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OSCILLATORY BEHAVIOR OF N-TH-ORDER NEUTRAL
DYNAMIC EQUATIONS WITH MIXED NONLINEARITIES

ON TIME SCALES

XIAN-YONG HUANG

Abstract. In this article, several new oscillation theorems for n-th-order neu-

tral dynamic equations with mixed nonlinearities are established. Our work
extends some known results in the literature on second-order, third-order, and

higher-order linear and half-linear dynamic equations. Two examples are pro-

vided to illustrate the relevance of the new theorems.

1. Introduction

The theory of time scales was introduced by Hilger (see [8]) in 1988 in order to
unify continuous and discrete analysis. Not only can this theory of the so-called
“dynamic equations” unify the theory of differential and difference equations, but
it can also extend some classical cases to cases “in between”, e.g., to the so-called
q-difference equations. Oscillations of delay dynamic equations are common in
applications, for example, in economics, where the demand depends on current
price and the supply depends on the price at an earlier time, and in the study of
population dynamic models (see [5]).

There are available sufficient conditions for the oscillation and nonoscillation of
solutions of various neutral dynamic equations. For second order neutral dynamic
equations on time scales, Wu et al [16] in 2006 studied the second order nonlinear
neutral dynamic equation of the form

[r(t)((x(t) + p(t)x(τ(t)))∆)α]∆ + f(t, δ(t)) = 0, (1.1)

where α ≥ 1 is a quotient of odd positive integers. Zhang and Wang [19] improved
and complemented some results in [16] for α ≥ 1 and gave new results for 0 < α < 1.
Sun et al [14] considered the second order quasilinear neutral dynamic equation

[r(t)((x(t) + p(t)x(τ(t)))∆)γ ]∆ + q1(t)xα(δ1(t)) + q2(t)xβ(δ2(t)) = 0, (1.2)

where γ, α, β are quotients of odd positive integers with 0 < α < γ < β. For more
results on second order neutral dynamic equations, we refer the reader to the papers
(see [1, 3, 4, 6, 11, 17]).
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Saker and Graef [13] and Zhang [18] considered the third order half-linear neutral
dynamic equation of the form

[r1(t)((r2(t)(x(t) + a(t)x(τ(t)))∆)∆)γ ]∆ + p(t)xγ(δ(t)) = 0. (1.3)

Their results were further extended by Utku et al [15] to the equation

[r(t)((x(t) + p(t)x(τ0(t)))∆∆)γ ]∆ + q1(t)xα(τ1(t)) + q2(t)xβ(τ2(t)) = 0, (1.4)

where 0 < α < γ < β.
Higher order dynamic equations have recently also been studied by many authors.

For instance, in 2014, Hassan and Kong [9] established some oscillation criteria for
nth-order half-linear dynamic equation

(x[n−1])∆(t) + p(t)φα[1,n−1](x(g(t))) = 0 (1.5)

on time scale T, where n ≥ 2, φβ(u) := |u|β sgnu, α[i, j] := αi . . . αj , x[i](t) :=
ri(t)φαi [(x

[i−1])∆(t)], i = 1, 2, . . . , n− 1, with x[0] = x.
Chen and Qu [7] extended the work in [9] to even order advanced type delay

dynamic equations on time scales containing mixed nonlinearities

[r(t)Φα(x∆n−1
(t))]∆ + p(t)Φα(x(δ(t))) +

k∑
i=1

pi(t)Φαi(x(δ(t))) = 0, (1.6)

where n ≥ 2 is even, α, αi > 0, δ(t) ≥ t, Φ∗(u) = |u|∗−1u.
Our goal in this paper is to study the oscillation of nth-order neutral dynamic

equations with mixed nonlinearities of the form

[r(t)|y∆n−1
(t)|α−1y∆n−1

(t)]∆ + q0(t)|x(δ0(t))|α−1x(δ0(t))

+
m∑
i=1

qi(t)|x(δi(t)))|βi−1x(δi(t)) = 0
(1.7)

on an arbitrary time scale T, where y(t) = x(t) + p(t)x(τ(t)), under the following
hypotheses.

(A1) r, qi ∈ Crd(T,R+) for i = 0, 1, . . . ,m, where R+ = (0,∞), and p ∈
Crd(T, [0, 1)),

∫∞
t0
r−

1
α (s)∆s =∞;

(A2) n ≥ 2 is an integer, α, βi (i = 1, 2, . . . ,m) are constants, β1 > . . . > βk >
α > βk+1 > . . . > βm > 0;

(A3) δi ∈ Crd(T,T), δi(t) ≥ t (i = 0, 1, . . . ,m), τ ∈ Crd(T,R+), τ(t) ≤ t,
limt→∞ τ(t) =∞.

For the study of oscillation purpose, we are only interested in the solutions that
are extendable to ∞. Thus, we assume that the time scale T under consideration
satisfies inf T = t0 > 0 and sup T = ∞. For T ∈ T, denote [T,∞)T := {t ∈
T : t ≥ T}, τ∗(t) = min {τ(t), δ0(t), δ1(t), . . . , δm(t)}, T0 = min{τ∗(t) : t ≥ t0}
and τ∗−1(t) = sup{s ≥ t0 : τ∗(s) ≤ t}. Clearly τ∗−1(t) ≥ t for t ≥ T0, τ∗−1(t) is
nondecreasing and coincides with the inverse of τ∗(t) when the latter exists.

Definition 1.1. By a solution x of (1.7), we mean a nontrivial real-valued function
in C1

rd([τ
∗
−1(t0)T,∞),R) with y ∈ C1

rd([τ
∗
−1(t0)T,∞),R) and r|y∆n−1 |α−1y∆n−1 ∈

C1
rd([τ

∗
−1(t0)T,∞),R), and such that (1.7) is satisfied on the interval [τ∗−1(t0),∞)T.

Our attention is restricted to those solutions of (1.7) that exist on some half line
[τ∗−1(t0),∞)T and satisfy sup{|x(t)| : t ≥ tx} > 0 for any tx ≥ τ∗−1(t0). About the
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existence and uniqueness of solutions to dynamic equations, we refer the reader to
[12]. A solution of (1.7) is called nonoscillatory if it is either eventually positive or
eventually negative, otherwise it is called oscillatory. Equation (1.7) is said to be
oscillatory if all its solutions are oscillatory.

