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C2,α ESTIMATES AND EXISTENCE RESULTS FOR A
NONCONCAVE PDE

VAMSI P. PINGALI

Abstract. We establish C2,α estimates for PDE of the form convex + a sum

of weakly concave functions of the Hessian, thus generalising a recent result of
Collins which is in turn inspired by a theorem of Caffarelli and Yuan. We apply

this result to prove a “unique continuation” result for a generalised Monge-

Ampère PDE. Independently, we also prove an existence result for a special
case.

1. Introduction

In the classic paper [9] Krylov studied the PDE on a convex domain

Sm(D2u) =
m−1∑
k=0

(l+k )m−k+1(x)Sk(D2u) (1.1)

where Sm(A) is the mth elementary symmetric polynomial of the symmetric matrix
A. He proved that the corresponding Dirichlet problem has a smooth solution in the
ellipticity cone of the equation. This was accomplished by reducing the equation
to a Bellman equation and then using the standard theory of Bellman equations.
Motivated by complex-geometric considerations (Chern-Weil theory) a very special
case of equation 1.1 was studied in [10] and an existence result was proven using the
method of continuity. To this end, a priori estimates on the solution were necessary.
The C2,α estimate for such nonlinear PDE is usually given by the Evans-Krylov-
Safonov theorem which applies to PDE of the form F (D2u) = 0 where F is a
concave function of symmetric matrices. However, it is not immediately obvious
that equation 1.1 is concave. Yet, upon dividing by det(D2u) and rearranging the
equation one can see that it is actually concave and thus amenable to Evans-Krylov
theory.

Unfortunately, not all PDE can be rewritten to be concave functions of the
Hessian. Indeed, not all level sets have a positive second fundamental form. To
remedy this partially, Caffarelli and Yuan [4] proved a result that roughly speaking,
allows one of the eigenvalues of the second fundamental form of the level set of
F (D2u) to be negative. Using similar ideas, Cabre and Caffarelli [2] proved C2,α

estimates for functions that are the minimum of convex and concave functions.
Even these theorems cannot handle the following PDE that arises in the study of
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the J-flow on toric manifolds [5] (Actually, the Legendre transform of the solution
occurs in the J-flow.).

det(D2u) + ∆u = 1. (1.2)

Moreover, equation 1.2 is also a real example of a “generalised Monge-Ampère”
PDE introduced in [10]. Another example of a non-concave PDE is

ln det(uxixj )− ln det(−uyiyj ) = 0.

This equation was studied by Streets and Warren in [11] and they proved a C2,α

estimate using the Legendre transformation in the y-coordinates.
Collins and Székelyhidi [5] proved interior C2,α estimates for equation 1.2 using

ideas from [4]. In [6] Collins generalised that result to obtain the following theorem.
(The precise definition of “twisted” type equations is recalled in section 2.).

Theorem 1.1 (Collins). Consider the equation

F (D2u, x) = F∪(D2u, x) + F∩(D2u, x) = 0

on the unit ball B1 in Rn. For each x, assume that F is of the twisted type. Let
0 < λ < Λ < ∞ be ellipticity constants for both F, F∪. For every 0 < α < 1 we
have the estimate

‖D2u‖Cα(B1/2)

≤ C(n, λ,Λ, α, γ,Γ, ‖F∪‖C2(D2u(B̄1)), ‖F∩‖C2(D2u(B̄1)), ‖D2u‖L∞(B1)),
(1.3)

where 0 < γ = infx∈F∪(D2u)(B1)G
′(−x) and Γ = oscB1G(−F∪(D2u)). (G is defined

in section 2.)

Motivated by these developments, in this paper we prove the following improve-
ment of Collins’ result.

Theorem 1.2. Consider the equation

F (D2u, x) = F∪(D2u, x) +
m∑
α=1

F∩,α(D2u, x) = 0

on the unit ball B1 in Rn. For each x, assume that F is of the “generalised”
twisted type. Let 0 < λ < Λ <∞ be ellipticity constants for both F, F∪. For every
0 < α < 1 we have the estimate

‖D2u‖Cα(B1/2)

≤ C(n, λ,Λ, α, γ, ‖F∪‖C2(D2u(B̄1)), ‖F∩‖C2(D2u(B̄1)), ‖D2u‖L∞(B1), ‖G‖L∞(W )),
(1.4)

where 0 < γ = inf{x∈W}G′(x) and

W = ∪mα=1F∩,α(D2u(B̄1)) ∪1≤j≤m ∪{x ∈ B̄(1)}

j∑
α=1

F∩,α(D2u(x)).

