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MULTIPLICITY AND CONCENTRATION BEHAVIOR OF
SOLUTIONS FOR A QUASILINEAR PROBLEM INVOLVING
N-FUNCTIONS VIA PENALIZATION METHOD

CLAUDIANOR O. ALVES, AILTON R. DA SILVA

ABSTRACT. In this work we study the existence, multiplicity and concentration
of positive solutions for the quasilinear problem

~Agu+ V(ew)p(lul)u = f(u) inRY,

where ®(t) = fo‘tl ¢(s)sds is an N-function, Ag is the ®-Laplacian operator,
€ is a positive parameter, and N > 2.

1. INTRODUCTION

Many recent studies have focused on the nonlinear Schrédinger equation

ie%—\f = AT + (V(2) + E)¥ — f(¥) for 2 € RV, (1.1)

where N > 1, € > 0 is a parameter and V, f are continuous function verifying
some conditions. This class of equation is one of the main subjects of the quantum
physics, because it appears in problems which involve nonlinear optics, plasma
physics and condensed matter physics.

Knowledge of the solutions for the elliptic equation

—EAu+V(2)u= f(u) inRY,

ue HY(RYN), (1.2)

or equivalently
~Au+V(ez)u= f(u) inRY,
u e HY(RY),
has a great importance in the study of standing-wave solutions of . In recent
years, the existence and concentration of positive solutions for general semilinear
elliptic equations have been extensively studied, see for example, Floer and
Weinstein [18], Oh [29, B0], Rabinowitz [32], Wang [35], Ambrosetti and Malchiodi
[9], Ambrosetti, Badiale and Cingolani [8], Floer and Weinstein [19], del Pino and
Felmer [I4] and their references.
In the above mentioned papers, existence, multiplicity and concentration of pos-
itive solutions have been obtained in connection with the geometry of the function

(1.3)
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V. In some of them, it was proved that the maximum points of the solutions are
close to the set

V={zcR":V(z)= ngﬂiaa% V(2)},

when e is small enough. Moreover, in a lot of problems, the multiplicity of solutions
is related to topology richness of V.
By a mountain pass argument, Rabinowitz [32] proved the existence of positive
solutions of , for € > 0 small, whenever
liminf V(z) > inf V(z)=1Vs > 0. (1.4)
|z| =00 z€RN
Later Wang [35] showed that these solutions concentrate at global minimum points
of V as € tends to 0.

Del Pino and Felmer [I4] found solutions which concentrate around local mini-
mum of V' by introducing of a penalization method. More precisely, they assume
that

V(z) > inf V(z)=Vy >0 forallzeRY (1.5)
z€RN
and there is an open and bounded set 2 C R" such that

ZnelgV(z) < min V(). (1.6)

Existence, multiplicity and concentration of positive solutions have been also
considered for quasilinear problems of the type

—Apu+V(ex)|ulP2u = f(u) inRY,

and
—Apu — Agu+ V(ex)(JuP"2u 4 [u|?%u) = f(u) in RY.
Related to this subject, we cite the papers by Alves and Figueiredo [3|[4], Benouhiba
and Belyacine [10], Cammaroto and Vilasi [12], Chaves, Ercole and Miyagaki [13],
Figueiredo [I7], Li and Liang [25] and their references.
Recently, Alves and Silva [7] showed the existence, multiplicity and concentration
of positive solutions for the following class of quasilinear problems

~Agu+V(ex)d(lul)u = f(u) nRY,

ue WhH*(RY), (0

where N > 2, € is positive parameter, the operator Agu = div(¢(|Vu|)Vu), where
D(t) = folﬂ ¢(s)sds, called ®-Laplacian, is a natural extension of the p-Laplace

operator and V : RV — R is a continuous function which satisfies (1.4)).
This type of operator arises in applications, such as: Nonlinear Elasticity: ®(¢) =

(14> =1, o € (1, 55); Plasticity: ®(t) = tPIn(1 +1), 1 < e V;“‘N <p<
N — 1, N > 3; Non-Newtonian Fluid: ®(¢) = %|t|p for p > 1; Plasma Physics:
D(t) = %|t|p + %|t|q where 1 < p < ¢ < N with ¢ € (p,p*).

The reader can find more details about this subject in [I5 7, 2I] and their
references. Actually, we have observed that there are interesting papers, which
study the existence of solution for when ¢ = 1, we would like to cite the
papers [0, 11 19, 20, 2], 26, 27, B3] and references therein. The authors know
of only one publication [7], where the existence, multiplicity and concentration of

solutions has been considered for a ®-Laplacian equation.
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Motivated by [3 [7, 14], in the present paper we study the existence, multiplicity
and concentration of solutions for , by supposing that V satisfies the conditions
—. This way, we improve the main result proved in [7], because we are
considering a more general condition on potential V. Moreover, we complement
the study made in [3| [I4], in the sense that we obtain the same type of results for
a large class of operators. In the proof of our results, we will work with N-function
theory and Orlicz-Sobolev spaces. Since we are working with a general class of
function @, some estimates explored in [3 [14] cannot be repeated. For example, in
[3], it was used interaction Moser techniques, which does not work well in our case.
To we overcome this difficulty, we adapt some arguments found in [0 22} 23] [24] [34].
Here, we also modify the nonlinearity as in [I4], however our modification is more
technical, see Section 2 for details.

In this article we use the following assumptions: The function ¢ : [0, +00) —
[0, +00) is C! and satisfies:

(H1) (1) &(t), (¢(t)t) > 0,t > 0.

(2) There exist I,m € (1, N) such that

| < < Nl
m = —
- N -0
o(t)t
< <
1 < 0 <m, Vt#0,

where ®(t) = folt‘ o(s)sds.

(3) The function ¢(t)/t™?2 is non-increasing in (0, +00).

(4) The function ¢ is monotone.

