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ON RECENT DEVELOPMENTS TREATING THE EXACT
CONTROLLABILITY OF ABSTRACT CONTROL PROBLEMS

MICHELLE PIERRI, DONAL O’REGAN, ANDRÉA PROKOPCZYK

Abstract. In this note we comment on an error present in the recent and

extensive literature on exact controllability of abstract control differential

problems. Our observations are valid for first order, second order, integro-
differential and fractional differential control problems.

1. Introduction

In this short note we point out an error in the recent literature on controllability
of abstract control differential problems. To this end, we establish a simple result
on lack of exact controllability for abstract integral control problems of the form

x(t) = R(t, 0)x0 +
∫ t

0

R(t, s)[Bu(s) + f(s, x(s))]ds, ∀t ∈ [0, a], (1.1)

where (R(t, s))a≥t≥s≥0 is a family of bounded linear operators defined on a Banach
space (X, ‖ · ‖), R(0)x = x for all x ∈ X, R(t, ·)x ∈ C((0, t];X) for all t ∈ (0, a]
and every x ∈ X, u ∈ Lp([0, a], U) where p ≥ 1 and (U, ‖ · ‖U ) is a Banach space,
B : U → X is a bounded linear operator and f ∈ C([0, a]×X;X).

In the first section we establish a general result on the lack of controllability
of problem (1.1). In the second section, we apply this result to study the lack of
controllability of different models of abstract differential control problems, includ-
ing first and second order differential equations, abstract integro-differential and
fractional differential control problems. In each case, we include some bibliographic
comments.

In the remainder of this note, L(Z,W ) represents the space of bounded linear
operator from a Banach space (Z, ‖ · ‖Z) into a Banach space (W, ‖ · ‖W ) endowed
with the operator norm denoted by ‖ · ‖L(Z,W ). We write L(Z) and ‖ · ‖L(Z) when
Z = W .

2. Abstract integral control problems

To study the lack of controllability of the control problem (1.1) and prove our
affirmations on the associate literature, we introduce the following general condi-
tion,
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(H1) There exits a Banach space (Y, ‖ · ‖Y ) continuously embedded in X and
p > 1 such that X 6= Y , R(t, s)X ⊂ Y for all t > s and R(a, ·) ∈
Lp

′
([0, a],L(X,Y )) where 1

p + 1
p′ = 1.

From control theory, we adopt the following concept of p-controllability.

Definition 2.1. We say that control problem (1.1) is p-controllable on [0, a] if for
given x0 ∈ X, x1 ∈ X there exists u ∈ Lp([0, a];U) and a solution x ∈ C([0, a];X)
of (1.1) such that x(a) = x1.

The next Lemma is the key for proving our next results.

Lemma 2.2. If condition (H1) is satisfied, then the integral problem (1.1) is not
p-controllable on [0, a].

Proof. Let x1 ∈ X \ Y . If the problem is p-controllable then there exists u ∈
Lp([0, a];U) and a solution x(·) of (1.1) such that x(a) = x1. On the other hand,
from the estimate

‖x(a)‖Y ≤ ‖R(a, 0)x0‖Y +
∫ a

0

‖R(a, s)[Bu(s) + f(s, x(s))]‖Y ds

≤ ‖R(a, 0)x0‖Y +
∫ a

0

‖R(a, s)‖L(X,Y )‖Bu(s) + f(s, x(s))‖ds

≤ ‖R(a, 0)x0‖Y + ‖R(a, ·)‖Lp′ ([0,a],L(X,Y ))‖B‖L(U,X)‖u‖Lp([0,a],U)

+ ‖R(a, ·)‖Lp′ ([0,a],L(X,Y ))‖f(·, u(·))‖Lp([0,a],X),

we have that ‖x(a)‖Y < ∞, which implies that x(a) = x1 ∈ Y . This proves
that problem (1.1) is not p-controllable on [0, a] if the abstract condition (H1) is
satisfied. �

3. Abstract differential control problems

In this section, we use Lemma 2.2 to establish the lack of p-controllability for
different models of abstract control differential systems and we prove our affirma-
tions on the associated literature. For convenience, we include some notations and
a useful Lemma.