The proof of theorem 1.2 follows the arguments (with some modifications) in
[6, 4]. Applying this result we arrive at the following “unique continuation” result
for equations of like 1.2.
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Corollary 1.3. Let D be a strictly convex domain in Rn, i.e., there exists a smooth
proper function ρ : D̄ → R such that ρij > Kδij for a constant K > 0, ∇ρ|∂D 6= 0,
ρ−1(0) = ∂D and ρ−1(−∞, 0) = D. Consider the family of equations depending on
t ∈ [0, 1].

H(D2ut, x, t) = det(D2ut) + t
(

tr(AD2ut) +
n−1∑
k=2

fkσk,Bk(D2ut)
)

= g in D

ut = 0 on ∂D.

(1.5)

where g : Ω̄ → R>0, fk : Ω̄ → R≥0 are smooth functions. Also assume that
A,Bk are smooth, positive-definite n×n real matrix-valued functions on Ω̄, and let
σk,B(A) be the coefficient of tk in det(B + tA). There exists a number T ∈ (0, 1]
such that the equation has unique, smooth, strictly convex (i.e. D2u > 0 on Ω̄)
solutions for t ∈ [0, T ). For any number t∗in(0, 1] such that the equation has a
unique smooth strictly convex solutions in [0, t∗), there exists unique smooth strictly
convex solutions in [0, t∗ + δ) for some δ > 0.

Independently, we also prove the following existence result.

Proposition 1.4. Consider the PDE

det(D2u) +
n∑
k=2

Sk(D2u) = f in D

u|∂D = φ,

(1.6)

where Sk is the kth symmetric polynomial (for instance σn is the determinant),
f : D̄ → (n − 1,∞) and φ are smooth functions (with φ being the restriction to
∂D of a smooth function on D̄), and D is a strictly convex domain with a proper
smooth defining function ρ, i.e., ρ−1(0) = ∂D, ρ−1(−∞, 0) = D, ∇ρ 6= 0 on ∂D,
and D2ρ ≥ CI (C > 0 is a constant). It has a unique smooth solution u such that
D2u > −I and

∂

∂λi
(λ1λ2 . . . λn +

n∑
k=2

σk(~λ)) > 0 ∀i,

where λi are the eigenvalues of D2u.

The requirement f > n − 1 is not optimal. But we give a counterexample for
finding solutions in the ellipticity cone in the case f < 0. Notice that this seemingly
harder equation has an existence result but it is still not clear whether equation 1.2
does.

The layout of the paper is as follows. In section 2 we give the definitions of
twisted type equations and give an example of its applicability. In section 4 we
prove proposition 1.4 and discuss its hypotheses.

2. Preliminaries

In this section we present the definitions and prove some basic results. Firstly,
we define what it means for a PDE to be of the generalised twisted type. The
following definition generalises Collins’ [6].

Definition 2.1. Let F (D2u) = 0 be a uniformly elliptic equation on the unit ball
B1. It is said to be of the generalised twisted type if F = F∪ +

∑m
α=1 F∩,α where
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(1) F∪ and ∀ 1 ≤ α ≤ m F∩,α are (possibly degenerate) elliptic C2 functions
on an open set O containing D2u(B̄1).

(2) F∪ is convex and uniformly elliptic on the space of all symmetric matrices,
and

∑m
α=1 F∩,α is weakly concave on O in the sense of definition 2.2.

The definition of weak concavity in our case is as follows.

Definition 2.2. We say that
∑m
α=1 F∩,α is weakly concave if there exists a function

G : U → R such that
(1) The domain U contains a connected open set V with compact closure con-

taining

W = ∪mα=1F∩,α(D2u(B̄1)) ∪1≤j≤m ∪{x ∈ B̄(1)}

j∑
α=1

F∩,α(D2u(x)).