Note that the results obtained in [1, 3, 4, 6, 7, 9, 11, 13, 14, 15, 16, 17, 18, 19]
cannot be applied to nth-order neutral dynamic equation (1.7). Therefore, it is
of interest to study the oscillation of (1.7). Motivated by the works mentioned
above, by applying the generalized Riccati transformation and certain well-known
techniques, we establish new sufficient conditions to guarantee that every solution
of (1.7) is oscillatory or tends to zero eventually. The results obtained in this paper
extend some known results in the literature on the oscillation for second and third
order, and higher order linear and half-linear dynamic equations.

For convenience, throughout this article we use the notation:

x(σ(t)) = xσ(t), x∆(σ(t)) = (x∆(t))σ.

The article is organized as follows. In Section 2, we give some basic lemmas
which play a key in the subsequence. In Section 3, we establish several sufficient
conditions to guarantee that every solution of (1.7) is oscillatory when n is even.
The case when n is odd is discussed in Section 4. Finally, in Section 5, two examples
are provided to illustrate the relevance of our results.

2. Basic lemmas

Lemma 2.1 ([2, Lemma 2.2]). For any m-tuple {β1, β2, . . . , βm} satisfying

β1 > . . . > βk > α > βk+1 > . . . > βm > 0,

there corresponds an m-tuple {η1, η2, . . . , ηm} such that
m∑
i=1

βiηi = α,

m∑
i=1

ηi = 1, 0 < ηi < 1, i = 1, 2, . . . ,m. (2.1)

If m = 2 and k = 1, it turns out that

η1 =
α− β2

β1 − β2
, η2 =

β1 − α
β1 − β2

.

Lemma 2.2 ([10, Young’s Inequality]). If X and Y are nonnegative, then for
λ > 1,

λXY λ−1 −Xλ ≤ (λ− 1)Y λ,

where the equality holds if and only if X = Y .

Lemma 2.3. If (1.7) has an eventually positive solution x. Then there exists an
integer l ∈ {0, 1, . . . , n− 1} with l + n odd such that

y∆j

(t) > 0, j = 0, 1, . . . , l (2.2)

and
(−1)l+jy∆j

(t) > 0, j = l + 1, l + 2, . . . , n− 1 (2.3)

eventually, where y∆0
(t) := y(t) = x(t) + p(t)x(τ(t)).

The proof of the above lemma is similar to that of [9, Lemma 1].
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3. Oscillation for even order equations

In this section, we establish several oscillation criteria for equation (1.7) when n
is even. Throughout this section, we denote

θ1(t) = q0(t)(1− p(δ0(t)))α +
m∑
i=1

qi(t)(1− p(δi(t)))βi ,

θ2(t) = q0(t)(1− p(δ0(t)))α +
m∏
i=1

η−ηii qηii (t)(1− p(βi(t)))βiηi .

The first theorem can be considered as the extension of Fite-Winter type oscillation
criterion.

Theorem 3.1. Assume that ∫ ∞
t0

θ1(u)∆u =∞. (3.1)

Then (1.7) is oscillatory.

Proof. Assume, for the sake of contradiction, that (1.7) has a nonoscillatory solution
x. We may assume that x is eventually positive by replacing x by −x, otherwise.
By Lemma 2.3, there exist t1 ∈ [t0,∞)T and an odd integer l ∈ {1, 3, . . . , n−1} such
that (2.2) and (2.3) hold eventually. Note that odd l ∈ {1, 3, . . . , n−1} implies that
y∆(t) > 0 and y∆n−1

(t) > 0 for all t ∈ [t1,∞)T. This implies that y(t) is strictly
increasing on [t1,∞)T. By (A3), we conclude y(δi(t)) ≥ y(t) ≥ y(t1) := a2 > 0 for
t ∈ [t1,∞)T, and

x(t) = y(t)− p(t)x(τ(t)) ≥ y(t)− p(t)y(τ(t)) ≥ y(t)− p(t)y(t) = (1− p(t))y(t),

then, for i = 0, 1, . . . ,m, t ∈ [t1,∞)T, we have

x(δi(t)) ≥ (1− p(δi(t)))y(δi(t)) ≥ (1− p(δi(t)))y(t) ≥ a2(1− p(δi(t))). (3.2)

From (1.7) and (3.2), it follows that for t ∈ [t1,∞)T,

[r(t)(y∆n−1
(t))α]∆ = −q0(t)xα(δ0(t))−

m∑
i=1

qi(t)xβi(δi(t))

≤ −aα2 (1− p(δ0(t)))αq0(t)−
m∑
i=1

aβi2 (1− p(δi(t)))βiqi(t)

≤ −a3θ1(t),

where

a3 := min{aα2 , a
β1
2 , aβ2

2 , . . . , aβm2 } > 0,

θ1(t) = q0(t)(1− p(δ0(t)))α +
m∑
i=1

qi(t)(1− p(δi(t)))βi .

Integrating the above inequality from t ≥ t1 to u ≥ t, we obtain

r(t)(y∆n−1
(t))α ≥ r(u)(y∆n−1

(u))α + a3

∫ u

t

θ1(u)∆u > a3

∫ u

t

θ1(u)∆u. (3.3)

Letting u→∞, we have ∫ ∞
t

θ1(u)∆ <∞,
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which contradicts the assumption (3.1) and so the proof is complete. �

For the next lemma, we define the functions {Θi}∞i=0 by

Θ0(t, u) =
1
r(t)

, Θi(t, u) =
∫ t

u

Θi−1(s, u)∆s, t, u ∈ [t0,∞)T, i ∈ N. (3.4)

Lemma 3.2. Assume that either∫ ∞
t0

( 1
r(s)

∫ ∞
s

θ1(u)∆u
)1/α

∆s =∞,

or∫ ∞
t0

[ ∫ ∞
v

( 1
r(s)

∫ ∞
s

θ1(u)∆u
)1/α

∆s
]
∆v =∞.

(3.5)

If (1.7) has an eventually positive solution x, then there exists a sufficiently large
t∗ ∈ [t0,∞)T such that for t ∈ [t∗,∞)T,

y∆j

(t) > 0, j = 0, 1, . . . , n− 1, (3.6)

y∆(t) > r1/α(t)y∆n−1
(t)Θn−2(t, t∗), (3.7)

y(t) > r1/α(t)y∆n−1
(t)Θn−1(t, t∗). (3.8)

Proof. Since x is an eventually positive solution of (1.7). By Lemma 2.3, there
exist t∗ ∈ [t0,∞)T and an odd integer l ∈ {1, 3, . . . , n− 1} such that (2.2) and (2.3)
hold eventually. Therefore, one concludes that for t ∈ [t∗,∞)T

y∆(t) > 0. (3.9)

So (3.6) holds for n = 2.
If n ≥ 4, we claim that (3.5) implies that l = n − 1, hence (3.6) holds. In fact,

if 1 ≤ l ≤ n− 3, then for t ≥ t∗
[r(t)|y∆n−1

(t)|α−1y∆n−1
(t)]∆ < 0, y∆n−1

(t) > 0, y∆n−2
(t) < 0, y∆n−3

(t) > 0.

