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A UNIQUENESS THEOREM ON THE INVERSE PROBLEM FOR
THE DIRAC OPERATOR

YU PING WANG, MURAT SAT

Abstract. In this article, we consider an inverse problem for the Dirac op-

erator. We show that a particular set of eigenvalues is sufficient to determine

the unknown potential functions.

1. Introduction

The inverse spectral problem for a differential operator consists of recovering the
operator from its spectral data. In 1929, Ambarzumyan [2] was the first to discuss
the following statement

If q ∈ C[0, π] and {n2 : n = 0, 1, 2, . . . } is the spectral set of the
boundary value problem

− y′′ + q(x)y = λy, x ∈ [0, π], (1.1)

with Neumann boundary conditions

y′(0, λ) = y′(π, λ) = 0, (1.2)

then q(x) ≡ 0 in [0, π].

McLaughlin and Rundell [17] discussed the inverse problem for the Sturm-Liouville
equation (1.1) with the boundary conditions y(0, λ) = 0 and y′(π, λ)+Hky(π, λ) = 0
and showed that the spectral data, for a fixed n (n = 0, 1, 2, . . . ), {λn(q,Hk)}+∞k=1 is
equivalent to two spectra of boundary value problems with the equation (1.1) and
one common boundary condition at x = 0 and two different boundary conditions
at x = π. By using McLaughlin and Rundell’s method [17], Koyunbakan [13]
considered a singular Sturm-Liouville problem. Using the spectral data in [17] and
Hochstadt and Lieberman’s method, Wang [28] discussed the inverse problem for
indefinite Sturm-Liouville operators on the finite interval [a, b]. However, we are
motivated by inverse spectral problems for Dirac operators with the above spectral
data which are particular set of eigenvalues. As far as we know, inverse spectral
problems for Dirac operators have not been considered with the spectral data before.

We consider the system of Dirac operators L := L(p, q,Hk)

Ly = By′ +Q(x)y = λy, 0 ≤ x ≤ π, (1.3)
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with the boundary conditions

y1(0, λ) = 0, (1.4)

y2(π, λ) +Hky1(π, λ) = 0, (1.5)

where

B =
(

0 1
−1 0

)
, Q(x) =

(
p(x) q(x)
q(x) −p(x)

)
, y(x) =

(
y1(x)
y2(x)

)
and (p(x), q(x)) are potential functions which are real valued functions in space
L2[0, π].

We consider another Dirac operator L̃ := L̃(p̃, q̃, Hk) which is defined as:

L̃y = Bỹ′ + Q̃(x)ỹ = λỹ, 0 ≤ x ≤ π, (1.6)

with the boundary conditions

ỹ1(0, λ) = 0, (1.7)

ỹ2(π, λ) +Hkỹ1(π, λ) = 0, (1.8)

where

Q̃(x) =
(
p̃(x) q̃(x)
q̃(x) −p̃(x)

)
,

Hk ∈ R, 0 < H1 < H2 < · · · < Hk < Hk+1 < . . . , the potentials (p̃(x), q̃(x)) are
real valued functions, (p̃(x), q̃(x)) ∈ L2[0, π] and λ is a spectral parameter.

The Dirac equation is a modern presentation of the relativistic quantum me-
chanics of electrons intended new mathematical outcomes accessible to a wider
audience. It treats in some dept the relativistic invariance of a quantum theory,
self-adjointness and spectral theory, qualitative features of relativistic bound and
scattering states and the external field problem in quantum electrodynamics, with-
out neglecting the interpretational difficulties and limitations of the theory.

Inverse problems for Dirac system were studied by Moses [18], Prats and Toll
[24], Verde [27], Gasymov and Levitan [7] and Panakhov [22, 23]. It is well known
[8] that two spectra uniquely determine the matrix-valued potential function. In
particular, in reference [11], eigenfunction expansions for one dimensional Dirac
operators describing the motion of a particle in quantum mechanics are discussed.

Direct or inverse spectral problem for Dirac and Sturm-Liouville operators were
extensively studied in [1, 3, 4, 5, 9, 12, 15, 18, 20, 21, 25, 26, 28]. However, the
results on direct or inverse spectral problems of the Dirac operator are less than
classical Sturm-Liouville operator, this leads to additional difficulties in connection
with inverse spectral problem by the spectral data in [17].

In this article, by using the spectral data in [17] and Hochstadt and Lieberman’s
[10] method a uniqueness theorem for Dirac operator on the interval [0, π] will
be established, i.e., for a fixed index n (n = 0,±1,±2, . . . ), we show that if the
spectral set {λn(p, q,Hk)}+∞k=1 for distinct Hk can be measured, then the spectral
set {λn(p, q,Hk)}+∞k=1 is sufficient to determine the potential functions (p(x), q(x)).

Lemma 1.1 ([14]). Let the function ϕ(x, λ) =
(
ϕ1(x, λ)
ϕ2(x, λ)

)
be the solution of (1.3)

satisfying the initial condition

ϕ(0, λ) =
(
ϕ1(0, λ)
ϕ2(0, λ)

)
=
(

0
−1

)
= (0,−1)T .
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Then ϕ(x, λ) satisfies the integral equations

ϕ(x, λ) =
(

sinλx
− cosλx

)
+
∫ x

0

K(x, t)
(

sinλt
− cosλt

)
dt, (1.9)

where kernel K(x, t) is symmetric matrix-valued functions whose entries are con-
tinuously differentiable in both of its variables.