(2) G′ > 0, G′′ ≤ 0, and G(F∩,α(.)) is concave for all 1 ≤ α ≤ m.
(3) For all x ∈ B̄(1) and 1 ≤ α ≤ m consider yα(x) = F∩,α(D2u(x)). There

exists a constant 1 ≥ c > 0 independent of x such that
m∑
i=1

G(yi(x)) ≥ G
( m∑
i=1

yi(x)
)
≥ c

m∑
i=1

G(yi(x)).

Definition 2.2 might seem somewhat convoluted and unnatural compared to the
analogous one in [6]. Firstly, we remark that condition (3) is actually redundant
in many cases of interest (but we choose to impose it since it appears naturally in
our proofs). Indeed,

Proposition 2.3. Given a function G̃ that satisfies requirements (1), (2) of def-
inition 2.2 such that W ⊆ R≥0 and G̃(0) = 0, automatically satisfies requirement
(3), i.e.,

m∑
α=1

G̃(yα(x)) ≥ G̃
( m∑
al=1

yα(x)
)
≥ 1

2m

m∑
α=1

G̃(yα(x)).

Proof. Consider the function T (y) = G̃(y+z)−G̃(y)−G̃(z) for a fixed z ≥ 0. By the
concavity of G we see that T ′(y) ≤ 0. Hence G̃(y+ z)− G̃(y)− G̃(z) ≤ −G̃(0) = 0.
Using induction we see that

m∑
α=1

G̃(yα(x)) ≥ G̃
( m∑
α=1

yα(x)
)
.

The concavity of G implies that

G̃
(y + z

2
)
≥ G̃(y) + G̃(z)

2
.

Since G̃ is increasing this implies that G̃(y + z) ≥ G̃(y)+G̃(z)
2 . Induction gives the

desired result. �

Remark 2.4. Furthermore, it is more natural to have a different Gα that works
for F∩,α. However, under mild conditions on such Gα one may produce a G that
works for all 1 ≤ α ≤ m. Indeed, assume that V̄ ⊂ R≥0, and Gα are such
that on the appropriate compact sets Gα ≥ 0, G′α ≥ 1 and G1(V̄ ) ⊆ dom(G2),
G2(G1(V̄ )) ⊆ dom(G3) . . ..
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Consider the function Hk = Gk ◦Gk−1 . . . ◦G1. Note that

D2Hk(F∩,k) = H ′′kDF∩,kDF∩,k +H ′kD
2F∩,k

= (G′′k(H ′k−1)2 +G′kH
′′
k−1)DF∩,kDF∩,k +G′kH

′
k−1D

2F∩,k

Inductively we may assume that H ′k−1 ≥ 1. Thus we obtain

D2Hk(F∩,k) ≤ H ′k−1(G′′kDF∩,kDF∩,k +G′kD
2F∩,k) +G′kH

′′
k−1DF∩,kDF∩,k ≤ 0

where we used the facts that Gk ◦ F∩,k is concave, H ′k−1 > 0, G′k > 0, and Hk−1 is
concave. Now notice that if H is any concave increasing function and Y (A) is any
concave function of symmetric matrices, then D2(H ◦Y ) = H ′′DYDY +H ′D2Y ≤
0. This means that Hm ◦ F∩,α is concave for all 1 ≤ α ≤ m. Using proposition 2.3
we are done.

Now we give an example of an equation that satisfies the conditions imposed by
theorem 1.2.

Proposition 2.5. Consider the following equation on a domain Ω.

H(D2u, x) = tr(AD2u) +
n∑
k=2

fkσk,Bk(D2u) = g (2.1)

where g : Ω̄ → R>0, fk : Ω̄ → R≥0 are smooth functions. Also assume that A,Bk
are smooth, positive-definite n × n real matrix-valued functions on Ω̄. σk,B(A) be
the coefficient of tk in det(B + tA). Equation 2.1 is of the generalised twisted type
on every ball Br(x0) ⊆ Ω if D2u > 0 on Ω̄.

Proof. Fix an x. In equation 2.1 F∪(D2u) = tr(AD2u) which is obviously smooth
and uniformly elliptic. As for F∩,α(D2u) = σα,Bα(D2u), firstly by means of di-
agonalising the quadratic form Bα we may assume that it is the identity matrix.
Thus, at the point x we see that F∩,α(D2u) is a positive multiple of the αth sym-
metric polynomial. Hence it is elliptic if CI > D2u > 0 (It may not be uniformly
elliptic because we do not have a given lower bound on D2u, but that is not a
requirement anyway.). Therefore F (D2u) is uniformly elliptic. Moreover, the func-
tion G(x) = x1/n defined on R>0 satisfies the conditions required by definition 2.2.
Indeed, since (σk,Bk)1/k is concave it is clear that (σk,Bk)1/n is too. �

Proposition 2.5 may be used to prove corollary 1.3.