Considering the related literature, next we assume that A : D(A) ⊂ X → X is
an unbounded sectorial operator, 0 ∈ ρ(A) and A is the infinitesimal generator of
an analytic semigroup of bounded linear operators (T (t))t≥0 on X. In addition,
[D(A)] denotes the domain of A endowed with the norm ‖x‖D = ‖Ax‖ + ‖x‖ and
Xβ represents the domain of the β-fractional power (−A)β of −A endowed with
the norm ‖x‖β = ‖x‖+ ‖(−A)βx‖, see [30, 25] for details. From semigroup theory
we known that Xβ is a Banach space continuously embedded in X, T (t)X ⊂ Xβ

for all t > 0 and there exists Cβ > 0 such that ‖T (t)‖L(X,Xβ) ≤ Cβt−β for all t > 0.

Lemma 3.1. Xα 6= X for all α ∈ (0, 1).

Proof. Assume that Xα = X for some α ∈ (0, 1). Since ‖x‖ ≤ ‖x‖α for all x ∈ X
and (Xβ , ‖ · ‖α) ↪→ (X, ‖ · ‖), from a consequence of the Open Mapping Theorem
we have (X, ‖ · ‖) and (Xα, ‖ · ‖α) are isomorphic. Thus, there exists C > 0 such
that ‖x‖α ≤ C‖x‖ for all x ∈ X. Using this fact, x ∈ X we obtain

‖T (t)x− x‖ = ‖A
∫ t

0

T (s)xds‖
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≤
∫ t

0

‖(−A)1−αT (s)(−A)αx‖ds

≤
∫ t

0

C1−α

s1−α
‖x‖αds

≤ C1−αC

α
tα‖x‖,

which implies that ‖T (t)− I‖L(X) → 0 as t→ 0. This proves that A is bounded on
X (see [30, Theorem 1.1.2]), which is a contradiction. �

We divide the remainder of this paper in several subsections.

3.1. First order abstract control problems. Consider the control problem

x′(t) = Ax(t) +Bu(t) + f(t, x(t)), ∀t ∈ [0, a], (3.1)

x(0) = x0. (3.2)

Definition 3.2. A function x ∈ C([0, a];X) is said to be a mild solution of (3.1)-
(3.2) if

x(t) = T (t)x0 +
∫ t

0

T (t− s)[Bu(s) + f(s, x(s))]ds, ∀t ∈ [0, a].

Definition 3.3. We say the system (3.1)-(3.2) is p-controllable on [0, a] if for all
x0, x1 ∈ X there exists u ∈ Lp([0, a];U) and a mild solution x(·) of (3.1)-(3.2) such
that x(a) = x1.

From Lemmas 2.2 and 3.1 we have the following result.

Proposition 3.4. System (3.1)-(3.2) is never p-controllable on [0, a].

Proof. Let α ∈ (0, p−1
p ), Y = Xα and (R(t, s))a≥t≥s≥0 be the operator fam-

ily defined by R(t, s) = T (t − s). From semigroup theory and Lemma 3.1 we
have that Y ↪→ X, R(t, s)X ⊂ Y for all t > s and Y 6= X. Moreover, since
‖R(t − s)‖p

′

L(X,Xα) ≤ Cp
′

α (t − s)−p
′α and 1 − p′α > 0, we have that R(a, ·) ∈

Lp
′
([0, a];L(X,Y )). From the above remarks and Lemma 2.2 we obtain that prob-

lem (3.1)-(3.2) is never p-controllable on [0, a]. �

Remark 3.5. From Proposition 3.4, we note that the results in [11, 16, 28, 33] are
not valid if A is unbounded and that the examples in [6, 8, 10, 16, 23, 27, 28, 33,
4, 12, 20, 22] are not controllable as claimed by the authors.

