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(p, q)-LAPLACIAN ELLIPTIC SYSTEMS AT RESONANCE

ZENG-QI OU

Abstract. We show the existence of weak solutions for a class of (p, q)-

Laplacian elliptic systems at resonance, under certain Landesman-Lazer-type

conditions by using critical point theorem.

1. Introduction and statement of main results

Let Ω be a bounded domain with smooth boundary in RN and ∆p be the p-
Laplacian operator. In this paper, we study the existence of solutions for the
problem

−∆pu = λ1|u|p−2u+
λ1

β + 1
|u|α|v|βv +Gs(x, u, v)− h1(x) in Ω,

−∆qv = λ1|v|q−2v +
λ1

α+ 1
|u|α|v|βu+Gt(x, u, v)− h2(x) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where 1 < p, q < +∞ and α ≥ 0, β ≥ 0 satisfy

α+ 1
p

+
β + 1
q

= 1. (1.2)

The nonlinearity G : Ω×R2 → R is a Caratheodory function which has continuous
derivatives Gs(x, s, t), Gt(x, s, t) with respect to s and t for almost any x ∈ Ω, and
h1 ∈ Lp/(p−1)(Ω), h2 ∈ Lq/(q−1)(Ω).

Let W = W 1,p
0 (Ω) × W 1,q

0 (Ω) with the norm ‖(u, v)‖ = ‖u‖p + ‖v‖q for all
(u, v) ∈ W , where W 1,p

0 (Ω) is the usual Banach space with the norm ‖u‖p =(∫
Ω
|∇u|pdx

)1/p for any u ∈ W 1,p
0 (Ω). From Sobolev embedding Theorem, the

embedding W 1,p
0 (Ω) ↪→ Lp(Ω) is continuous and compact, and there is constant

C > 0 such that

‖u‖Lp ≤ C‖u‖p, ∀u ∈W 1,p
0 (Ω), and ‖v‖Lq ≤ C‖v‖q, ∀v ∈W 1,q

0 (Ω), (1.3)

where ‖ · ‖Lp denotes the norm of Lp(Ω) and throughout this paper, let C always
denote an embedding constant with relation to (1.3). For the following nonlinear
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eigenvalue problem

−∆pu = λ|u|p−2u+
λ

β + 1
|u|α|v|βv in Ω,

−∆qv = λ|v|q−2v +
λ

α+ 1
|u|α|v|βu in Ω,

u = v = 0 on ∂Ω,

(1.4)

consider the functionals φ, ϕ on W defined by

φ(u, v) =
1
p

∫
Ω

|∇u|pdx+
1
q

∫
Ω

|∇v|qdx,

ϕ(u, v) =
1
p

∫
Ω

|u|pdx+
1
q

∫
Ω

|v|qdx+
1

(α+ 1)(β + 1)

∫
Ω

|u|α|v|βuvdx,

and the manifold
Σ = {(u, v) ∈W : ϕ(u, v) = 1}.

It is easy to prove that φ(u, v), ϕ(u, v) are (p, q)-homogeneous, namely

φ(t1/pu, t1/qv) = tφ(u, v), ϕ(t1/pu, t1/qv) = tϕ(u, v)

for any t > 0 and (u, v) ∈ W , and Σ is a symmetric nonempty manifold in W . By
an argument similar to the ones in [3, 7], problem (1.4) has a sequence of eigenvalues
with the variational characterization

λk = inf
Λ∈Σk

sup
(u,v)∈Λ

φ(u, v),

where Σk = {Λ ⊂ Σ : there is an odd, continuous and surjective γ : Sk−1 → Λ}
and Sk−1 denotes the unit sphere in Rk.

On the other hand, let
λ′1 = inf

(u,v)∈Σ
φ(u, v),

we can see that λ1 = λ′1. Moreover, λ1 is a simple, isolated and positive princi-
pal eigenvalue of (1.4) and has a positive normalized eigenvalue (µ0, ν0), namely,
‖µ0‖p + ‖ν0‖q = 1. By a simple computation, there exists a positive constant t0
such that

‖t1/p0 µ0‖pp + ‖t1/q0 ν0‖qq = 1.