Proceeding as in the proof of Theorem 3.1, we see that (3.3) holds for all t ∈ [t∗,∞)T.
Taking limits as u→∞ in (3.3), we have for t ∈ [t∗,∞)T,

r(t)(y∆n−1
(t))α ≥ a3

∫ ∞
t

θ1(u)∆u.

It is known from Theorem 3.1 that
∫∞
t
θ1(u)∆u < ∞. Thus, one concludes that

for t ∈ [t∗,∞)T,

y∆n−1
(t) ≥ a1/α

3 (
1
r(t)

∫ ∞
s

θ1(u)∆u)1/α. (3.10)

Assume ∫ ∞
t0

(
1
r(s)

∫ ∞
s

θ1(u)∆u)1/α∆s =∞.

By integrating both sides of (3.10) from t∗ to t ∈ [t∗,∞)T we obtain

y∆n−2
(t)− y∆n−2

(t∗) ≥ a1/α
3

∫ t

t∗

(
1
r(s)

∫ ∞
s

θ1(u)∆u)1/α∆s.

Letting t→∞, we have

lim
t→∞

y∆n−2
(t) =∞,
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which contradicts the fact that y∆n−2
(t) < 0 on [t∗,∞)T.

Assume ∫ ∞
t0

[
∫ ∞
v

(
1
r(s)

∫ ∞
s

θ1(u)∆u)1/α∆s]∆v =∞.

By integrating both sides of (3.10) from v to u ∈ [t∗,∞)T and then taking limits
as u→∞ and using the fact y∆n−2

(u) < 0 eventually, we obtain

−y∆n−2
(t) > a

1/α
3

∫ ∞
v

( 1
r(s)

∫ ∞
s

θ1(u)∆u
)1/α

∆s. (3.11)

Again, by integrating both sides of (3.11) from t∗ to t ∈ [t∗,∞)T and noting
y∆n−3

(t∗) > 0 eventually, we have

−y∆n−3
(t) + y∆n−3

(t∗) ≥ a1/α
3

∫ t

t∗

[ ∫ ∞
v

( 1
r(s)

∫ ∞
s

θ1(u)∆u
)1/α

∆s
]
∆v.

Letting t→∞, for t ∈ [t∗,∞)T, we find that

lim
t→∞

y∆n−3
(t) = −∞,

which contradicts the fact that y∆n−3
(t) > 0 on [t∗,∞)T. Thus we have l = n− 1,

and then (3.6) holds. It follows from (1.7) that r1/α(t)y∆n−1
(t) is strictly decreasing

on [t∗,∞)T. Therefore, one concludes that for t ∈ [t∗,∞)T,

y∆n−2
(t) = y∆n−2

(t∗) +
∫ t

t∗

r1/α(s)y∆n−1
(s)r−

1
α (s)∆s

> r1/α(t)y∆n−1
(t)
∫ t

t∗

r−
1
α (s)∆s

: = r1/α(t)y∆n−1
(t)Θ1(t, t∗).

Integrating the above inequality from t∗ to t, for t ∈ [t∗,∞)T, we have

y∆n−3
(t) ≥ y∆n−3

(t∗) +
∫ t

t∗

r1/α(s)y∆n−1
(s)Θ1(s, t∗)∆s

> r1/α(t)y∆n−1
(t)
∫ t

t∗

Θ1(s, t∗)∆s

: = r1/α(t)y∆n−1
(t)Θ2(t, t∗).

Analogously, for t ∈ [t∗,∞)T, we obtain

y∆(t) > r1/α(t)y∆n−1
(t)Θn−2(t, t∗),

y(t) > r1/α(t)y∆n−1
(t)Θn−1(t, t∗),

which are (3.7) and (3.8), respectively. This completes the proof. �

Remark 3.3. For the even order delay dynamic equation (1.6), Chen and Qu [7]
obtained a similar lemma (see [7, Lemma 2.2]).

By Lemma 3.2, we have the following criterion.
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Theorem 3.4. Let (3.5) be satisfied. Assume in addition that there exist a function
ϕ ∈ C1

rd([t0,∞)T,R+) and m-tuple {η1, η2, . . . , ηm} satisfying Lemma 2.1 such that
for all T1, T2 ∈ [t0,∞)T with T2 > T1,

lim sup
t→∞

∫ t

T2

{
ϕ(s)θ2(s)− ϕ∆

+(s)Θ−αn−1(s, T1)
}

∆s =∞, (3.12)

where ϕ∆
+(s) := max{0, ϕ∆(s)}. Then (1.7) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.7). Without loss of generality, we
may assume that x is eventually positive. In view of (3.5), by Lemma 3.2, there
exists a t∗ ≥ t0 such that (3.2) and (3.6), (3.8) hold.

Consider the Riccati substitution

Z(t) = ϕ(t)
r(t)(y∆n−1

(t))α

yα(t)
, t ∈ [t∗,∞)T, (3.13)

then Z(t) > 0 for t ∈ [t∗,∞)T. By the product and quotient rules (see [5, Theorem
1.20]), in view of (1.7), (A1)–(A3), (3.2), (3.6) and (3.13), one concludes that for
t ∈ [t∗,∞)T,

Z∆(t)

= [r(t)(y∆n−1
(t))α]∆

ϕ(t)
yα(t)

+ (r(t)(y∆n−1
(t))α)σ(

ϕ(t)
yα(t)

)∆

= −ϕ(t)
q0(t)xα(δ0(t)) +

∑m
i=1 qi(t)x

βi(δi(t))
yα(t)

+ (r(t)(y∆n−1
(t))α)σ(

ϕ(t)
yα(t)

)∆

≤ −ϕ(t)
q0(t)(1− p(δ0(t)))αyα(δ0(t))

yα(t)
− ϕ(t)

∑m
i=1 qi(t)(1− p(δi(t)))βiyβi(δi(t))

yα(t)

+ (r(t)(y∆n−1
(t))α)σ(

ϕ∆(t)
(yσ(t))α

− ϕ(t)(yα(t))∆

yα(t)(yσ(t))α
)

≤ −ϕ(t)
[
q0(t)(1− p(δ0(t)))α +

m∑
i=1

qi(t)(1− p(δi(t)))βiyβi−α(t)
]

+ (r(t)(y∆n−1
(t))α)σ(

ϕ∆
+(t)

(yσ(t))α
− ϕ(t)(yα(t))∆

yα(t)(yσ(t))α
),

(3.14)
where σ is the forward jump operator on time scale T.