3.2. Second order abstract Cauchy control problems. Consider the problem

x′′(t) = Ax(t) +Bu(t) + f(t, x(t)), ∀ t ∈ [0, a], (3.3)

x(0) = x0, x′(0) = x1, (3.4)

where u ∈ Lp([0, a], U) and A : D(A) ⊂ X → X is the generator of a strongly
continuous cosine function of bounded linear operators (C(t))t≥0 on X, with asso-
ciated sine function (S(t))t∈R given by S(t) =

∫ t
0
C(s)ds for t ∈ R. From the cosine

function theory (see Fattorini [15]) we adopt the following concept.
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Definition 3.6. A function x ∈ C([0, a];X) is said to be a mild solution of problem
(3.3)-(3.4) if

x(t) = C(t)x0 + S(t)x1 +
∫ t

0

S(t− s)[Bu(s) + f(s, x(s))]ds, ∀t ∈ [0, a].

Definition 3.7. We say the control system (3.3)-(3.4) is p-controllable on [0, a]
if for all x0, x1, x2 ∈ X there exists u ∈ Lp([0, a];U) and a mild solution x(·) of
(3.3)-(3.4) such that x(a) = x2.

Let E = {x ∈ X : C(·)x ∈ C1(R, X)}. From [19], the space E endowed with the
norm ‖x‖E = ‖x‖+ sup0≤t≤1 ‖AS(t)x‖, is a Banach space and the operator-valued
function

H(t) =
[
C(t) S(t)
AS(t) C(t)

]
is a strongly continuous group of bounded linear operators on E×X, with generator

A =
[

0 I
A 0

]
defined on D(A) × E. From the above, S(·)x ∈ C([0, a];E) for all

x ∈ X and there exists NE > 0 such that ‖S(t)‖L(X,E) ≤ NE for all t ∈ [0, a]. In
addition, from Rankin [32], Lemma 3.1 and Lemma 2.2, we obtain the following
result.

Proposition 3.8. Assume that the general conditions in [32] are satisfied. Then
E ⊂ Xα for all α ∈ (0, 1

2 ), E 6= X and the abstract control system (3.3)-(3.4) is
never p-controllable on [0, a].

Proof. Let R(t, s) = S(t − s) and Y = E. From our remarks on cosine function
theory, R(t, s)X ⊂ E for t > s, E 6= X and R(a, ·) ∈ Lp

′
([0, a];L(X,E)) which

implies that condition (H1) is satisfied. Using x0 = 0, from the above it is easy to
see that the problem (3.3)-(3.4) is not p-controllable on [0, a]. �

Remark 3.9. The general assumptions in [32] are usually verified by sectorial
operators. In particular, these conditions are satisfied in [2, 3, 6, 7, 9, 13, 29].
Thus, the results in [2, 3, 6, 7, 9, 13, 29] are only valid for the case in which A
is bounded and the examples in [2, 3, 29] are not controllable as affirmed in these
works.

3.3. Integro-differential control systems. Consider the abstract integro-dif-
ferential control problem

x′(t) = Ax(t) +
∫ t

0

C(t− s)x(s)ds+Bu(t) + f(t, x(t)), (3.5)

x(0) = x0, (3.6)

where (C(τ))τ∈[0,a] is a family of closed linear operator defined with domain D(A)
and u ∈ Lp([0, a], U). Next we assume that the assumptions in [18] are fulfilled.
Under these conditions, the problem

x′(t) = Ax(t) +
∫ t

0

C(t− s)x(s)ds, t ≥ 0,

x(0) = x0,

has an associated analytic resolvent operator (Q(s))s≥0 on X.
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Definition 3.10 ([18, Definition 2.1]). A family of bounded linear operators
(Q(s))s≥0 on X is said to be a resolvent operator for (3.5)-(3.6) if Q(0)x = x for
all x ∈ X, Q(·)x ∈ C([0,∞), X) ∩ C1((0,∞);X) for all x ∈ X, there are positive
constants M,γ such that ‖Q(t)‖ ≤ Meγt for all t > 0, Q(t) ∈ L([D(A)]) for all
t ≥ 0, Q(·)x ∈ C1([0,∞); [D(A)]) for all x ∈ D(A) and