Proof of corollary 1.3. Uniqueness of solutions satisfying D2ut > 0 on Ω̄ is stan-
dard. At t = 0 the equation boils down to the usual Monge-Ampère equation and
hence has a smooth solution. A standard implicit function theorem argument shows
that the set of t ∈ [0, 1] for which the solution exists is open. Hence solutions exist
for t ∈ [0, T ) for some T > 0. To prove “continuation” at t∗, we need a priori
estimates as usual. At least some of these are obtained by following the arguments
of [3]. �

Lemma 2.6. If ut is a smooth convex solution of equation 1.5 then ‖ut‖C2(D̄) ≤
C where C depends only on the C1 norm of the coefficients of the equation and
‖ρ‖C2(D̄).
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Proof. We omit the subscript t in what follows.
C0 estimate: Since D2u > 0, by the maximum principle u ≤ 0. Choose a constant
R� 1 so that Rρ satisfies F (D2(Rρ), x) ≥ g. Upon subtraction we obtain

H(D2u, x)−H(D2ρ, x) =
∫ 1

0

Hij(tD2u+ (1− t)D2ρ, x)(u− ρ)xixjdt ≤ 0.

This means (by the minimum principle) that u ≥ Rρ on D̄.
C2 estimate : Since D2u > 0 and tr(AD2u) ≤ C, we see that ‖D2u‖L∞(D̄) ≤ C.
Since 0 < ∆u ≤ C and ‖u‖C0 ≤ C, by the Lp regularity of elliptic equations we see
that ‖u‖C1 ≤ C as well.

Notice that this does not guarantee uniform (independent of t) lower bounded-
ness of D2u away from zero. �

Using proposition 2.5 we see that for every compact subset K of D, ‖u‖C2,α(K) ≤
CK . The interior estimates together with the uniform ellipticity of equation 2.1
actually imply boundary C2,α estimates thanks to a theorem of Krylov whose sim-
plified proof may be found in [8] for instance. This completes the proof of corollary
1.3.

3. Proof of theorem 1.2

As mentioned in the introduction we prove a stronger version of Theorem 1.1,
i.e. instead of F∪+F∩ = 0 we have F∪+

∑m
α=1 F∩,α = 0 where there exists a G so

that G(F∩,α) is concave for every α. The strategy to prove theorem 1.2 is exactly
the one used in [4, 5, 6]. Here is a high-level overview:

(1) One first reduces the content of theorem 1.2 to the case where F (D2u, x)
does not depend on x. Indeed, one can use a blowup argument à la [6] to
conclude this. This reduction step requires F to be uniformly elliptic which
it is by assumption.

(2) In the case of F (D2u) = 0, one proves that the level set of u is very “close”
to a quadratic polynomial satisfying F (D2P ) = 0 (after “zooming” in so to
say). This is done by proving that F∪(D2u) concentrates in measure near
its level set using the Krylov-Safonov weak Harnack inequality, and using
the Alexandrov-Bakelmann-Pucci estimate in conjunction with the usual
Evans-Krylov theory to conclude the existence of a polynomial close to u.
Then one perturbs the polynomial to make it satisfy F (D2P ) = 0.

(3) Then it may be proven that one can find a family of such quadratic poly-
nomials with the “closeness” improving in a quantitative way on the size
(the smaller the better) of the neighbourhood of the point in consideration.

(4) This can be used to prove that the second derivative does not change too
much, i.e., the desired estimate on ‖D2u‖Cα(B1/2).

Out of these, only step 2 needs modification in our case. To this end, we need the
following lemma.

Lemma 3.1. Let L be the linearisation of F = F∪ +
∑
α F∩,α, i.e. Lab = F ab∪ +∑

α F
ab
∩,α. Then

L
(∑

α

G(F∩,α(D2u))
)
≤ 0.
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Proof. We compute

∂aG(F∩,α(D2u)) = G′F ij∩,αuxaxixj

∂abG(F∩,α(D2u)) = G′′F ij∩,αuxaxixjF
rs
∩,αuxbxrxs +G′F ijrs∩,α uxaxixjuxbxrxs

+G′F∩,αuxaxbxixj .