(5) There exists a constant ¢ > 0 such that
/(0] < colt), VtE [0, +00).

We remark that the functions ¢ associated with each N-function mentioned in this
introduction fulfill the conditions in (H1).
Hereafter, we will say that ® belongs to the class C,, if

o(t) > |t|™, VteR.
Also we define
_m, if ®e€Cy,
TTL e dc.
We assume that the function f: R — R is C! and satisfies:
(H2) (1) There are functions r,b : [0,4+00) — [0, +00) such that

f't) ()]

limsup ———— =0, limsup ———F7—+ < +00.
tl—o  (r([EDIE])’ lt|—-+o00 (B([ENIE)’

(2) There exists 6 > m such that 0 < 8F(t) < f(¢)¢ for all ¢ > 0, where
P(t) = [ f(s)ds
(3) The function f(t)/t™~! is increasing for ¢t > 0.
We assume that the function r belongs to C! and satisfy:
(H3) (1) r is increasing.
(2) There exists a constant ¢ > 0 such that |r'(¢)t| < er(t) for all ¢t > 0.
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(3) There exist positive constants 7y and r9 such that

r(t)t?
r < 0

<ry, Vt>O0,

where R(t) = Olt‘ r(s)sds.
(4) The function R satisfies
R(t) R(t)

limsup —= < 400, limsup =0
t—0 ©<t) [t]—+o00 (I)*(t)

We assume that the function b belongs to C! and satisfy:

(H4) (1) b is increasing.
(2) There exists a constant ¢ > 0 such that |b'(¢)t| < ¢b(¢) for all ¢ > 0.
(3) There exist positive constants by, by € (1,7*) such that

b(t)t?

"= B

<by, Wt>0,

where v* = Nv/(N —v) and B(t) = O‘tl b(s)sds.
(4) The function B satisfies
B(t) B(t)

limsup —= < 400, limsup =0,
t—0 (1) jt|—+oo Pu(t)

where &, is the Sobolev conjugate function, which is defined by the
inverse function of

Go(t) = /075 qu(s)ds.

1
sttw

Using the above hypotheses, we are able to state our main result.

Theorem 1.1. Suppose that (H1)-(H4), (1.5) and (L.6) hold. Then, for any é > 0
small enough, there exists €5 > 0 such that (1.7) has at least catp, (M) positive
solutions, for any 0 < € < €5, where

M={xeQ:V(x)=VW}, M;= {wERN:dist(at,M) < 4}

Moreover, if u. denotes one of these solutions and x. € RN is a global mazimum
point of u., we have that

lim V(ex.) = V.
e—0

We would like point out that, if Y is a closed subset of a topological space
X, the Lusternik-Schnirelman category catx (Y) is the least number of closed and
contractible sets in X which cover Y.

The plan of this article is as follows: In Section 2, we will prove the existence
and multiplicity of solutions for an auxiliary problem, more precisely, by using of
the Lusternik-Schnirelman category theory, we show that the auxiliary problem has
at last catys, (M) positive solutions for e small enough. In Section 3, we make some
estimates to prove that the solutions found are solutions of the original problem for
€ small enough. Finally, we write an Appendix A, where we show the existence of
a special function used in Section 2.
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2. AN AUXILIARY PROBLEM

In this is section, motivated by some arguments explored in Alves and Figueiredo
[3], and mainly in del Pino and Felmer [14], we will show the existence and mul-
tiplicity of positive solutions for an auxiliary problem. To this end, we need to
fix some notations, however if the reader does not know the main properties in-
volving the Orlicz-Sobolev spaces, we suggest [7, Section 2] for a brief review and
[T 21 16} 28] [31] for a more complete study.

Since we intend to find positive solutions, we will assume that

f(t)=0 forallt<0. (2.1)

Let a,k > 0 satisfy
@-Dm o fa) W

O—m) 1 ™ s@a &k’

where 6 is the number given in (H2)(3). Using the above numbers, we define the
function

k>

= ) f(s) ifs<a
fs) = {‘20(1)(3)8 if s > a.

Fixing tg < a < t; with tg,t; ~ a, it is possible to find a function n € C*([to,t1])
which satisfies:

~

(H5) (1) < ) < J(s) for all s € [to, 1],
(2) n(to) = J(to) and n(ts) = F(t2),

(3) '(to) = (f)'(to) and 7' (t1) = (f)'(t1),

(4) The function s — (;7((;))8 is nondecreasing for all s € [to, #1].

In Appendix A, we shown the existence of 7. Using the functions n and f, we

consider two new functions

fg 2 [ F6) it s E lto,tl,
1(s) {n(s) if s € [to, t1],
gz, s) = xal(@)f(s) + (1 — xa(z)) f(s),

where xgq is the characteristic function related to the set €. From definition of g,
we see that g is a Carathéodory function with

g(z,s) =0, VY(x,s) € RN x (—00,0], (2.2)
g(z,s) < f(s), VY(z,s) € RN xR. (2.3)
Moreover, for each x € RY | the function s — g(z, s) is of class C' and it satisfies
the following conditions:
(H6) (1) limsupj,_ % = 0, uniformly in z € RV.
2) limsupy, HJFOO b(‘( |)|)| < 400, uniformly in 2z € RV,
3) 0<60G(x,s) =0 [, g(z,t)dt < g(x,s)s for all (z,s) € Q x (0,+00).

(2)
3)
(4) 0 <1G(z,s) < g(z,s)s < ¥ ¢ (s)s?, for all (z,s) € Q° x (0,+00).
()

5) The function s — %J((xs )1) is nondecreasing for each z € RN and for all

s> 0.
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Using the function g, we can consider the auxiliary problem
—Agu+ Viex)p(|u))u = g(ex,u) in RY,
ue WhH(RY).
Here, we would like to point out that if Q. denotes the set /e, that is,
Q. ={zeRY :ex e Q}

and u is a positive solution of (2.4) with u(z) < to for all z € RN\, then u is
also a positive solution of (L.7]).