In view of the arithmetic-geometric mean inequality, see [10],

m∑
i=1

ηiui ≥
m∏
i=1

uηii , ui ≥ 0,

where η1, η2, . . . , ηm are chosen to satisfy Lemma 2.1. Now returning to (3.14) and
substituting

ui = η−1
i qi(t)(1− p(δi(t)))βiyβi−α(t), i = 1, 2, . . . ,m
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into (3.14), we obtain

Z∆(t) ≤ −ϕ(t)
[
q0(t)(1− p(δ0(t)))α +

m∏
i=1

η−ηii qηii (t)(1− p(δi(t)))βiηi
]

+ (r(t)(y∆n−1
(t))α)σ(

ϕ∆
+(t)

(yσ(t))α
− ϕ(t)(yα(t))∆

yα(t)(yσ(t))α
)

: = −ϕ(t)θ2(t) + (r(t)(y∆n−1
(t))α)σ(

ϕ∆
+(t)

(yσ(t))α
− ϕ(t)(yα(t))∆

yα(t)(yσ(t))α
).

(3.15)

Employing the Pätzsche chain rule ([5, Theorem 1.87]) and the fact that y is strictly
increasing on t ∈ [t∗,∞)T, we have for t ∈ [t∗,∞)T

(yα(t))∆ = α
{∫ 1

0

[y(t) + hµ(t)y∆(t)]α−1dh
}
y∆(t)

= α
{∫ 1

0

[(1− h)y(t) + hyσ(t)]α−1dh
}
y∆(t)

≥

{
α(yσ(t))α−1y∆(t), 0 < α ≤ 1,
α(y(t))α−1y∆(t), α ≥ 1.

Noting that y is increasing on [t∗,∞)T, we obtain y(t) ≤ yσ(t) for t ∈ [t∗,∞)T, and
then

(yα(t))∆

yα(t)
≥ αy

∆(t)
yσ(t)

> 0. (3.16)

Since σ(t) ≥ t on T, from (3.6) and the fact that r(t)(y∆n−1
(t))α is decreasing on

[t∗,∞)T, one concludes that for t ∈ [t∗,∞)T

0 ≤ (r(t)(y∆n−1
(t))α)σ ≤ r(t)(y∆n−1

(t))α, yσ(t) ≥ y(t). (3.17)

From (3.15), (3.16) and (3.17), it follows that

Z∆(t) ≤ −ϕ(t)θ2(t) + (r(t)(y∆n−1
(t))α)σ

( ϕ∆
+(t)

(yσ(t))α
− ϕ(t)(yα(t))∆

yα(t)(yσ(t))α
)

≤ −ϕ(t)θ2(t) + (r(t)(y∆n−1
(t))α)σ

ϕ∆
+(t)

(yσ(t))α

≤ −ϕ(t)θ2(t) + (r(t)(y∆n−1
(t))α

ϕ∆
+(t)
yα(t)

.

(3.18)

In view of (3.8), we obtain

Z∆(t) ≤ −ϕ(t)θ2(t) + (r(t)(y∆n−1
(t)))α

ϕ∆
+(t)
yα(t)

≤ −ϕ(t)θ2(t) + yα(t)Θ−αn−1(t, t∗)
ϕ∆

+(t)
yα(t)

= −ϕ(t)θ2(t) + ϕ∆
+(t)Θ−αn−1(t, t∗).

Integrating both sides of (3.18) from T > t∗ to t ≥ T leads to

0 < Z(t) ≤ Z(T )−
∫ t

T

{
ϕ(s)θ2(s)− ϕ∆

+(s)Θ−αn−1(s, t∗)
}

∆s.
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Taking the limit superior on both sides, the result contradicts (3.12). This com-
pletes the proof. �

According to Theorem 3.4, by further applying Young’s inequality and noting
that (3.7) we have the following theorem.

Theorem 3.5. Let (3.5) be satisfied. Assume in addition that there exist a function
ϕ ∈ C1

rd([t0,∞)T,R+) and m-tuple {η1, η2, . . . , ηm} satisfying Lemma 2.1 such that
for all T1, T2 ∈ [t0,∞)T with T2 > T1,

lim sup
t→∞

∫ t

T2

{
ϕ(s)θ2(s)−

(ϕ∆
+(s))α+1

(α+ 1)α+1[ϕ(s)Θn−2(s, T1)]α
}

∆s =∞. (3.19)

Then (1.7) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.7). Without loss of generality, we
may assume that x is eventually positive. In view of (3.5), by Lemma 3.2, there is
a t∗ ≥ t0 such that (3.6), (3.7) hold. Define the function Z as in (3.13), proceeding
as in the proof of Theorem 3.4, we see that (3.14)-(3.17) hold. From (3.13) and
(3.15), one concludes that for t ∈ [t∗,∞)T

Z∆(t) ≤ −ϕ(t)θ2(t) + ϕ∆
+(t)

Zσ(t)
ϕσ(t)

− ϕ(t)
Zσ(t)
ϕσ(t)

(yα(t))∆

yα(t)
. (3.20)

From [r(t)|y∆n−1
(t)|α−1y∆n−1

(t)]∆ < 0, we have

(r(t)(y∆n−1
(t))α)σ ≤ r(t)(y∆n−1

(t))α.

In view of (3.7) and (3.16), we have

(yα(t))∆

yα(t)
≥ αy

∆(t)
yσ(t)

≥ αr
1/α(t)y∆n−1

(t)Θn−2(t, t∗)
yσ(t)

≥ α (r1/α(t))σ(y∆n−1
(t))σΘn−2(t, t∗)

yσ(t)

= αΘn−2(t, t∗)
(Zσ(t)
ϕσ(t)

)1/α

(3.21)

on [t∗,∞)T. Substituting (3.21) into (3.20), we obtain for t ∈ [t∗,∞)T,

Z∆(t) ≤ −ϕ(t)θ2(t) + ϕ∆
+(t)

Zσ(t)
ϕσ(t)

− αϕ(t)Θn−2(t, t∗)
(Zσ(t)
ϕσ(t)

)1+ 1
α

. (3.22)

Taking

X = [αϕ(t)Θn−2(t, t∗)]
α
α+1

Zσ(t)
ϕσ(t)

, Y = (
α

α+ 1
)α(ϕ∆

+(t))α[αϕ(t)Θn−2(t, t∗)]
−α2
α+1 ,

λ =
α+ 1
α

= 1 +
1
α
> 1,

by Lemma 2.2 and (3.22), for t ∈ [t∗,∞)T, we obtain

Z∆(t) ≤ −ϕ(t)θ2(t) +
(ϕ∆

+(t))α+1

(α+ 1)α+1[ϕ(t)Θn−2(t, t∗)]α
.
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Integrating both sides of the above inequality from T > t∗ to t ≥ T leads to

0 < Z(t) ≤ Z(T )−
∫ t

T

{
ϕ(s)θ2(s)−

(ϕ∆
+(s))α+1

(α+ 1)α+1[ϕ(s)Θn−2(s, t∗)]α
}

∆s.