Let µ1 = t
1/p
0 µ0, ν1 = t

1/q
0 ν0, since φ, ϕ are (p, q)-homogeneous, hence the set of all

eigenfunctions corresponding to λ1 is

E1 := {(t1/pµ1, t
1/qν1) : t ≥ 0} ∪ {(−t1/pµ1,−t1/qν1) : t ≥ 0}.

The set E1 is not an one-dimensional linear subspace of W and the correspond-
ing orthogonal decomposition on W does not hold with respect to the the first
eigenvalue λ1.

In many papers, existence of weak solutions for the resonant elliptic problems
were investigated under the well-known Landesman-Lazer-type conditions, which
were introduced by Landesman and Lazer in [5] and were extended by Tang in [12].
Since then they were used widely for the different types of equations, for example,
in [1, 3, 9] for the quasilinear elliptic equations, in [4] for asymptotically linear
noncooperative elliptic systems, in [13] for the forced duffing equations, in [11] for
Kirchhoff type equations. Especially, in [2] the case p = q = 2(the semilinear elliptic
systems) was considered and the case p = q ≥ 2(the quasilinear elliptic systems)
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was discussed in [6, 7, 14] where Gs(x, s, t) = g1(x, s) and Gt(x, s, t) = g2(x, t).
As far as we know, when p 6= q > 1, the similar results are not discussed under
the Landesman-Lazer-type conditions due to Landesman and Lazer. Motivated by
these finding, we consider the existence of solutions for problem (1.1) at resonance
with the first eigenvalue under the Landesman-Lazer-type conditions. We first state
the following fundamental hypotheses.

(H1) There is h ∈ C(Ω̄,R+) such that |Gs(x, s, t)| ≤ h(x) and |Gt(x, s, t)| ≤ h(x)
for all (x, s, t) ∈ Ω× R2.

(H2) There exist two functions g++
1 , g−−1 ∈ C(Ω, R) such that

g++
1 (x) = lim inf

s→+∞, t→+∞
Gs(x, s, t), g−−1 (x) = lim sup

s→−∞, t→−∞
Gs(x, s, t)

uniformly a.e. x ∈ Ω.
(H3) There is two functions g++

2 , g−−2 ∈ C(Ω, R) such that

g++
2 (x) = lim inf

s→+∞, t→+∞
Gt(x, s, t), g−−2 (x) = lim sup

s→−∞, t→−∞
Gt(x, s, t)

uniformly a.e. x ∈ Ω.

The Landesman-Lazer-type conditions for problem (1.1) are read either∫
Ω

g−−1 µ1dx+
∫

Ω

g−−2 ν1dx <

∫
Ω

h1µ1dx+
∫

Ω

h2ν1dx

<

∫
Ω

g++
1 µ1dx+

∫
Ω

g++
2 ν1dx;

(1.5)

or ∫
Ω

g++
1 µ1dx+

∫
Ω

g++
2 ν1dx <

∫
Ω

h1µ1dx+
∫

Ω

h2ν1dx

<

∫
Ω

g−−1 µ1dx+
∫

Ω

g−−2 ν1dx.

(1.6)

We are ready to state the main results.

Theorem 1.1. Let h1 ∈ Lp/(p−1)(Ω), h2 ∈ Lq/(q−1)(Ω), and (1.2), (H1), (H2),
(H3) and (1.5) be satisfied. If 1 < p < q and the following inequalities hold:∫

Ω

h1µ1dx−
∫

Ω

g++
1 µ1dx < 0,

∫
Ω

h1µ1dx−
∫

Ω

g−−1 µ1dx > 0, (1.7)

then problem (1.1) has at least one solution.

In the other case 1 < q < p, the following result holds.

Theorem 1.2. Let h1 ∈ Lp/(p−1)(Ω), h2 ∈ Lq/(q−1)(Ω), and (1.2), (H1), (H2),
(H3) and (1.5) be satisfied. If 1 < q < p and the following inequalities hold:∫

Ω

h2ν1dx−
∫

Ω

g++
2 ν1dx < 0,

∫
Ω

h2ν1dx−
∫

Ω

g−−2 ν1dx > 0, (1.8)

then problem (1.1) has at least one solution.