(2.4)

2.1. Preliminary results. In what follows, we denote by J. : X, — R the energy
functional related to (2.4]) given by

Jo(u) = / (| Vu|)dz +/ V(ex)®(|ul)d —/ Glex, u)dz,
RN RN RN
where X, denotes the subspace of W1 ®(RY) given by

X, = {u e WH(RN) V(ex)®(Ju|)dz < —|—oo},

RN
endowed with the norm

ulle = [IVulle + [lulle,v.
where

IVullq = inf {A > o;/ @(@)daz <1},

RN

fulloy. = int (2> 0: [ Vera(1)ar <1).
RN A

From (1.5), the embeddings X, — L®(RY) and X, — LZ(RY) are continuous.
Using the above embeddings, a direct computation yields J. € C'(X,,R) with
Jl(u)v = / o(|Vu|)VuVu dx —|—/ V(ex)o(|ul)uv dz —/ g(ex,u)v dx,
RN RN RN

for all u,v € X.. Thereby, u € X, is a weak solution of (2.4) if, and only if, u is a
critical point of J.. Furthermore, by (2.2)), the critical points of J. are nonnegative.

Lemma 2.1. Let (u,) be a sequence (PS).. Then, (u,) is a bounded sequence in
X..

Proof. Since (uy) is a (PS). sequence for Je, there is C; > 0 such that
Jen) = Il < G (1 ), m €N
On the other hand, by (H1)(2), (H6)(3) and (H6)(4),
T () — %Jé(un)un > c(/ <I>(|Vun|)dx+/ V(er)®(u, )dz ),
RN RN

where C = [(1 - %) — (1 - é)%] > 0. Hence, by [19, Lemma 2.1],

Je(un) — %Jé(un)un > C1(&(IVunlle) + So(llunlle,v.)), VYneN.

Now, the proof follows as in [5, Lemma 4.2]. O
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Lemma 2.2. Let (uy,) be a (PS)g sequence for J.. Then for each T > 0, there
exists po = po(T) > 0 such that

n—-—+o0o

1imsup/ [@(Vunl) + V(ex)®(jun])]de < 7.
RN\ B, (0)

Proof. For each p > 0, let £, € C>°(RY) satisfy
¢, () = 0, z¢ Bg (0)
’ 1,z ¢ B,(0)

with 0 < &,(z) <1 and |[VE,| < %, where C' is a constant independent of p. Note
that

T pun) = [ 9190V V o+ [V (e)olfun uieydo

— /N g(ex, up)upé,de.
Choosing p > 0 such thalf Qe C B4 (0), the condition (H1)(2) ensures that
z/RN & [2(1Tual) + V()] dr
< T ) () — /R g Vit Vit Vi + / g€t un .

RN\Q,
Gathering (H6)(4) and (H1)(2),

z/RN & | 2(1Tua) + V(ex)(fus]) | d

m

< Tl (un)(pun) — /]RN und(|Vun|)Vu, VE, dr + A /RN V(ex)®(|un|)E, da.

Since (§,uy,) is bounded in X and k > 5, by Hélder inequality there is a constant
C4 > 0 such that

/RN E[@(IVun|) + V(ex)@(Jun|)|dz < 0,(1) + %

Now, fixed 7 > 0, there exists pg > 0 such that % < 7. Then,

/ [@(Vunl) + V(ex)®(jun])]de < 0a(1) + .
RN\ B, (0)
Passing to the limit in the last inequality, it follows that

limsup/ [©(|Vuy|) + V(ex)®(|uy|)]dz < 7.
RN\B,, (0)

n—-+o0o

O

The lemma below establishes an important property of the (PS) sequences of
Je. Since the proof follows as in [0} Lemma 4.3], we will omit it.

Lemma 2.3. Let (uy,) be a (PS)q sequence for J. with u, — u in X.. Then,
Vg (z) — Vu(z) a. e inRY. (2.5)

As a consequence of the above limit, we deduce that u is a critical point for J..
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Proposition 2.4. The functional J. satisfies the (PS) condition.

Proof. Let (uy) be a (PS). sequence for J.. From Lemma [2.1] there exists u € X,
such that

u, —u in X, (2.6)
Moreover, by Lemma [2.2] given 7 > 0 there is po > 0 satisfying

hmsup/ [@(|Vun|) + V(ex)®(|uy,|)]do < 7.
RN\B,, (0)

n—-+o0o

Increasing pg > 0 if necessary, the above limit together with As-condition gives

limsup/ O (|Vuy, — Vu|)dz < lim sup/ O(|Vuy, — Vu|)de +27  (2.7)
RN B (0)

n—-+o0o n—-+oo

and
limsup/ V(ex)®(|uy — u|)dz < limsup/ V(ex)®(|u, — u|)dz + 27.
n—-+oo JRN n—-+oo By, (0)

By (2.6), up to a subsequence, u,, — u in L®(B,,(0)). This information combined
with the last limit guarantees that

lim sup V(ex)®(uy, — ul)dx < 27.

n—-+oo JRN

As 7 is arbitrary, we conclude that

lim sup /RN V(ex)®(Juy, — u|)dz = 0. (2.8)

n—-+oo

Now, we will show that

limsup/ O(|Vuy, — Vul|)dz = 0.
By (0)

n—-o00
By Lemma |2.3
O(|Vup(z) — Vu(z)]) = 0 a. e. in B, (0).
Moreover, from As-condition and (H1)(2), there exist constants ¢y, ¢ > 0 such that
|V, — Vul) < e16(|Vun )| Vun|* + c20(| Vul)[Vul*.
Using again Lemma [2.3]
10(|Vun]) | Vun|? + cao(|Vu])|[Vu? — (e1 + c2)¢(|Vul)|[Vul>  a. e. in B, (0).
On the other hand, as in [5] Lemma 4.3],