Taking the limit superior on both sides, the result obtained contradicts (3.19). This
completes the proof. �

Similarly, using the equality bx−ax2 ≤ b2

4a for x, a, b ∈ R, we have the following
theorem.

Theorem 3.6. Let (3.5) be satisfied and α ≥ 1. Assume in addition that there exist
a function ϕ ∈ C1

rd([t0,∞)T,R+) and m-tuple {η1, η2, . . . , ηm} satisfying Lemma 2.1
such that for all T1, T2 ∈ [t0,∞)T with T2 > T1,

lim sup
t→∞

∫ t

T2

{
ϕ(s)θ2(s)−

(ϕ∆
+(s))2

4αϕ(s)Θn−2(s, T1)Θα−1
n−1(σ(s), T1)

}
∆s =∞. (3.23)

Then (1.7) is oscillatory.

The following two theorems give new oscillation criteria for (1.7) which can be
considered as the extension of Philos-type oscillation criterion. Define D = {(t, s) ∈
T× T : t ≥ s > 0} and

Ω =
{
H ∈ C1(D,R+) : H(t, t) = 0, H(t, s) > 0, H∆

s (t, s) ≤ 0, for t > s ≥ 0
}
.

Theorem 3.7. Let (3.5) be satisfied. Assume in addition that there exist func-
tion ϕ ∈ C1

rd([t0,∞)T,R+), h ∈ Crd(D,R), H ∈ Ω and m-tuple {η1, η2, . . . , ηm}
satisfying the assumptions in Lemma 2.1, such that for all T1, T2 ∈ [t0,∞)T with
T2 > T1,

H∆
s (t, s) +H(t, s)

ϕ∆
+(s)
ϕσ(s)

=
h(t, s)
ϕσ(s)

H
α
α+1 (t, s), for (t, s) ∈ D, (3.24)

and

lim sup
t→∞

1
H(t, T2)

∫ t

T2

{
H(t, s)ϕ(s)θ2(s)−

hα+1
+ (t, s)

(α+ 1)α+1
[
ϕ(s)Θn−2(s, T1)

]α}∆s =∞,

(3.25)
where h+(t, s) := max{0, h(t, s)}. Then (1.7) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1.7). Without loss of generality, we
may assume that x is eventually positive. Proceeding as in the proof of Theorem
3.5, we see that (3.22) holds. Multiplying (3.22) by H(t, s) and integrating it from
T > t∗ to t ≥ T , one concludes that for t ∈ [T,∞)T,∫ t

T

H(t, s)Z∆(s)∆s ≤ −
∫ t

T

H(t, s)ϕ(s)θ2(s)∆s+
∫ t

T

H(t, s)ϕ∆
+(s)

Zσ(s)
ϕσ(s)

∆s

−
∫ t

T

H(t, s)αϕ(s)Θn−2(s, t∗)(
Zσ(s)
ϕσ(s)

)1+ 1
α∆s

: = −
∫ t

T

H(t, s)ϕ(s)θ2(s)∆s+
∫ t

T

H(t, s)
ϕ∆

+(s)
ϕσ(s)

Zσ(s)∆s

−
∫ t

T

H(t, s)U1(s, t∗)
(Zσ(s)
ϕσ(s)

)1+ 1
α

∆s,

(3.26)
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where U1(s, t∗) := αϕ(s)Θn−2(s, t∗). Integrating by parts, we obtain∫ t

T

H(t, s)Z∆(s)∆s = −H(t, T )Z(T )−
∫ t

T

H∆
s (t, s)Zσ(s)∆s. (3.27)

From (3.26) and (3.27), one concludes that for t ∈ [T,∞)T,∫ t

T

H(t, s)ϕ(s)θ2(s)∆s

≤ −
∫ t

T

H(t, s)Z∆(s)∆s+
∫ t

T

H(t, s)
ϕ∆

+(s)
ϕσ(s)

Zσ(s)∆s

−
∫ t

T

H(t, s)U1(s, t∗)(
Zσ(s)
ϕσ(s)

)1+ 1
α∆s

= H(t, T )Z(T ) +
∫ t

T

{[
H∆
s (t, s) +H(t, s)

ϕ∆
+(s)
ϕσ(s)

]
Zσ(s)

−H(t, s)U1(s, t∗)(
Zσ(s)
ϕσ(s)

)1+ 1
α

}
∆s.

From H ∈ Ω and (3.24), we find for t ∈ [T,∞)T,∫ t

T

H(t, s)ϕ(s)θ2(s)∆s

≤ H(t, T )Z(T ) +
∫ t

T

[h+(t, s)
ϕσ(s)

H
α
α+1 (t, s)Zσ(s)

−H(t, s)U1(s, t∗)
(Zσ(s)
ϕσ(s)

)1+ 1
α
]
∆s,

(3.28)

where h+ is defined as in Theorem 3.7. Taking λ = α+1
α = 1 + 1

α > 1,

X =
[
H(t, s)U1(s, t∗)

] α
α+1

Zσ(s)
ϕσ(s)

, Y = (
α

α+ 1
)α(h+(t, s))αU

−α2
α+1

1 (s, t∗),

then by Lemma 2.2, (3.28), and U1(s, t∗) := αϕ(s)Θn−2(s, t∗), we obtain∫ t

T

H(t, s)ϕ(s)θ2(s)∆s ≤ H(t, T )Z(T ) +
∫ t

T

hα+1
+ (t, s)

(α+ 1)α+1[ϕ(s)Θn−2(s, t∗)]α
∆s.

Thus, we obtain

lim sup
t→∞

1
H(t, T )

∫ t

T

{
H(t, s)ϕ(s)θ2(s)−

hα+1
+ (t, s)

(α+ 1)α+1[ϕ(s)Θn−2(s, t∗)]α
}

∆s

≤ Z(T ) <∞,

which is a contradiction to (3.25). This completes the proof. �

In view of Theorems 3.6 and 3.7, applying the equality bx−ax2 ≤ b2

4a for , x, a, b ∈
R, we have the following theorem.