Moreover, using the equation itself we obtain

Labuxaxbxi = (F ab∪ +
∑
α

F ab∩,α)uxaxbxi = 0 (3.1)

Labuxaxbxixj + (F abrs∪ +
∑
α

F abrs∩,α )uxaxbxiuxrxsxj = 0. (3.2)

Then we obtain

L
( m∑
α=1

G(F∩,α(D2u))
)

=
m∑
α=1

Lab(G′′F ij∩,αuxaxixjF
rs
∩,αuxbxrxs +G′F ijrs∩,α uxaxixjuxbxrxs

+G′F ij∩,αuxaxbxixj )

=
m∑
α=1

Lab(G′′F ij∩,αF
rs
∩,α +G′F ijrs∩,α )uxaxixjuxbxrxs +G′LabF ij∩,αuxaxbxixj

=
m∑
α=1

(
(F ab∪ +

∑
β

F ab∩,β)(G′′F ij∩,αF
rs
∩,α +G′F ijrs∩,α )uxaxixjuxbxrxs

−G′F ab∩,α(F ijrs∪ +
∑
β

F ijrs∩,β )uxixjxauxrxsxb
)

(3.3)

=
m∑
α=1

(
F ab∪ (G′′F ij∩,αF

rs
∩,α +G′F ijrs∩,α )uxaxixjuxbxrxs

+
∑
β

F ab∩,βG
′′F ij∩,αF

rs
∩,αuxixjxauxrxsxb −G′F ab∩,αF

ijrs
∪ uxixjxauxrxsxb

)
(3.4)

At this point we note that since G ◦F∩,α is concave and F∪ is elliptic the first term
in 3.4 is negative. Likewise, so is the second term because G′′ ≤ 0 and F∩ is also
elliptic. Since F∪ is convex, so is the third term. Hence we see that

L
(∑

α

G(F∩,α(D2u))
)
≤ 0.

Note that in equation 3.3 the terms of the form F ab∩,αF
ijrs
∩,β cancelled out. This is

perhaps the main point of this calculation. If we had different Gα for each α this
would not have happened. �

Secondly, we need the following proposition that actually addresses step 2 in the
strategy described above.

Proposition 3.2. Under the assumptions of the main theorem, for any given ε > 0
there exists a positive constant

η = η(c,m, ‖G‖L∞ , ‖F∩,α‖L∞ , n, λ,Λ, ε, γ,Γ, ‖D2u‖L∞)
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quadratic polynomial P so that for all x in B1,

| 1
η2
u(ηx)− P (x)| ≤ ε

F (D2P ) = 0

Proof. We shall determine k0, ρ, ξ, δ in the course of the proof. Let 1 ≤ k ≤ k0 and
tk = maxB̄(1/2k) F∪(D2u) and

sk = min
B̄(1/2k)

m∑
α=1

G(F∩,α(D2u)).

Also define wk(x) = 22ku( x
2k

). Hence D2wk(x) = D2u( x
2k

).
Note that since G is increasing,

G(−tk) = G
(

min
B̄(1/2k)

m∑
α=1

F∩,α(D2u)
)

= min
B̄(1/2k)

G
( m∑
α=1

F∩,α(D2u)
)
≥ csk.

Moreover, sk ≥ G(−tk).
If there exists an l such that 1 ≤ l ≤ k0 such that

|Ek| ≤ δ|B1/2l | (3.5)

where Ek is the set of x in B1/2k+1 such that F∪ is “close” to tk, i.e. F∪(D2u) ≤
tk − ξ, then we are done by the arguments of [6]. If not, we shall arrive at a
contradiction by actually proving the existence of such a δ, k and l. Indeed, assume
the contrary. By lemma 3.1 we see that L

(∑
αG(F∩,α(D2wk)) − sk

)
≤ 0. By

applying the weak Harnack inequality we see that for all x in B1/2∑
α

G(F∩,α(D2wk))(x)− sk ≥ C(n, λ)‖
∑
α

G(F∩,α(D2wk))(x)− sk‖Lp0 (B1/2),

where p0 depends on n, λ,Λ. On Ek we recall that
∑
α F∩,α(D2wk) ≥ −tk + ξ, and

hence∑
α

G(F∩,α(D2wk)) ≥ G
(∑

α

F∩,α(D2wk)
)
≥ G(−tk+ξ) ≥ G(−tk)+γξ ≥ csk+γξ.