/ (O(|Vttn) Vit — SV u)) Va0) (Ve — Vi) = 0, (1),
By, (0)

and so,

/ ¢(|Vun|)|Vun|2dx—>/ (V) |V 2dz.
B,y (0) By (0)

PO
Therefore,

[ a0V Ve eo(va)VuP]de - e [ o(VaVaPd.
By (0) B, (0)



EJDE-2016/158 MULTIPLICITY AND CONCENTRATION BEHAVIOR OF SOLUTIONS 9

Applying the Lebesgue’s Theorem, we see that
lim @(|Vuy, — Vu|)dz = 0.
n—-+4oo BPU (0)
Combining the last limit with (2.7]), we obtain
lim @(|Vu, — Vu|)dz = 0. (2.9)
n—-+4oo RN

From (2.8) and (2.9), we have the limit w,, — wu in X, which shows the (PS)
condition. ([

Next, we show some results involving J. and its Nehari manifold. We recall that
the Nehari manifold associated to J. is given by

Ne = {u e X\{0} : J(v)u = 0}.

Our first lemma ensures that the Nehari manifold has a positive distance from the
origin in X.. Once it follows by standard arguments, we omit its proof.

Lemma 2.5. For all u € N, there exists o > 0, which is independent of €, such
that ||u|l. > o.

The next lemma establishes an important characterization of the mountain pass
level, which is useful in a lot of problems. In what follows, we denote by c. 1 and
ce,2 the following numbers

Cel = ulen/\ff Je(u) and c¢.o= ue)i(?{{o} I?Zag( Je(tu).

Fixing the subset
Ac={ueX.:u"#0 and [supp(u)NQ|>0}

and the number

Ceo = inf maxJ. (tu
% uEA, 120 e(tu),

it is easy to see that cc o = Cc 2.
Lemma 2.6. Assume that (H1)—(H4), and hold. Then, for eachu € A,
there exists a unique t, > 0 such that t,u € N and Je(t,u) = max;>g Je(tu).
Moreover,

Ce = C¢,1 = Ce,2,
where c. denotes the mountain pass level associated with J..

Proof. For each u € A, we define h(t) = J(tu); that is,
he(t) = / O(|V(tu)|)dz —|—/ V(ex)®(|tu|)dx —/ G(ex,tu) dx.
RN RN RN
Existence. By a direct computation, h(t) > 0 for ¢ enough small and h(t) < 0
for ¢ sufficiently large. Thus, there is ¢, > 0 such that

he(ty) = max he(t) = max Je(tu).

From this, h’(t,) = 0, and so, t,u € N-.
Uniqueness. Suppose that there exist t;,to > 0 such that tju,tou € N, and
t1 < tg. Then

/ ¢(|V(t1u)\)|V(t1u)|2dx—|—/ V(ex)¢(|t1u|)|t1u\2dx:/ glex, t1u)tiudz,
RN RN [u>0]
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/R OV (tz) )|V () + / V(ex)(|tou)taul?dz = / g, tou)tpuda.

RN [u>0]
Setting v(t) = ¢(¢)/t™2 for all t > 0, we have

/R (0] ull) ~ (it Tl ) [Vl "de + / V(ex) (ulta ) — o]l )) [uf™dc

RN
:/ [g(ex,tlu) _ g(€z7t2u):|umd$.
w>o) Ltw)m=t (tau)m

Thus, from and (H1)(3),
/RN (v(ta|Vull) = v(|t2|Vul ) [Vul™ da

oo | G080 = 58) = (et = it e

s/ P
Q.nfuso) Htiw)™ (t2u)™
Now, consider the function

Vo f()

and note that h(t) = v(t)h1(t), where

Vo o f(t
hy(t) = -2 — M
ko o)t
As v, hq are non increasing and nonnegative, h is nonincreasing. Hence, h(t;u) >
h(tau), and so,

0< /RN (U(|t1|Vu|\) — U(|t2|VUH))|VU|md$

Jr/ (h(t1w) — h(tou))u™dx
(RN\Q)N[u>0]

</Q [ ]{(f(tlu) _ f(taw) :|umdx<0,
cN[u>0

— tlu)m—l (tgu)m_l

which is an absurd. Therefore, t; = t3. Now the proof follows as in [36, Theorem
4.2]. O

2.2. (PS) condition for J. on N,. In this subsection, our main goal is to study
the (PS) condition for J. on N, which will be used later on. In what follows,
without loss of generality, we will assume that

V(0) = 2&% V(z) =W.
Using the above number, we fix the quasilinear problem
—Apu+ Voo(lul)u = f(u) inRY,
u € WHP(RY).
We recall that the weak solutions of are critical points of the functional

Eo(u):/RN <I>(|Vu|)da:+Vo/ <I>(|u|)dm—/R Flu) da,

RN N

(2.10)
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which is well defined in Y = W®(R¥) endowed with the norm
[ully = Vulle + Vollulle

For the rest of this article, we denote by dy the mountain pass level of Ey, and by
M the Nehari manifold

Mo = {u e Y\{0}: Ey(u)u = 0}.
The next lemma will be used to prove that J. satisfies the (PS) condition on N.

Lemma 2.7. Consider U = {u € N; : J.(u) < do+1}. Then, there are 01,02 >0
independents of €, for e small enough, such that

(a) Jon ®(u)dx < oy for allue U,
(b) Jo (f"(w) 2—(m—1)f(u)u)dz > o9 for allu € U.