Theorem 1.3. Let h1 ∈ Lp/(p−1)(Ω), h2 ∈ Lq/(q−1)(Ω). If (1.2), (H1), (H2), (H3)
and (1.6) are satisfied, then problem (1.1) has at least one solution.
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Our results extends the ones in [2] from the semilinear elliptic systems to (p, q)-
Laplacian elliptic systems, and are also the generalizations of [14], where they
considered the case p = q ≥ 2 and Gs(x, s, t) = g1(s), Gt(x, s, t) = g2(t). Moreover,
the conditions (1.7) and (1.8) are the technical assumptions. Theorem 1.2 is similar
to Theorem 1.1, and we will prove Theorem 1.1 and Theorem 1.3.

2. Proofs of Theorems

Now consider the functionals J, J1, J2 on W defined by

J(u, v) =
1
p

∫
Ω

|∇u|pdx+
1
q

∫
Ω

|∇v|qdx− λ1

p

∫
Ω

|u|pdx

− λ1

q

∫
Ω

|v|qdx− λ1

(α+ 1)(β + 1)

∫
Ω

|u|α|v|βuvdx

−
∫

Ω

G(x, u, v)dx+
∫

Ω

h1udx+
∫

Ω

h2vdx,

J1(u, v) =
1
p

∫
Ω

|∇u|pdx− λ1

p

∫
Ω

|u|pdx− λ1

p(β + 1)

∫
Ω

|u|α|v|βuvdx

−
∫

Ω

∫ 1

0

Gs(x, ru, rv)u dr dx+
∫

Ω

h1udx,

J2(u, v) =
1
q

∫
Ω

|∇v|qdx− λ1

q

∫
Ω

|v|qdx− λ1

q(α+ 1)

∫
Ω

|u|α|v|βuvdx

−
∫

Ω

∫ 1

0

Gt(x, ru, rv)v dr dx+
∫

Ω

h2vdx.

Noting that

G(x, s, t) =
∫ 1

0

Gs(x, rs, rt)sdr +
∫ 1

0

Gt(x, rs, rt)tdr, (2.1)

from (1.2) and (2.1), it follows that

J(u, v) = J1(u, v) + J2(u, v) for all (u, v) ∈W.

From (H1), it is easy to prove that the functional J is well defined and J ∈
C1(W,R). Moreover, from the variational view of point, a weak solution of problem
(1.1) is equivalent to a critical point of the functional J in W . In this paper, we
will prove Theorem 1.1 and Theorem 1.2 by using the following G-linking Theorem
due to Drábek and Robinson (see [3, 9]) and Theorem 1.3 by using Ekeland’s Vari-
ational Principle (see [8, 10]). In these abstract theorems, a compact condition,
i.e., (PS) condition, is needed.

Definition 2.1. Let X be a real Banach space, if for any sequence {un} ⊂ X
such that f(un) is bounded and f ′(un) → 0 as n → ∞, {un} has a convergent
subsequence, the functional f satisfies the (PS) condition.

Definition 2.2 ([3, 9]). Let Q be a submanifold of a Banach space X with relative
boundary ∂Q, S be a closed subset of a Banach space Y and G be a subset of
C(∂Q, Y \S). S and ∂Q are G-linking if for any map h ∈ C(Q,Y ) such that
h|∂Q ∈ G there holds h(Q) ∩ S 6= ∅.
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Theorem 2.3 ([3, 9]). Let X,Y be Banach spaces, S be a closed subset of Y , Q be
a submanifold of X with relative boundary ∂Q and G be a subset of C(∂Q, Y \S).
Let Γ = {h ∈ C(Q,Y ) : h|∂Q ∈ G}, assume that S and ∂Q are G-linking and
f ∈ C1(Y,R) satisfies

(a) There is h̃ ∈ Γ such that supx∈Q f(h̃(x)) < +∞;
(b) There is β0 > α0 such that

inf
y∈S

f(y) ≥ β0 and sup
x∈∂Q

f(h(x)) ≤ α0, ∀h ∈ Γ;

(c) The (PS) condition holds.
Then, the number

c = inf
h∈Γ

sup
x∈Q

f(h(x))

is a critical value of f with c ≥ β0.