Q′(t)y = AQ(t)y +
∫ t

0

C(t− s)Q(s)yds, y ∈ D(A),

Q′(t)y = Q(t)Ay +
∫ t

0

Q(t− s)C(s)yds, y ∈ D(A),

From the theory of resolvent operators, we adopt the following concepts.

Definition 3.11. A function x ∈ C([0, a];X) is called a mild solution of (3.5)-(3.6)
if

x(t) = Q(t)x0 +
∫ t

0

Q(t− s)[Bu(s) + f(s, x(s))]ds, ∀t ∈ [0, a].

Definition 3.12. System (3.5)-(3.6) is called p-controllable on [0, a] if for all x1 ∈
X there exists u ∈ Lp([0, a];U) and a mild solution x(·) of (3.5)-(3.6) such that
x(a) = x1.

Proposition 3.13. Assume the conditions in [18, Theorem 3.4] are fulfilled. Then
the abstract control system (3.5)-(3.6) is not p-controllable on [0, a].

Proof. Let α ∈ (0, p−1
p ), Y = Xα and R(t, s) = Q(t − s). From [18, Theorem

3.4] we know that Q ∈ C((0, a];L(X,Xα)) and there exists K > 0 such that
‖Q(t)‖L(X,Xα) ≤ Kt−α for all t ∈ (0, a], which implies that

R(a, ·) ∈ Lp
′
([0, a],L(X,Xα)).

Finally, from Lemma 3.1 and Lemma 2.2 it follows that the problem is not p-
controllable. �

Remark 3.14. From the above, we note that the abstract problem in [34] is not
controllable if the involved operator is unbounded and that the example in [34] is
not controllable.

3.4. Abstract evolution control systems. Assume that A(t) : D(A) ⊂ X → X,
t ∈ [0, a], is a family of sectorial operator and consider the abstract control system

x′(t) = A(t)x(t) +Bu(t) + f(t, x(t)), ∀t ∈ [0, a], (3.7)

x(0) = x0. (3.8)

Let A = A(0) and suppose that (A(t))t∈[0,a] verifies the conditions in [25, Chapter
VI]. In this case, there exists an evolution operator (U(t, s))a≥t≥s≥0 associated with
the problem

x′(t) = A(t)x(t), ∀t ∈ [s, a], (3.9)

x(s) = x0, a ≥ s ≥ 0. (3.10)

Definition 3.15. A function x ∈ C([0, a];X) is called a mild solution of (3.7)-(3.8)
if

x(t) = U(t, 0)x0 +
∫ t

0

U(t, s)[Bu(s) + f(s, x(s))]ds, ∀t ∈ [0, a].
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Definition 3.16. Control system (3.7)-(3.8) is said to be p-controllable on [0, a] if
for all x1 ∈ X there exists u ∈ L2([0, a];U) and a mild solution x(·) of (3.7)-(3.8)
such that x(a) = x1.

Proposition 3.17. Control system (3.7)-(3.8) is not p-controllable on [0, a].

Proof. Let α ∈ (0, p−1
p ) and (X,D)α,∞ be the space in [25, Chapter I] with D =

[D(A)]. From [25, Chapter I, Chapter VI], we know that (X,D)α,∞ is an inter-
polation space between [D(A)] and X, U(t, ·) ∈ C([0, t);L(X; (X,D)α,∞) for all
t > 0 and there exists a constant Eα,∞ > 0 such that ‖U(t, s)‖L(X,(X,D)α,∞) ≤
Eα,∞(t− s)−α for all a ≥ t > s ≥ 0.