Proof. (a) For any u € U,

1
Je(u) — gJé(u)u = J(u) <dy+1.
On the other hand, as in the proof of Lemma there is C' > 0 such that
1
Je(u) — =T (w)u > C’VO/ O (u)dz.
0 RN

From this,

CVO/ O(u)de <dy+1 Yuel,
RN

and (a) is proved.
(b) The claim follows by proving that if €, — 0 and u,, € N, then

i [ (70 = = 1) (o > 0. @

By a Lions’ type arguments, it is possible to show that there are z, € RY and
r, 3 > 0 satisfying
/ O (up)de >0 VYneN.
Qentr(zn)

Setting 4, (x) = un,(x + 2,), the above inequality together with (f3) permits to
conclude that

lim inf (f' ()2 — (m — 1) f(@p)iin)dz > 0.
n—-+4oo Qen_zn
Once
[ (i = = Dfun)de = [ (@)~ (m - (@) an)ds,
Qe Qe,, —2n

we obtain (2.11)). This completes the proof of (b). O

Proposition 2.8. The functional J. restricted to N, satisfies the (PS). condition
force (0,dy + 1).
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Proof. Let (uy,) be a (PS). sequence on Ng; that is, Je(u,) — ¢ and || J.(un)|« =
0n(1). Then, there exists (\,) C R such that

J(un) = AnLe(un) + on(1),
where L¢(v) = Jl(v)v for all v € X,. Thus,
AL (Un )ty = 0n(1). (2.12)
We claim that A\, = 0,(1). In fact, note that

Le(un)un = /RN [¢' (V) [Vun| + 26(| V)] [V, *dz
+ [ V@) 6 Gl lual + 20(fual)fua s
]RN
- /]RN [g’(ex,un)ui +g(€xaun)un]dl’~
By (H1)(3),
Le(un)un < m[/RN S|V )| V[ der + /RN V(ex)¢(|un|)|un|2dm}
- AN I:g/(exaun)ui +g(€x,un)un]dx,

which implies

L (up)un, glex, up)uy, —g’(ex,un)umd;ﬂ

%\

N

/ ) )un — ()] d
Qeu[un<t0]

[(m = 1)n(un)un — 0 (un)ul ] do

/RN\Q Al >t1] [(m 1) L B(un)us, k (d(un)(un)) n]d .

Since 7/ (t), (¢(t)t)’ > 0 for ¢ > 0, it follows that,

L (un)un < / [(m = 1) f ()t — £ (11 )2 ] dt
QcU[un <to]

°)
(RN\Q)N[to <un<t1]

+

+ / (m — 1)n(uy)updz (2.13)
(RN\Q)N[to<un<t1]

.
+ / (m — 1) =2 ¢(up)u dz.
(BRN\Q )Ny >t] k

‘20¢(t)t Vit € [to, 1],

Now, the inequality
n(t) <

leads to

Lle(un)un < /

QeU[u, <to

Vi
+f (m 12w,
(BN\Q)N[toSun <t1] k

[ = Dy 1) de
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v
+ (m - 12 (w2 d,
(RN\Q)N[un >t1] k

and so,

ng (un)un < /

Qe
Then, by Lemma [2.7]

[ = 1) ) = Py da+ 3 [ otuiaa.

meal

— L (up)uy > 09 —
Therefore, by increasing of k if necessary, we deduce that

—L (up)u, >C Vne€N.
for some C > 0. The last inequality combine with (2.12)) to give A, = 0,(1). Hence

J!(un) = 0n,(1), which permits us to conclude that (u,) is a (PS). sequence for J,
in X.. Now, the result follows from Proposition [2.4] O

As a byproduct of the arguments used in the proof of the last proposition, we
have the following result.

Corollary 2.9. The critical points of functional J. on N, are critical points of J.
n X.

2.3. Multiplicity of solutions to (2.4). After the previous subsection, we are able
to show the existence of multiple positive solutions for , by using of Lusternik-
Schnirelman theory. Furthermore, we also study the behavior of the maximum
points these solutions in relation to M. For each § > 0 small enough, we consider

9 € C5°([0, +00), 0, 1]) with

1, if0<s<?
TOEE T
0, if s>9.

Using the function above, for each y € M we set

Wey (@) = O] —ylw(=),

where w € WH®(RY) denotes a positive ground state solution of problem (Pp),
which exists according to [7, Theorem 3.4]. By Lemma there exists ¢t > 0 such
that t. ¥, , € N, and

Je(teWey) = r£1>agi Je(tWey).

From this, we can define ¥, : M — AN, by \T/e(y) =t Uy

Lemma 2.10. The function \Tle satisfies
lir% JE(\T/E(y)) =dy, uniformly iny € M.

Proof. 1t is sufficient to show that for each (y,,) C M and (e,) C R* with €, — 0,
there is a subsequence such that

Je(‘ien (yn)) — dp.

Recall firstly that JE'(\T/6 (yn))¥e, (yn) = 0; that is,

L 09w+ [ V(a1 (o)



14 C. O. ALVES, A. R. DA SILVA EJDE-2016/158

- / gentt, T, (yn) T, (ya) i,
]RN

(s) = ¢(s)s? for all s > 0. Using (H1)(2) and [19, Lemma 2.1],

<)

where

g(‘v({jen (yn)|)dx + / V(enx)a“\i’en(yn”)dx
RY RY (2.14)

méste)| [ B0V + [ Vi@ e, . )da].

RN

IA

where £;(t) = max{t!,#™}. On the other hand, the change of variable z = o
leads to

/ gent B, (42) e, (yo)
RN

= /]RN g(€nz + Yn, te, ¥|enz])w(2))t,, ¥(enz|)w(z)da.

Note that, if z € Bs (0), then €,z 4+ yn € Bs(yn) C Ms C Q. Since f = g in ,
¥ =1 on Bs/(0) and Bs/2(0) C B_s_(0), it follows that

/]RN g(enx, \Tlen (yn))\ien (yn)dx

2/ fte, O(|enz|)w(z))te, V(|€nz])w(z)dx (2.15)
]RN

> / fte, w(2))te, w(z)dz.
Bs/2(0)

Combining with , we find
/ f(te,w(2))
By 2(0) (te,w(z))™ 1

<méste) [ @Vl + [ Vi@, )da].

te, w(z)|™dx

By Proposition we know that w is a continuous function. Then, there is
20 € RY such that

w(z) = zeg;/g(o)w@),

and so, from (H2)(3),
f(t€nw(20)) / ‘t w(z)\mda:
Bsj2(0)

ORTENIE
<méilte) | [ WV )Dde+ [ Vi@, D).