Proof. The proof is divided into two steps.
Step 1. The (PS) condition for the functional J is satisfied. Let (un, vn) be a
(PS) sequence for the functional J ; that is,

J(un, vn) is bouned and J ′(un, vn)→ 0 as n→∞. (2.2)

From (H1) and by a standard argument, it is sufficient to prove that (un, vn) is
bounded in W . If this does not hold, assume that ‖(un, vn)‖ = ‖un‖p+‖vn‖q →∞
as n→∞. Define Kn := ‖un‖pp + ‖vn‖qq, hence it follows that Kn →∞ as n→∞.

Let ūn = un \K1/p
n , v̄n = vn \K1/q

n , then (ūn, v̄n) is bounded in W , i.e.,

‖ūn‖pp + ‖v̄n‖qq = 1 for all n.

Extracting subsequences if necessary, we can assume that there exists (ū, v̄) ∈ W
such that

(ūn, v̄n) ⇀ (ū, v̄) weakly in W, (2.3)

(ūn, v̄n)→ (ū, v̄) strongly in Lp(Ω)× Lq(Ω), (2.4)

(ūn(x), v̄n(x))→ (ū(x), v̄(x)) for a.e. x ∈ Ω. (2.5)

From (2.2), it follows that

lim sup
n→∞

J(un, vn)
Kn

≤ 0, (2.6)

From (2.1), (H1), the Hölder’s inequality and (1.3), we have∣∣ ∫
Ω

G(x, u, v)dx
∣∣ ≤ ∫

Ω

∣∣∣ ∫ 1

0

(Gs(x, τu, τv)u+Gt(x, τu, τv)v)dτ
∣∣∣dx

≤
∫

Ω

h(x)(|u|+ |v|)dx

≤ ‖h‖L∞(|Ω|
p−1
p ‖u‖Lp + |Ω|

q−1
q ‖v‖Lq )

≤ C1(‖u‖p + ‖v‖q)

(2.7)

for all (u, v) ∈W , where C1 is a positive constant, hence it follows that

1
Kn

∫
Ω

G(x, un, vn)dx→ 0 as n→∞. (2.8)
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From h1 ∈ Lp/(p−1)(Ω), h2 ∈ Lq/(q−1)(Ω) and the Hölder’s inequality, we obtain

1
Kn

∫
Ω

(h1un + h2vn)dx→ 0 as n→∞. (2.9)

From (2.4) and (2.5), it follows that |ūn|αūn → |ū|αū strongly in L
p

α+1 (Ω) and
|v̄n|β v̄n → |v̄|αv̄ strongly in L

q
β+1 (Ω), hence from Hölder’s inequality, we obtain∣∣∣ ∫

Ω

(|ūn|α|v̄n|β ūnv̄n − |ū|α|v̄|β ūv̄)dx
∣∣∣

≤
∫

Ω

||ūn|α|v̄n|β ūnv̄n − |ūn|α|v̄|β ūnv̄|dx+
∫

Ω

||ūn|α|v̄|β ūnv̄ − |ū|α|v̄|β ūv̄|dx

≤
∫

Ω

|ūn|α+1 · ||v̄n|β v̄n − |v̄|β v̄|dx+
∫

Ω

||ūn|αūn − |ū|αū| · |v̄|β+1dx

≤ ‖ūn‖α+1
Lp · ‖|v̄n|

β v̄n − |v̄|β v̄‖
L

q
β+1

+ ‖v̄n‖β+1
Lq · ‖|ūn|

αūn − |ū|αū‖
L

p
α+1

→ 0 as n→∞.
(2.10)

From the definition of J , (2.4), (2.6), (2.8), (2.9) and (2.10), we have

lim sup
n→∞

(1
p

∫
Ω

|∇ūn|pdx+
1
q

∫
Ω

|∇v̄n|qdx
)

≤ λ1

(1
p

∫
Ω

|ū|pdx+
1
q

∫
Ω

|v̄|qdx+
1

(α+ 1)(β + 1)

∫
Ω

|ū|α|v̄|β ūv̄dx
)
.