Let the space

DA(α,∞) = {x ∈ X : [x]α,∞ = sup
t∈(0,a)

‖t1−αAT (t)x‖ <∞},

be endowed with the norm ‖x‖DA(α,∞) = [x]α,∞+ ‖x‖. From [25, Section 2.2.1] we
know that (X,D)α,∞ = DA(α,∞) and that the norms in DA(α,∞) and (X,D)α,∞
are equivalent. Moreover, from the proof of Lemma 3.1 it is easy to note that
(X,D)α,∞ 6= X.

From the above remarks, we have that condition (H1) is satisfied with R(t, s) =
U(t, s) and Y = (X,D)α,∞. Thus, the problem (3.7)-(3.8) is not p-controllable on
[0, a]. �

Remark 3.18. The main results in [1, 5, 17, 24] are not applicable to partial
differential control systems and the examples in these works are not controllable.

We complete this note by considering a problem involving a general class of
abstract control fractional differential problems.

3.5. Fractional differential control problems. Consider the fractional differ-
ential control problem

dJ1−α
t x(t) = Ax(t) +Bu(t) + f(t, x(t)), ∀t ∈ I = [0, b], (3.11)

x(0) = x0, (3.12)

where 1
2 < α < 1, J1−α

t is the (1 − α)-order Riemman fractional integral operator
and f is a continuous function.

In the next definitions, (Tα(t))t≥0 and (Sα(t))t≥0 are the operators families in
[21].

Definition 3.19. A function x ∈ C([0, a];X) is say to be a mild solution of (3.11)-
(3.12) if x(0) = x0 and

x(t) = Tα(t)x0 +
∫ t

0

(t−s)α−1Sα(t−s)Bu(s)ds+
∫ t

0

(t−s)α−1Sα(t−s)f(s, x(s))ds,

(3.13)
for all t ∈ [0, b].

Definition 3.20. Control problem (3.11)-(3.12) is p-controllable if for every x0, x1 ∈
X there exists a control u ∈ Lp(I, U) and a mild solution x(·) of (3.11)-(3.12) such
that x(a) = x1.

From [21], for γ > 0 there exist constants Dα, Cγ,α such that ‖Sα(t)‖L(X,Xγ) ≤
Cγ,αt

−αγ and ‖Sα(x)‖L(X1,X1) ≤ Dα for all t ∈ [0, b].
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Lemma 3.21. Problem (3.11)-(3.12) is never p-controllable.

Proof. To simplify, we assume that x0 = 0. From the properties of the operator
family (Sα(t))t≥0, for γ < 1

α such that p > 1
1−αγ , we have that the condition (H1)

is satisfied with Y = Xγ . This prove the assertion. �

Remark 3.22. The result in [21] is not applicable to partial differential control
systems and the considered example is not controllable as claimed. Our affirmation
follows from Lemma 3.21 with f ≡ 0 in [21]. For additional details, see [31].

Remark 3.23. The control problems considered above corresponds to semi-linear
ordinary differential control problems with a linear part dominated by a sectorial
operator, which include the case where the operator A is a realization on a Ba-
nach space of a strongly elliptic operator. Thus, our remarks are valid for control
problems involving parabolic and hyperbolic differential equations. For additional
details on the lack of controllability in partial control differential equations and dif-
ferential control problems in abstract spaces we cite [26, 35, 36] and the references
therein.
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E-mail address: andrea.prokopczyk@gmail.com


	1. Introduction
	2. Abstract integral control problems
	3. Abstract differential control problems
	3.1. First order abstract control problems
	3.2. Second order abstract Cauchy control problems
	3.3. Integro-differential control systems
	3.4. Abstract evolution control systems
	3.5. Fractional differential control problems
	Acknowledgements

	References