By (H2)(2), there are ¢y, ¢z > 0 such that

[ex(fe, w(20))'~™ — ealte, w(zo) """ / o (z) | dz
Bs2(0)

<mérlte) | [ Ve )Dde+ [ Vi@, D]

R
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Now, we show that (¢, is bounded. To do this, we will suppose that for some
subsequence t., — +o0 and t., > 1 for all n € N. Thereby, & (t,) = t* and

[ex(te, w(20))' ™ — ea(te, w(z0))™] / o (2)|™ da

Bs2(0)
<ol [ VD + [ Viena)B(¥, . o]

The change of variable z =
that

EnT—Yn
€

n

together with the Lebesgue’s Theorem ensures

/ B(|V(Te, )z — | &(Ve])da,
RN RN

/ V(e + ya)0(| 0., [)dz — / Vod(Ju])de.
RN RN
Since 6 > m, we have

[e1(te, w(20))" ™™ = ea(te, w(20))™™] — +o0,

which contradicts the bove inequality. Therefore (¢, ) is bounded, and for some
subsequence, there exists top > 0 such that ¢, — %o.
Now, as U, (yn) € N,, we know that |V, (yn)|le, > o for all n € N. Using
again the Lebesgue’s Theorem, it is possible to prove that
E|(tow)(tow) =0 and |[tow|y > o.

Thus, ty > 0 and tow € M. Furthermore, as w is a ground state solution, we must
have tg = 1. Then, the limit #,, — 1 together with the Lebesgue’s Theorem implies
that

lim J.(U, (yn)) = Eo(w) = do,

n—-+00

and the proof is complete. ([l

In the sequel, for any § > 0, we let p = p(d) > 0 be such that Ms C B,(0). Let
the function y : RN — R be given by

z, ifx € B,(0),
X(x) = PT -f B(;
m, 1L xre p(O)

and 3 : N, — RY the barycenter map given by

Jaw x(ex)®(|ul)dz
Jew ®(ul)dz

Lemma 2.11. The function 0, satisfies

Blu) =

lirr(l) B(W(y) =y, uniformly in M.

Proof. The lemma follows by using of the definition of \Tle(y) together with the
Lebesgue’s Theorem. O

Hereafter, we consider the function h : Rt — R* given by

h(e) = sup | Te(Te(y)) — dol,
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which satisfies lim._,o h(e) = 0. Moreover, we set
N.:={ue N, : J.(u) < do+ h(e)}.

From Lemma [2.10] it follows that A, # § because W,(y) € N.. Using the above
notation, we have the following result.
Lemma 2.12. Let 6 > 0 and My = {x € RN : dist(x, M) < (5}. Then, the limit
below holds
lim s inf -yl =0.
2, B 100

The proof of the above lemma follows the proof in [3 Lemma 3.7]. The next
theorem is a result of multiplicity for the auxiliary problem.

Theorem 2.13. For any § > 0 there exists ¢5 > 0 such that (2.4) has at least
catyr (M) positive solutions, for any 0 < € < €5.

Proof. We fix a small € > 0. Then, by Lemmas and , Bo \TJ6 is homotopic
to inclusion map id : M — Ms, and so,

cat g (Ne) > catar, (M).

Since that functional J. satisfies the (PS). condition for ¢ € (dy, do + h(e)), by the
Lusternik-Schnirelman theory of critical points ([36]), we can conclude that J. has
at least catpy, (M) critical points on N;. Consequently by Corollary Je has at
least catps, (M) critical points in X.. O

Using the same approach explored in [7, Section 3], it is possible to show the
following result.

Proposition 2.14. If uc € WH®(RY) is a nontrivial solution of (2.4), then u. is
positive, uc € L®(RN) N CLY(RN) and lim | 400 ue(x) = 0.

3. MULTIPLICITY OF SOLUTIONS FOR THE ORIGINAL PROBLEM

After the study made in Section 2, the main goal this section is to prove that the
solutions obtained are solutions for the original problem when e is small enough.
To do this, we will show three technical results.

Proposition 3.1. Let €, — 0 and (u,) C N, be such that Je, (u,) — do. Then,
there exists a sequence (§n) C RY, such that v,(z) = u,(x + yn) has a convergent
subsequence in W1 ®(RYN). Moreover, up to a subsequence, y, — y € M, where

Yn = en?jn-

The proof of the above propositions follows from the proof of [, Proposition
5.3].

Lemma 3.2. Let (z;) C Qe, and (¢;) be sequences with €; — 0 as j — +oo. If
vj(x) = ue, (x + ;) where uc; is a solution of (Pc,) given by Theorem then
(v;) converges uniformly on compact subsets of RY.

Proof. First of all, note that v; is a solution to the problem
—Agvj + Vj(@)o([vj|)v; = g(ejx +Tj,05)  in RY,
v; € WhHe(RN), (3.1)
v; >0 inRY,
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where Vj(z) = V(ejx +T;) and T; = €;x;.
Next, let zg € RY, Ry > 1,0 <t < s <1< Ry and & € C$°(RY) verify
2
0<&<1, supp& C Bs(zo), {=1on By(wo), [VE< P

For ¢ > 1, set n; = {™(v; — ¢)+ and

Qj :/A O(|Vv;|)§™ dz,

J:Css

where A; ¢, = {x € B,(z0) : vj(x) > (}. Using n; as a test function and combining
(1.5) with (H1)(2), we obtain

1Q; <m /A (IV0;)|[Voj | [VEIE™ (v — ) ydax
3,Cy8

,VO/
A

Now, by repeating of the same arguments found in [7, Lemma 3.5], we obtain

Gza( [ [ @ DlA).
3:Css

s—t

o(Jvj[)vi€™ (vj — ) +dz +/ glejz +T5,v;)™ (vj — () du.