From (2.3), it follows that∫
Ω

|∇ū|pdx ≤ lim inf
n→∞

∫
Ω

|∇ūn|pdx,
∫

Ω

|∇v̄|qdx ≤ lim inf
n→∞

∫
Ω

|∇v̄n|qdx,

hence, combining this with the definition of λ1, we obtain

λ1

(1
p

∫
Ω

|ū|pdx+
1
q

∫
Ω

|v̄|qdx+
1

(α+ 1)(β + 1)

∫
Ω

|ū|α|v̄|β ūv̄dx
)

≤ 1
p

∫
Ω

|∇ū|pdx+
1
q

∫
Ω

|∇v̄|qdx

≤ lim inf
n→∞

(1
p

∫
Ω

|∇ūn|pdx+
1
q

∫
Ω

|∇v̄n|qdx
)

≤ lim sup
n→∞

(1
p

∫
Ω

|∇ūn|pdx+
1
q

∫
Ω

|∇v̄n|qdx
)

≤ λ1

(1
p

∫
Ω

|ū|pdx+
1
q

∫
Ω

|v̄|qdx+
1

(α+ 1)(β + 1)

∫
Ω

|ū|α|v̄|β ūv̄dx
)
,

hence it follows that
1
p

∫
Ω

|∇ū|pdx+
1
q

∫
Ω

|∇v̄|qdx

= λ1

(1
p

∫
Ω

|ū|pdx+
1
q

∫
Ω

|v̄|qdx+
1

(α+ 1)(β + 1)

∫
Ω

|ū|α|v̄|β ūv̄dx
)
,

and by the uniform convexity of W , we have that (ūn, v̄n) converges strongly to
(ū, v̄) in W , and from the definition of (µ1, ν1), it follows that (ū, v̄) = ±(µ1, ν1).



EJDE-2016/163 (p, q)-LAPLACIAN ELLIPTIC SYSTEMS 7

In the following, let (ū, v̄) = (µ1, ν1), and the other case where (ū, v̄) = −(µ1, ν1)
may be considered similarly. Hence from the definition of J , we have

pJ1(un, vn)

(p− 1)K1/p
n

+
qJ2(un, vn)

(q − 1)K1/q
n

− 〈J ′(un, vn), (
ūn
p− 1

,
v̄n
q − 1

)〉

=
1

p− 1

(∫
Ω

Gs(x, un, vn)ūndx−
p

K
1/p
n

∫
Ω

∫ 1

0

Gs(x, run, rvn)un dr dx
)

+
1

q − 1

(∫
Ω

Gt(x, un, vn)v̄ndx−
q

K
1/q
n

∫
Ω

∫ 1

0

Gt(x, run, rvn)vn dr dx
)

+
∫

Ω

h1ūndx+
∫

Ω

h2v̄ndx.

(2.11)

From h1 ∈ Lp/(p−1)(Ω), h2 ∈ Lq/(q−1)(Ω), we have∫
Ω

h1ūndx→
∫

Ω

h1µ1dx and
∫

Ω

h2v̄ndx→
∫

Ω

h2ν1dx as n→∞. (2.12)

From (H2) and (H3), it is easy to know that∫
Ω

Gs(x, un, vn)ūndx→
∫

Ω

g++
1 µ1dx,∫

Ω

Gt(x, un, vn)v̄ndx→
∫

Ω

g++
2 ν1dx

(2.13)

as n → ∞. Finally, from (H2) and Lebesgue dominated convergence theorem, we
have

1

K
1/p
n

∫
Ω

∫ 1

0

Gs(x, run, rvn)un dr dx =
∫

Ω

∫ 1

0

Gs(x, run, rvn)
un

K
1/p
n

dr dx

→
∫

Ω

g++
1 µ1dx as n→∞.