Theorem 3.8. Let (3.5) be satisfied and α ≥ 1. Assume in addition that there exist
function ϕ ∈ C1

rd([t0,∞)T,R+), h ∈ Crd(D,R), H ∈ Ω and m-tuple {η1, η2, . . . , ηm}
satisfying Lemma 2.1 such that for all T1, T2 ∈ [t0,∞)T with T2 > T1,

H∆
s (t, s) +H(t, s)

ϕ∆
+(s)
ϕσ(s)

=
h(t, s)
ϕσ(s)

√
H(t, s), for (t, s) ∈ D, (3.29)
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and

lim sup
t→∞

1
H(t, T2)

∫ t

T2

{
H(t, s)ϕ(s)θ2(s)

−
h2

+(t, s)
4αϕ(s)Θn−2(s, T1)Θα−1

n−1(σ(s), T1)

}
∆s =∞.

(3.30)

Then (1.7) is oscillatory.

Remark 3.9. Let p(t) = 0, βi = αi and δi(t) = δ(t), i = 0, 1, . . . , k, Theorems
3.4-3.8 reduce to [7, Theorems 3.1-3.5].

4. Oscillation for odd order equations

We establish oscillation criteria for (1.7) when n is odd. In this section, we
assume that there exists a p such that 0 ≤ p(t) ≤ p < 1 and use the following
notation for simplicity:

θ∗1(t) = q0(t) +
m∑
i=1

qi(t), θ∗2(t) = q0(t) +
m∏
i=1

η−ηii qηii (t).

Theorem 4.1. Assume (3.1) with θ∗1 instead of θ1 holds. Then every solution of
(1.7) is either oscillatory or tends to zero eventually.

Proof. Let x be a nonoscillatory solution of (1.7). Without loss of generality, we
may assume that x is eventually positive. By Lemma 2.3, there exist t∗ ∈ [t0,∞)T
and an even l ∈ {0, 2, . . . , n− 1} such that (2.2) and (2.3) hold for t ∈ [t∗,∞)T.

(a) If l ≥ 2. Then we use the same argument as in the proof of Theorem 3.1.
(b) We show that if l = 0, then limt→∞ x(t) = 0. Since 0 < x(t) ≤ y(t) for

t ≥ t∗, it suffices to show that limt→∞ y(t) = 0. From Lemma 2.3 with l = 0, one
concludes that for t ∈ [t∗,∞)T

(−1)jy∆j

(t) > 0, for j = 0, 1, . . . , n− 1.

Since y∆(t) < 0 on [t∗,∞)T, then limt→∞ y(t) = l1 ≥ 0. Assume l1 > 0, then there
exists a tx ∈ [t∗,∞)T and choose 0 < ε < l1(1−p)

p such that

l1 < y(t) < l1 + ε, for t ≥ tx,

and for t ≥ tx ≥ t∗ we obtain

x(t) = y(t)− p(t)x(τ(t)) ≥ y(t)− p(t)y(τ(t))

≥ y(t)− py(τ(t)) > l1 − p(l1 + ε) > Ky(t),

where K := l1−p(l1+ε)
l1+ε > 0. Thus, we have

x(t) > Ky(t), for t ≥ tx.

For i = 0, 1, . . . ,m, for t ∈ [tx,∞)T, we have

x(δi(t)) > Ky(δi(t)) > Kl1. (4.1)

From (1.7) and (4.1), one concludes that for t ∈ [tx,∞)T,

[r(t)(y∆n−1
(t))α]∆ < −q0(t)(Kl1)α −

m∑
i=1

qi(t)(Kl1)βi ≤ −a4θ
∗
1(t),
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where

θ∗1(t) = q0(t) +
m∑
i=1

qi(t), a4 = min{(Kl1)α, (Kl1)β1 , . . . , (Kl1)βm} > 0.

Integrating the above inequality from t ≥ tx to u ≥ t, we obtain

r(t)(y∆n−1
(t))α ≥ r(u)(y∆n−1

(u))α + a4

∫ u

t

θ∗1(u)∆u > a4

∫ u

t

θ∗1(u)∆u. (4.2)

By taking limits as u→∞ in the above inequality, which contradicts the assump-
tion (3.1) with θ∗1 instead of θ1. This completes the proof. �

Furthermore, we assume that either∫ ∞
t0

( 1
r(s)

∫ ∞
s

θ∗1(u)∆u
)1/α

∆s =∞

or∫ ∞
t0

[ ∫ ∞
v

( 1
r(s)

∫ ∞
s

θ∗1(u)∆u
)1/α

∆s
]
∆v =∞.

(4.3)

Theorem 4.2. Let (4.3) be satisfied. Every solution of (1.7) is either oscillatory
or tends to zero eventually provided that one of the following conditions is satisfied:

(1) There exist a function ϕ ∈ C1
rd([t0,∞)T,R+) and m-tuple {η1, η2, . . . , ηm}

satisfying Lemma 2.1 such that for all T1, T2 ∈ [t0,∞)T with T2 > T1,

lim sup
t→∞

∫ t

T2

{
ϕ(s)θ∗2(s)− ϕ∆

+(s)Θ−αn−1(s, T1)
}

∆s =∞. (4.4)

(2) There exist a function ϕ ∈ C1
rd([t0,∞)T,R+) and m-tuple {η1, η2, . . . , ηm}

satisfying Lemma 2.1 such that for all T1, T2 ∈ [t0,∞)T with T2 > T1,

lim sup
t→∞

∫ t

T2

{
ϕ(s)θ∗2(s)−

(ϕ∆
+(s))α+1

(α+ 1)α+1[ϕ(s)Θn−2(s, T1)]α
}

∆s =∞. (4.5)

(3) There exist a function ϕ ∈ C1
rd([t0,∞)T,R+) and m-tuple {η1, η2, . . . , ηm}

satisfying Lemma 2.1 such that for all T1, T2 ∈ [t0,∞)T with T2 > T1,

lim sup
t→∞

∫ t

T2

{
ϕ(s)θ∗(s)−

(ϕ∆
+(s))2

4αϕ(s)Θn−2(s, T1)Θα−1
n−1(σ(s), T1)

}
∆s =∞, (4.6)

for some α ≥ 1.
(4) There exist functions ϕ ∈ C1

rd([t0,∞)T,R+), h ∈ Crd(D,R), H ∈ Ω and
m-tuple {η1, η2, . . . , ηm} satisfying Lemma 2.1 such that for all T1, T2 ∈ [t0,∞)T
with T2 > T1,

H∆
s (t, s) +H(t, s)

ϕ∆
+(s)
ϕσ(s)

=
h(t, s)
ϕσ(s)

H
α
α+1 (t, s), for (t, s) ∈ D, (4.7)

and

lim sup
t→∞

1
H(t, T2)

∫ t

T2

{
H(t, s)ϕ(s)θ∗2(s)−

hα+1
+ (t, s)

(α+ 1)α+1
[
ϕ(s)Θn−2(s, T1)

]α}∆s =∞.