3:Cs8 Ajcs

Using the condition (C,;,) and the definition of £, we obtain
/ |Vo;|Mdx < CQ(/ |vj —¢ |7*dx +(¢ + 1)|Aj,<,s|)7
Ajct Ajes ST

where the constant ¢y does not depend of ¢ and ( > {3 > 1, for some constant (.
Now, fix Ry > 0 and define

- R1 Rl - On + On+1
On = 5 T ont1> On = 9
Co 1 o
Gn = 5(1 N 2n+1)’ @n,j = A ((vj = ¢n)y) " do

Arguing as in proof of [7, Lemma 3.6], we see that for each j € N,
Qn; < CA"Q Y WneN,
where C,n > 0 are independent of n and A > 1. Now, we claim that
Qo < CTAYT | for j~ 4.
Indeed, by Proposition we have v; — v in WH®(RY). Therefore,
lim sup (lim sup Qo’j) = lim sup (lim sup/A (vj — %)1 dw) =0.

Co—+o0 N j—+o0 (o—+o0 N j—+oo 3,¢0.0

Then, there exist jo € N and {5 > 0 such that
Qo,; < CnA™YT for j > jo and (o > (.
By [24, Lemma 4.7], lim,,_, 4 oo Qn,; = 0 for j > jo. On the other hand,
lim_ @y = lim N N

¥
n—-+o00 n—-+oo 2)+) dr.
Aj Kn,on A ¢ R
5

33,5
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Then

and so,

Since zog € RY is arbitrary, we deduce that v;(z) < (/2 a.e in RY for all j > jo;
that is,

Co .
lojlloe < 55 Vi = Jo-
Setting C' = max{%,HmHOO,...,ij0_1||oo}, we derive that ||v]lec < C for all
JjeN.

Combining the above estimate with regularity theory, we deduce that (v;) C
CL*(RN). Moreover, there is v € CL*(RY) such that

loc
v; —v in CY%(B,,(0)) VYpy > 0.
O

Lemma 3.3. Let (e,) be a sequence with €, — 0 and let (z,,) C Q. be a sequence
such that ue, () > 170 > 0, for alln € N and some 79 > 0, where u.,, is the solution

of (2.4)) given by Theorem . Then lim,,—, 4o V(T,) = Vo, where T,, = €,2y,.

Proof. As Q is bounded and Z, € Q, there exists zp € Q such that, up to a
subsequence, T,, — xg. Then, the continuity of V' leads to

lim V(&) = V(z0) > Vo. (3.2)

In the sequel, we will argue by contradiction, by supposing that
V(zo) > Vo. (3.3)
From Theorem (ue,) € N.,. Thus,
Cep < Je, (Ue,) < do+ h(en)
which implies lim sup,, ¢, < dp. On the other hand, once
Eo(tu) < J., (tu), ¥t >0 and Yu € WHT(RY),
we derive the inequality

do < Ey(t < Je (t M N
0_1?2513{ o( uen)_r{lzagi en (te,) n €N,

which leads to dg < liminf,, ¢.,. Therefore,

JE (UCH) - dO and Jén (U‘Gn)uen = O

n

From this, (u.,) is a bounded sequence in WH®(RY), and so, v,(2) = u, (z + x,)
is also a bounded sequence in W1®(R¥). Hence, there exists v € WH®(RY) such
that

v, = v in WHERY), (3.4)
Now, the above limit, the Lemma [3.2 and the inequality u, (z,) > 70 > 0 combine
to give v # 0.
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For all n € N, let ¢, > 0 such that ¢,v, € M. Repeating the same arguments
used in the proof of Lemma we obtain ¢, — tg. Setting v, = t,v,, we see
that

Fo(@,) = / BV (trvn) | da + VO/ B([tvn|)dz —/ Fltyon)dz
RN RN RN
g/ BV (tnon) )z + | Viens +Fn)®(|tnon|)da
RN RN
f/ G(enz + T, tyvy)dx
RN
= / O(|V (tpue, |)dz +/ V(€,2)®(|tnue, |)dx
RN RN
- G(enz, tpe, )dx
]RN
= J., (tnue,)
< = .
= I?Zag; Je, (tue,) = Je, (ue,)
Thereby,
dO S EO(%in) S dO + On(1)7
or equivalently, Fo(v,,) — dy,. Applying [7, Proposition 5.3], we obtain
Uy, — 0 in WHERYN), (3.5)
with ¥ = tgv £ 0. Moreover, Ey(v) = dy and

do </RN q>(|va|)dx+/ V(:L’o)<1>(|5|)do:—/ F(@)dz.

RN RN
By (3.5) and Fatou’s Lemma,

n—-+oo

do < timint [ [ (BV51)+Vlens +7)8(0]) — F(5,)ds]

< lim inf [/ (@Y (tnvn))) + Vienz + Fn)®(|tnva])
n—-+oo RN
~ Glenz + 7, tyvn)) da]

= liminf J., (tpue, )
n—-4oo

< liminf Je, (uc,) = do

n—-+oo

which is an absurd. Hence, from (3.2)), lim,—, o0 V(Zn) = V. O

Our next lemma will permit us to conclude that the solutions of the auxiliary
problem are solutions for the original problem for e small enough.

Lemma 3.4. If k. = sup { maxgg, Ue : Ue € N.is a solution of (]36)}, then
lirr(l) ke = 0. (3.6)
Proof. Arguing by contradiction, we will assume that

lim iglf Ke > Tg > 0,
€E—
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for some 75 > 0. From this, there is (¢,) C (0,400) and z,, € 9., such that

U, (Tn) = max ue, (x) >10 VneN.