(2.14)

Similarly, we obtain

1

K
1/q
n

∫
Ω

∫ 1

0

Gt(x, run, rvn)vn dr dx→
∫

Ω

g++
2 ν1dx as n→∞. (2.15)

Therefore, letting n→∞ in (2.11) and from (2.2), (2.12), (2.13), (2.14) and (2.15),
we obtain ∫

Ω

h1µ1dx+
∫

Ω

h2ν1dx =
∫

Ω

g++
1 µ1dx+

∫
Ω

g++
2 ν1dx,

which contradicts with (1.5). Hence, (un, vn) is bounded in W .

Step 2. The functional J satisfies the geometries of Theorem 2.3. For any

(u, v) ∈ E1 = {(t1/pµ1, t
1/qν1) : t ≥ 0} ∪ {(−t1/pµ1,−t1/qν1) : t ≥ 0},

we have
1
p

∫
Ω

|∇u|pdx+
1
q

∫
Ω

|∇v|q dx

= λ1

(1
p

∫
Ω

|u|pdx+
1
q

∫
Ω

|v|qdx+
1

(α+ 1)(β + 1)

∫
Ω

|u|α|v|βuv dx
)
.
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From the above equality and the definition of J , for any (t1/pµ1, t
1/qν1) ∈ E1, we

obtain

J(t1/pµ1, t
1/qν1)

= t1/p
∫

Ω

h1µ1dx+ t1/q
∫

Ω

h2ν1dx−
∫

Ω

G(x, t1/pµ1, t
1/qν1)dx

= t1/p
(∫

Ω

h1µ1dx−
∫

Ω

∫ 1

0

Gs(x, rt1/pµ1, rt
1/qν1)µ1 dr dx

)
+ t1/q

(∫
Ω

h2ν1dx−
∫

Ω

∫ 1

0

Gt(x, rt1/pµ1, rt
1/qν1)ν1 dr dx

)
.

(2.16)

From (H1), (H2) and Lebesgue dominated convergence theorem, it follows that

lim
t→+∞

∫
Ω

∫ 1

0

Gs(x, rt1/pµ1, rt
1/qν1)µ1 dr dx =

∫
Ω

g++
1 µ1dx, (2.17)

lim
t→+∞

∫
Ω

∫ 1

0

Gt(x, rt1/qµ1, rt
1/qν1)ν1 dr dx =

∫
Ω

g++
2 ν1dx. (2.18)

Hence, from (1.7), (2.16), (2.17) and (2.18), we obtain

J(t1/pµ1, t
1/qν1)→ −∞ as t→ +∞.

Similarly, the following result can be obtained with g++
1 and g++

2 exchanged with
g−−1 and g−−2 respectively,

J(−t1/pµ1,−t1/qν1)→ −∞ as t→ +∞.

Finally, it follows that

lim
|t|→∞

J(±t1/pµ1,±t1/qν1) = −∞. (2.19)

On the other hand, letting Λ2 := {(u, v) ∈ W : φ(u, v) ≥ λ2ϕ(u, v)}, from (1.3),
(2.7) and the Hölder’s inequality, for any (u, v) ∈ Λ2, we obtain

J(u, v) ≥ λ2 − λ1

pλ2
‖u‖pp +

λ2 − λ1

qλ2
‖v‖qq − C1(‖u‖p + ‖v‖q)

− (‖h1‖
L

p
p−1
‖u‖Lp + ‖h2‖

L
q
q−1
‖v‖Lq )

≥ λ2 − λ1

pλ2
(‖u‖pp + ‖v‖qq)− C2(‖u‖p + ‖v‖q),

where C2 = C1 + C max{‖h1‖
L

p
p−1

, ‖h2‖
L

q
q−1
}. Combining the above expression

with (2.19), we obtain that there exists a positive constant T such that

α0 := sup
t≥T

J(±t1/pµ1,±t1/qν1) < β0 := inf
(u,v)∈Λ2

J(u, v). (2.20)

Let M = {(±t1/pµ1,±t1/qν1) : t ≥ T} and

G = {h ∈ C(S0,W ) : h is odd and h(S0) ⊂M},

where S0 is the boundary of the closed unit ball B1 in R1, i.e., S0 = ∂B1. For
any h ∈ G, by (2.20), we have h(S0) ∩ Λ2 = ∅, which implies that G is a subset of
C(S0,W \ Λ2). Let

Γ = {h ∈ C(B1,W ) : h|S0 ∈ G},
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we can claim: Γ is nonempty and Λ2 and S0 are G-linking, that is h(B1) ∩ Λ2 6= ∅
for any h ∈ Γ. The similar proof of the conclusion may be found in [7, 3, 9], but
for the readers convenience and completeness, we write it.