(4.8)
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(5) There exist functions ϕ ∈ C1
rd([t0,∞)T,R+), h ∈ Crd(D,R), H ∈ Ω and

m-tuple {η1, η2, . . . , ηm} satisfying Lemma 2.1 such that for all T1, T2 ∈ [t0,∞)T
with T2 > T1,

H∆
s (t, s) +H(t, s)

ϕ∆
+(s)
ϕσ(s)

=
h(t, s)
ϕσ(s)

√
H(t, s), for (t, s) ∈ D, (4.9)

and

lim sup
t→∞

1
H(t, T2)

∫ t

T2

{
H(t, s)ϕ(s)θ∗2(s)

−
h2

+(t, s)
4αϕ(s)Θn−2(s, T1)Θα−1

n−1(σ(s), T1)

}
∆s =∞,

(4.10)

for some α ≥ 1.

Proof. We only prove the case (1) here. For other cases the proofs are similar. Let
x be a nonoscillatory solution of (1.7). Without loss of generality, we may assume
that x is eventually positive. By Lemma 2.3, there exist t∗ ∈ [t1,∞)T and an even
l ∈ {0, 2, . . . , n− 1} such that (2.2) and (2.3) hold for t ∈ [t∗,∞)T.

(1) Assume l ≥ 2. The arguments are similar to the proofs of Theorem 3.4.
(2) We show that if l = 0, then limt→∞ x(t) = 0. Since 0 < x(t) ≤ y(t) for t ≥ t∗,

it suffices to show that limt→∞ y(t) = 0. Proceeding as in the proof of Theorem
4.1, we see that (4.2) hold for all t ∈ [tx,∞)T. Taking limits as u→∞ in (4.2), we
have for t ∈ [tx,∞)T

r(t)(y∆n−1
(t))α ≥ a4

∫ ∞
t

θ∗1(u)∆u.

It is known from Theorem 4.1 that
∫∞
t
θ∗1(u)∆u < ∞. Therefore, one concludes

that for t ∈ [tx,∞)T

y∆n−1
(t) ≥ a1/α

4

( 1
r(t)

∫ ∞
s

θ∗1(u)∆u
)1/α

∆s. (4.11)

Assume ∫ ∞
t0

(
1
r(s)

∫ ∞
s

θ∗1(u)∆u)1/α∆s =∞.

By integrating both sides of (4.11) from tx to t ∈ [tx,∞)T we obtain

y∆n−2
(t)− y∆n−2

(tx) ≥ a1/α
4

∫ t

tx

( 1
r(s)

∫ ∞
s

θ∗1(u)∆u
)1/α

∆s.

Letting t→∞, as a result for t ∈ [tx,∞)T,

lim
t→∞

y∆n−2
(t) =∞,

which contradicts the fact that y∆n−2
(t) < 0 on [tx,∞)T.

Assume ∫ ∞
t0

[ ∫ ∞
v

( 1
r(s)

∫ ∞
s

θ∗1(u)∆u
)1/α

∆s
]
∆v =∞.

By integrating both sides of (4.11) from v to u ∈ [tx,∞)T and then taking limits
as u→∞ and using the fact y∆n−2

(u) < 0 eventually, we obtain

−y∆n−2
(t) > a

1/α
4

∫ ∞
v

( 1
r(s)

∫ ∞
s

θ∗1(u)∆u
)1/α

∆s. (4.12)
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Again, by integrating both sides of (4.12) from tx to t ∈ [tx,∞)T and noting
y∆n−3

(tx) > 0 eventually, we obtain

−y∆n−3
(t) + y∆n−3

(tx) ≥ a1/α
3

∫ t

tx

[ ∫ ∞
v

( 1
r(s)

∫ ∞
s

θ∗1(u)∆u
)1/α

∆s
]
∆v.

Letting t → ∞, for t ∈ [tx,∞)T, we find that limt→∞ y∆n−3
(t) = −∞, which

contradicts the fact that y∆n−3
(t) > 0 on [tx,∞)T. This shows that l = 0, then

limt→∞ y(t) = 0. This completes the proof. �

Remark 4.3. Letting q0(t) = 0, n = 3 and m = 2, Theorem 4.2 with condition
(1) reduces to [15, Theorem 3.1].

5. Examples

In this section, we provide two examples to illustrate our main results.

Example 5.1. Consider the equation[
r(t)|y∆n−1

(t)| 14−1y∆n−1
(t)
]∆ + q0(t)|x(δ0(t))| 14−1x(δ0(t))

+
3∑
i=1

qi(t)|x(δi(t)))|βi−1x(δi(t)) = 0
(5.1)

for t ∈ [t0,∞)T, where q > 1 is a constant, T = qZ = qZ⋃{0} = {qd, d ∈ N} ∪ {0},
t0 = q, n ≥ 6 is even, y(t) = x(t) + p(t)x(τ(t)), and m = 3, r(t) = t−1, p(t) = 2/3,
τ(t) ≤ t, α = 1/4, β1 = 17/8, β2 = 13/8, β3 = 1/8, q0(t) = q0(tσ(t))−1, q1(t) =
q1t
−3, q2(t) = q2t

−4, q3(t) = q3t
−5, qi > 0 (i = 0, 1, 2, 3).

We choose δi(t) = δi × (qt), δi ≥ 1 (i = 0, 1, 2, 3) and η1 = 1/64, η2 = 1/16,
η3 = 59/64. Noting ∫ ∞

t0

r−
1
α (s)∆s =

∫ ∞
q

s4∆s =∞

and taking k = 2, we find that (A1)–(A3) are satisfied. By direct computation, we
have

θ1(t) =
(1

3
)1/4

q0(tσ(t))−1 +
(1

3
)17/8

q1t
−3 +

(1
3
)13/8

q2t
−4 +

(1
3
)1/8

q3t
−5,

θ2(t) =
(1

3
)1/4

q0(tσ(t))−1 +
(1

3
)1/4(

1
64

)−1/64(
1
16

)−1/16

× (
59
64

)−59/64q
1/64
1 q

1/16
2 q

59/64
3 t−157/32.