Applying the Lemma lim,, 4o V(Z,) = Vo, where T,, = €,2,. Since (T,) C
01, there exist xyp € 02 such that, up to a subsequence, T,, — zg. Then, by
continuity of V', we have V(xg) = Vj, which contradicts (1.6). Thereby, lim,_,¢ ke =
0. U

Proof of Theorem[1.d]. (i) Multiplicity of positive solutions. From Theorem [2.13]
for any ¢ > 0 there exists €5 > 0 such that has at least catys, (M) positive
solutions, for any 0 < € < €s5. Let ue be a these solutions. By Lemma there
exists € > 0 such that

ke <tog, Vee€ (0,€).
Thus, (uc —to); € Wg'*(RV\Q,) and

() 0, if x € Q)
we(x) =
(ue —to)4, ifz € RN\Q.

belongs to W1 ®(RM). Using w, as text function, we have

/ o(|Vue)VuV(ue — to) pdx + / V(ex)p(|ue|)ue(ue — to) +dx
RN\Q,

RN \Qe
:/ g€, ue) (e — to) 4 dz,
RN\Q,

which implies

1 2
(t-2) [/RN\QE AV (ue = to) 4 NIV (ue — to)+ ["dz

+ VO/ ¢(|ue‘)ue(ue - t0)+d$] < 0.
RNA\Q.
By Proposition we know that u. > 0, then the above inequality gives
[ dluductu -~ to)sie =0,
RN\ Q.

from where it follows that u. < to in RV\§,. Hence, u,. is a solution of (I.7) and
we can conclude that (1.7) has at least catys, (M) positive solutions for € € (0, €5).

(ii) Behavior of maximum points. Finally, if u., is a solution of problem (1.7) with
€, instead of e. Then, v, (z) = ue, (z + ¥p) is a solution of the problem

—Agv, + Vi (@)od(Jon])vn = f(vn) in RY,
v, € WHE(RY), (3.7)
v, >0 inRY,

where V,,(z) = V(epx + €,9,) and (¥,,) is the sequence obtained in Proposition
Moreover, up to a subsequence, v, — v in WH®(RN) and y, — y in M, where
Yn = €nUn- Applying [7, Proposition 6.1] and [7, Lemma 6.4], there are Ry > 0 and
qn € Bpr,(0) such that v,(g,) = max,cg~ v,(2). Hence, x, = gn + Yn is a global
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maximum point of u., and €,z, — y. Since V is a continuous function, it follows
that

lim V(enmn) = V(y) =MW,

n—-+o0o

and the concentration behavior is proved. ([

4. APPENDIX A: EXISTENCE OF THE FUNCTION 7).

In this appendix, we show the existence of 1 which was used in Section 2. In
what follows, we fix o small enough, such that the number A = a — p satisfies

Vo

F') > 2= (m =1 (A). (4.1)

Considering h(s) = f(s)/¢(s), we have that h'(A) > Vp/k and h(A) < VpA/k. Now,

note that the function
~ h(s), ifs<a,
h(s) = { .
k

og ifs>a

satisfies h(s) = f(s)/é(s) and
ha) _ fla) _ Vi
a ¢o(a))a k>

. I = 5;5)2 Sf( - 1 for s > 0,
Vi

[ ]
>
L~
n
—
|
<
0

o (N > o
e B:=1Xx—h()\)>0.

The next lemma is a key step to get the function 7.

Lemma 4.1. There ezist g, t1 € (0,+00) such thatty < a < t; and ) € C*([to,t1]),
satisfying

(1) n(t) < ( ) for all't € [to, 1],
0

(2) 7i(to) = h(to) and 7i(tr) = h(t:),
(3) (@) (to) = (h)'(to) and (@) (tr) = (h)' (),
(4) The function t — % is nondecreasing for all s € [to, t1].
Proof. In what follows, for each § > 0 small enough, we fix the numbers
Aea—6 B=HK()> % D:%/\—h(x\)
where Yo = h(aa). Setting the function

y(t) = At* + Bt,

we have y(0) =0 and ¢/(0) = B.
Next, our goal is proving that there are A < 0 and T > § such that

% %
y(T) = ?OT +D and ¢/(T)= ?O.
The above equalities are equivalent to the system
AT? + BT = %T +D
Vo

2AT+ B = —
+ k
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whose solution is
2D 2(¥2X — k(X))

_ _ e85~ 0t
T_B—%_ B—% >4, ifd=0T,
A:Jw

4 D '

Now, we set 7: R — R by
n(t) =yt —A) + k().

Note that
) =), )= KO), TN = TN, TN =

A simple computation gives
i(t) < h(t), VieR,
7 ()t —7j(t) = At — AN + BXA — h()).

Thus,
7t —7(t) >0 & At2 — AN? + BXA— h(\) > 0.
Moreover,
AP — AN+ BN —h(\) >0 & —t,. <t<t,
where
B\ —
t* — \/AQ_()\*]C()\)):T_F)\
A
Therefore,

7t —nt) >0 Vte [NT+N),
from where it follows that 7(¢)/t is increasing in [a — §,a + 7|, where 7 =T — § >
0. O

Using the above lemma, the function 7(t) = ¢(¢)7(t) satisfies the following con-
ditions:

o n(t) < $(t)h(t) = f(t), for all t € [to, t1]; ~

o 1(to) = d(to)h(to) = f(to) and 5(t) = G(t1)h(t1) = f(t1);

1) (to)

~

7' (to) = (
(h)(to)

o 1'(t1) = (f) (t1);
n(s) _ #(s)7(s) n(s).
#(s)s #(s)s B

From this, the function 7 satisfies conditions (H5) mentioned in Section 2.
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