In fact, define h̄ : B1 →W by

h̄(t) = ((tT )1/pµ1, (tT )1/qν1) for all t ∈ [0, 1],

h̄(−t) = (−(tT )1/pµ1,−(tT )1/qν1) for all t ∈ [0, 1].

Hence, h̄ ∈ Γ and Γ is nonempty. Now let h ∈ Γ, if there is (u, v) ∈ h(B1) such
that ϕ(u, v) = 0, we get h(B1) ∩ Λ2 6= ∅. If not, we consider the map ĥ : S1 → Σ
defined by

ĥ(x1, x2) =

{
π ◦ h(x1), if x2 ≥ 0,
−π ◦ h(−x1), if x2 ≤ 0,

where π(u, v) = (u\(ϕ(u, v))1/p, v\(ϕ(u, v))1/q). It is easy to know that ĥ(S1) ⊂ Σ2.
Therefore, φ(u0, v0) ≥ λ2 for some (u0, v0) ∈ ĥ(S1), namely, (u0, v0) ∈ Λ2. From
π◦h(x) ∈ Λ2, we have implies h(x) ∈ Λ2, which implies that h(B1)∩Λ2 6= ∅. Hence
Λ2 and S0 are G-linking.

Now, from the compactness of B1, (a) of Theorem 2.3 holds, (b) of Theorem 2.3
is satisfied from (2.20), (c) of Theorem 2.3 comes from (i). Accordingly, Theorem
1.1 holds from the G-linking Theorem with the critical value

c = inf
h∈Γ

sup
x∈B1

J(h(x)). �

�

Proof of Theorem 1.3. (i) The functional J satisfies the (PS) condition. From
(1.6), the claim can be proved with similar to step 1 of Theorem 1.1.

(ii) Now we will prove that the functional J is coercive, that is,

J(u, v)→ +∞ as ‖(u, v)‖ → ∞.
If the claim does not hold, there is a constant c and a sequence (un, vn) such
that J(un, vn) ≤ c and ‖(un, vn)‖ → ∞. From the proof of the (PS) condition of
Theorem 1.1, (ūn, v̄n) converges strongly to ±(µ1, ν1), where ūn = un \K1/p

n , v̄n =
vn \ K1/q

n . Assume that (ūn, v̄n) converges strongly to (µ1, ν1) (the case (ūn, v̄n)
converges strongly to (−µ1,−ν1) may be treated similarly) and p ≥ q > 1 (the
case q ≥ p > 1 may also be treated similarly). From the definitions of J, J1, J2 and
J(un, vn) ≤ c for all n, (2.14) and (2.15), we have

0 ≥ lim sup
n→∞

J(un, vn)

K
1/p
n

= lim sup
n→∞

(J1(un, vn)

K
1/p
n

+
J2(un, vn)

K
1/p
n

)
≥ lim sup

n→∞

(J1(un, vn)

K
1/p
n

+
J2(un, vn)

K
1/q
n

)
≥ lim
n→∞

(∫
Ω

(h1ūn −
1

K
1/p
n

∫ 1

0

Gs(x, run, rvn)undr)dx

+
∫

Ω

(h2v̄n −
1

K
1/q
n

∫ 1

0

Gt(x, run, rvn)vndr)dx
)

=
∫

Ω

(h1µ1 − g++
1 µ1)dx+

∫
Ω

(h2ν1 − g++
2 ν1)dx,
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which is a contradiction to (1.6). By Ekeland’s Variational Principle, the proof is
complete. �
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