p(N+2—an)] +s(V+2)
bg—s
e Cqlsaz —p(N +2—ay)] +sr(N +2)
pq — sr
o5 = _q[sP —p(N+2—a1)]+sn(N+2)’

pqg — Sn
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gm —p(N +2 - B1)] + m(N +2)

o7 = — ’
bg—m
oo — _g[mas —p(N +2— B1)] + rm(N +2)
pg—rm
oo — _q[mpBz —p(N +2— B1)] —&-nm(N—i—Z)_
pqg —nm

Theorem 4.2. Letp>1,qg>1,p>m,p>s, qg>n, q>r and assume that

/ u2(0at27‘r)¢u(07t27x)dp2 > 0, / |u1|sD?21‘TSDH dpP > 0,
S Q

[ 020200 0. t02)P2 >0, [ il D ap >0,
S Q

then solutions to system (4.1)-(4.2)) blow-up whenever

max{o1,...,09; 01,...,09} < 0.

Proof of theorem[[.3 Assume that the solution is nontrivial and global. Next,
replacing ¢ by ¢* in (4.5) and then using Hélder’s inequality to estimate the RHS,
we obtain the following estimates:

e For p > 1,
" 1/p __p_ _r_ pT_l
= [ugtap <u( [ wrerar) ([ o parar) T @)
Q Q Q
e For p > s,
s Mo s/P _ _sp ay D p;‘ﬁ
/ Jul* Dt dP < ( / ulrerap) / 7P Dt |EaP) T (4)
Q Q Q
e For p > m,

Lumeater < [ o) ([ ommeaFore) T e

Similarly, we have
e For ¢ > 1,

1 g1
- [eetiap<u( [ wirgrap)" ([ o pnrar) T @9)
Q Q Q

e For g > r,

/Q ol Dy dP < ( /Q ol ap) " ( /Q o D3P dP) T (410)

e Forg>n

[remEer < [ )" ([ e mmiea o) T @

If we set

I, ::/ |ulPp*dP, I, ::/ [v|9p* dP,
Q Q
1

p—

A@)u(/@sa“_flsotllfldl?) "
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q—1

Alq) = u(/QsO“‘fql%quql dP)T,

B(p,s) = (/ g
Q

Df21|T<p#\ﬁdP) "
B(q,r) = (/ p i | Dy |T<P”|q%dP) o

Otpm) = u{ [ 97 I-0)% i) T

g—n

=7 dP) ",

__a_ B2
C(g,n) Zu(/ Ph T | (—A) F gl
Q
Ig‘z/SUQ(O,tz, z)ph(0,t2, @ dp2+/ |ur[* Dy, p " dP,
J“:/S/U2(07t27x)gou(07t27x)dp2+‘/Q|vl|TDaT@MdP7

then, using estimates —, we can write as
I+ 1§ < IY7A(p) + I3/ B(p, s) + L C(p,m),
I,+Jy < IU%A((]) + L?B(q,r) + I;%C(q,n).
Since I}, J§' > 0, we have
I, < /P A@) + L7 B(p.s) + 1 C(p.m),
L < I3A(q) + I B(q.r) + L Cq.n).
Now, from and -, we have
I+ 10 < (IF*AVP( )+ 17 BYP(q,1) + 13 CY/7(g,m) ) A(p)
# T4 0) + IR B0, ) + 1ECP(a,m) Bl
»(g,n )C

rm nm

+ (A% (@) + 1" B¥ (¢,r) + 1)" ©

Then Young’s inequality implies

pq

1+ 1§ < K{(4"7(q)A(p)) a (B @n)Aw) "

n (Cw(% n)A(p)) E (42 (q)B(p, 8)) o

s)

m).

+ (Bs/p(qJ)B(p’S))% + (Cs/p(%n)B(p,s))ﬁ

m

+ (4

(0% @momm) ™

F@Cm) ™ 4 (8% @ m)

for some positive constant K. Using the scaled variables (3.2)) we obtain

A(p) = CT—1+(N+2)(1—1/;0), Alq) = CT—1+(N+2)(1—1/,1),

(4.12)

(4.13)
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B(p,s) = CT*a1+(N+2)(1fS/p)7 B(q,r) = CT*a2+(N+2)(1fr/q)7
C(p,m) = CT—61+(N+2)(1—m/p)7 C(g,n) = CT—ﬁ2+(N+2)(l—n/q)7
for some positive constant C. Hence, we obtain
I+ I < K{T°' + T +---+ T} (4.14)
Similarly, we obtain for I,, the estimate
L+ JV < K{T% +T°% ... 4 T%}. (4.15)

Finally, passing to the limit as T'— oo, we observe that:
Either max{oy,...,09;d1,...,d09} < 0 and in this case, the right hand side tends
to zero while the left hand side is strictly positive. Hence, we obtain a contradiction.
Or max{o1,...,09;01,...,09} = 0 and in this case, following the analysis similar
as in one equation, we prove a contradiction. (Il
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