Since
∫∞
s
u−α∆s <∞, if α > 1 for s ≥ q, we obtain∫ ∞

s

θ1(u)∆u =
∫ ∞
s

{(1
3
)1/4

q0(uσ(u))−1 +
(1

3
)17/8

q1u
−3 +

(1
3
)13/8

q2u
−4

+
(1

3
)1/8

q3u
−5
}

∆u <∞.

Hence, the assumption (3.1) is not satisfied, we can not obtain the oscillation of
(5.1) by Theorem 3.1.

However, it follows that for s ≥ q,∫ ∞
t0

( 1
r(s)

∫ ∞
s

θ1(u)∆u
)1/α

∆s
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=
∫ ∞
q

(
s

∫ ∞
s

{(1
3
)1/4

q0(uσ(u))−1 +
(1

3
)17/8

q1u
−3 +

(1
3
)13/8

q2u
−4

+
(1

3
)1/8

q3u
−5
}

∆u
)4

∆s

≥
∫ ∞
q

(s
∫ ∞
s

(1
3
)1/4

q0(uσ(u))−1∆u)4∆s

=
∫ ∞
q

(
(1

3
)1/4

q0s ·
1
s

)4∆s =∞.

Define recursively the Taylor monomials {gi}∞i=0 (see [5, Sect. 1.6]) as follows

g0(t, s) = 1, gi(t, s) =
∫ t

s

gi−1(u, s)∆u, for t, s ∈ T, i ∈ N, (5.2)

then

gi(t, s) =
i−1∏
v=0

t− qvs∑v
µ=0 q

µ
, for t, s ∈ T = qZ, i ∈ N. (5.3)

From (3.4), for t ≥ s ≥ t0 = q > 1 and i ∈ N, we obtain

Θ0(t, s) = r−1(t) = t ≥ 1 = g0(t, s),

Θ1(t, s) =
∫ t

s

Θ0(u, s)∆u ≥
∫ t

s

g0(u, s)∆u = g1(t, s),

. . .

Θi(t, s) =
∫ t

s

Θi−1(u, s)∆u ≥
∫ t

s

gi−1(u, s)∆u = gi(t, s).

(5.4)

In view of (5.3) and (5.4), we obtain

Θn−2(s, T1) ≥ gn−2(s, T1) =
n−3∏
v=0

t− qvs∑v
µ=0 q

µ
, for s ≥ T1 ≥ q. (5.5)

Take ϕ(s) = s and define ϕ∆
+ as in Theorem 3.5, then we conclude that for s ≥

T1 ≥ q,

lim
s→∞

{ (ϕ∆
+(s))α+1

(α+ 1)α+1[ϕ(s)gn−2(s, T1)]α
× 1

s
−(n−1)

4

}
=

(
∏n−3
v=0

∑v
µ=0 q

µ)α

(α+ 1)α+1
> 0. (5.6)

Since n ≥ 6, we ahve n−1
4 > 1, and α = 1/4, we have

∫∞
t0
s−

n−1
4 ∆s < ∞. From

(5.6) we obtain for T2 > T1 ≥ q∫ ∞
T2

(ϕ∆
+(s))α+1

(α+ 1)α+1[ϕ(s)gn−2(s, T1)]α
∆s <∞.

Therefore, from (5.5) we have that for T2 > T1 ≥ q,∫ ∞
T2

(ϕ∆
+(s))α+1

(α+ 1)α+1[ϕ(s)Θn−2(s, T1)]α
∆s

≤
∫ ∞
T2

(ϕ∆
+(s))α+1

(α+ 1)α+1[ϕ(s)gn−2(s, T1)]α
∆s <∞.

(5.7)
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On the other hand, for T2 > T1 ≥ q, we obtain∫ ∞
T2

ϕ(s)θ2(s)∆s =
∫ ∞
T2

s
[(1

3
)1/4

q0(sσ(s))−1 +
(1

3
)1/4(

1
64

)−1/64

× (
1
16

)−
1
16 (

59
64

)−
59
64 q

1/64
1 q

1/16
2 q

59/64
3 s−157/32

]
∆s

≥
∫ ∞
T2

s
(1

3
)1/4

q0(sσ(s))−1∆s =∞.

(5.8)

From (5.7) and (5.8), we conclude that for T2 > T1 ≥ q,

lim sup
t→∞

∫ t

T2

{
ϕ(s)θ2(s)−

(ϕ∆
+(s))α+1

(α+ 1)α+1[ϕ(s)Θn−2(s, T1)]α
}

∆s =∞.

Hence, (3.5) and (3.19) are satisfied. By Theorem 3.5, (5.1) is oscillatory.

Example 5.2. Consider the equation[
r(t)|y∆n−1

(t)| 12−1y∆n−1
(t)
]∆ + q0(t)|x(δ0(t))| 12−1x(δ0(t))

+
2∑
i=1

qi(t)|x(δi(t)))|βi−1x(δi(t)) = 0
(5.9)

for t ∈ [t0,∞)T, where T = hN := {hc : h > 0, c ∈ N}, t0 = h, n ≥ 3 is odd,
y(t) = x(t)+p(t)x(τ(t)), m = 2, r(t) = (t+σ(t))−1/2, p(t) ≡ p = 1/2 < 1, τ(t) ≤ t,
α = 1/2, β1 = 3/4, β2 = 1/4, q0(t) = q0t

−1/2, q1(t) = q1t
−1/2, q2(t) = q2t

−1/2,
qi > 0 (i = 0, 1, 2).

We choose δi(t) = δi × (t+ h), δi ≥ 1 (i = 0, 1, 2). Noting∫ ∞
t0

r−
1
α (s)∆s =

∫ ∞
h

(s+ σ(s))∆s =∞

and taking k = 1, we find that (A1)–(A3) are satisfied. By direct computation, we
obtain

θ∗1(t) = q0(t) +
2∑
i=1

qi(t) = q0t
−1/2 + q1t

−1/2 + q2t
−1/2 := Q1t

−1/2,

where Q1 = q0 + q1 + q2 > 0. It follows that∫ ∞
h

θ∗1(u)∆u =
∫ ∞
h

Q1u
−1/2∆u =∞.

Hence, (3.1) with θ∗1 instead of θ1 is satisfied. By Theorem 4.1, every solution of
(5.9) is either oscillatory or tends to zero eventually.
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