Choose ξ to be large enough so that (c − 1)sk + γξ ≥ θ0 > 0 where θ0 does not
depend on k. Of course such a θ0 would depend on ‖D2u‖L∞(B1), ‖F∩,α‖L∞ , and
‖G‖L∞ . This means that∑

α

G(F∩,α(D2wk))(x) ≥ sk + C(n, λ)θ0δ
1/p0 = sk + θ

In particular this means that sk+1 ≤ sk + θ. At this point it follows that after

k0 =
OscB1

(∑
α F∩,α(D2u)

)
θ

iterations condition 3.5 ought to hold. �

The rest of the proof of theorem 1.2 is exactly the same as in [4].
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4. Proof of proposition 1.4

We reduce theorem 1.4 to Krylov’s equation 1.1 and invoke the existence result
in [9]. Indeed, define v = u+ 1

2

∑n
i=1 x

2
i . Then D2v = D2u+ I. The eigenvalues of

D2v are µi = λi + 1. Consider the equation

µ1µ2 . . . µn −
n∑
i=1

µi = f − n+ 1 in D

v|∂D = φ+
1
2

n∑
i=1

x2
i .

(4.1)

Writing equation 4.1 in terms of λi we see quite easily that equation 1.6 is recovered.
Thus, Krylov’s theorem [9] states that there is a unique smooth solution to 4.1 in
the ellipticity cone as long as the right hand side is positive. This proves proposition
1.4.

As mentioned in the introduction, the restriction f > n− 1 may not be optimal
(as is easily seen by considering a radial solution in the case of the ball with a
constant f). However, the following counterexample shows that the case f < 0
does not admit solutions in the ellipticity cone.

Proposition 4.1. There is no smooth solution u of the following equation satisfying
µ1 . . . µi−1µi+1 . . . µn > 1 and µi > 0 where µi are the eigenvalues of D2v.

det(D2v)−∆v = −c in B(1)

v|∂B(1) = 0
(4.2)

where c > n− 1 is a constant.

Proof. We first show that such a solution has to be radially symmetric. To this
end, we use the standard method of moving planes [7]. For 0 ≤ t ≤ 1 consider
the plane Pt : xn = t. Let the reflection of the point x across the plane Pt be
xt = (x1, . . . , xn−1, 2t− xn) and let Et = {x ∈ B(1)|t < xn ≤ 1}. We prove that

u(x) > u(xt) ∀x ∈ Et (property (L)).

Near any boundary point the function is strictly increasing as a function of xn
because ∂u

∂n ≥ 0 and D2u > 0. Hence (L) holds for t < 1 sufficiently close to 1. Let
the infimum of all such t be t0. If t0 > 0, then consider w(x) = u(x)−u(xt0) where
x ∈ Et0 . Upon subtracting the equations for u(x) and u(xt0 we see that

det(D2u(x))−∆(u(x))− (det(D2u(xt0))−∆u(xt0)) = 0

⇒
∫ 1

0

d

ds
(det(D2(su(x) + (1− s)u(xt0)))−∆(su(x) + (1− s)u(xt0))) = 0

⇒ Lijwij(x) = 0,

(4.3)

where Lij is a positive definite matrix depending on u. Note that we have used the
assumption that D2u is in the ellipticity cone and the fact that the cone is convex
for this equation. Since w ≥ 0 in Et0 and w = 0 on the plane Pt0 , by applying
the strong minimum principle we see that w > 0 in Et0 . Applying the Hopf lemma
to points on the plane Pt0 we see that wxn > 0 on Pt0 ∩ B(1). Since wxn = 2uxn
on the plane, we see that for t slightly less than t0 property (L) holds. This is
a contradiction. Thus t0 = 0. Since the problem is rotationally symmetric, u is
radial. The unique radial solution to the problem (if it exists) is easily seen to be
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of the form A(r2−1)
2 for some constant A > 0. This means that An − nA + c = 0.

It is easy to see that this equation admits no positive solutions. �
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