Lemma 1.2. The eigenvalues λn (n 6= 0) of the boundary-value problem (1.3)-(1.5)
for the coefficient H = Hk in (1.5) are the roots of (1.5) and satisfy the asymptotic
formulae:

λn = λ0
n + εn, (1.10)

where {εn} ∈ l2 (l2 consist of sequences {xn} such that
∑∞
n=1 |xn|2 < ∞) and λ0

n

are the zeros of ∆0(λ) := − cosλπ +H sinλπ, i.e.,

λ0
n = n+

1
π

arctan
1
H
.

Proof. Let ϕ(x, λ) =
(
ϕ1(x, λ)
ϕ2(x, λ)

)
be the solution of (1.3) satisfying the initial con-

dition

ϕ(0, λ) =
(
ϕ1(0, λ)
ϕ2(0, λ)

)
=
(

0
−1

)
,

and ϕ1(0, λ) = 0, ϕ2(π, λ) + Hϕ1(π, λ) = 0. The characteristic function ∆(λ) of
the problem L is defined by the following relation:

∆(λ) = ϕ2(π, λ) +Hϕ1(π, λ),

and the zeros of ∆(λ) coincide with the eigenvalues of the problem L.
Using Lemma 1.1, we obtain

∆(λ) = − cosλπ +H sinλπ +
∫ π

0

(K21(π, t) +HK11(π, t)) sinλtdt

−
∫ π

0

(K22(π, t) +HK12(π, t)) cosλtdt.

Since the eigenvalues are zeros of ∆(λ), we can write the equation

− cosλπ +H sinλπ +
∫ π

0

(K21(π, t) +HK11(π, t)) sinλt dt

−
∫ π

0

(K22(π, t) +HK12(π, t)) cosλtdt = 0.

Denote

Gn = {λ ∈ C : |λ| = |λ0
n|+ β, n = 0,±1,±2, . . . },

Gδ = {λ : |λ− λ0
n| ≥ δ, n = 0,±1,±2, . . . },

where δ is sufficiently small number (δ � β).
Since |∆0(λ)| > Cδ exp(|τ |π) for λ ∈ Gδ, from [16],

lim
|λ|→∞

e−|τ |π(∆(λ)−∆0(λ))

= lim
|λ|→∞

(
e−|τ |π

∫ π

0

(K21(π, t) +HK11(π, t)) sinλt dt
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− e−|τ |π
∫ π

0

(K22(π, t) +HK12(π, t)) cosλt dt
)

= 0

and |∆(λ)−∆0(λ)| < Cδ exp(|τ |π) for sufficiently large n and λ ∈ Gn, we have

|∆0(λ)| > |∆(λ)−∆0(λ)|,
where τ = Imλ.

Using the Rouché’s theorem, we conclude that, for sufficiently large n, the func-
tions ∆0(λ) and ∆0(λ) + {∆(λ) −∆0(λ)} = ∆(λ) have the same number of zeros
inside the contour Gn, namely 2n+ 1 zeros λ−n, . . . , λ0, . . . , λn. Thus the eigenval-
ues λn are of the form λn = λ0

n + εn, where

lim
n→∞

εn = 0.

Substituting λ0
n+εn for λn in the last equality and using the fact that ∆0(λ0

n+εn) =
∆′0(λ0

n)[1 + o(1)]εn. We conclude that εn ∈ l2. The proof is complete. �

2. Main results and proofs

Lemma 2.1. Let σ(Lkj
) := {λn(p, q,Hkj

)} (j = 1, 2) be the spectrum of the bound-
ary value problem (1.3)-(1.5) for the coefficient Hkj . If Hk1 6= Hk2 , then

σ(Lk1) ∩ σ(Lk2) = ∅, (2.1)

where kj ∈ N, ∅ denotes an empty set.

Lemma 2.2. Let λn(p, q,Hk) be the n-th eigenvalue of the boundary-value problem
(1.3)-(1.5). Then the spectral set {λn(p, q,Hk)}+∞k=1 is a bounded infinite set.

The above lemema plays an important role in the proof of next theorem.

Theorem 2.3. Let λn(p, q,Hk) be the n-th eigenvalue of the boundary-value prob-
lem (1.3)-(1.5) and λn(p̃, q̃, Hk) be the n-th eigenvalue of the boundary-value prob-
lem (1.6)-(1.8), for a fixed index n(n ∈ Z). If

λn(p, q,Hk) = λn(p̃, q̃, Hk) for all k ∈ N,
then

(p(x), q(x)) = (p̃(x), q̃(x)) a.e. on [0, π].

Proof of Lemma 2.1. Suppose that the conclusion is false. Denote λnj (Hkj ) =
λnj

(p, q,Hkj
), j = 1, 2. Then there exists λn1(Hk1) = λn2(Hk2) ∈ R, where

λnj
(Hkj

) ∈ σ(Lkj
) nj ∈ Z. Let ϕj(x, λnj

(Hkj
)) be the solution of (1.3)-(1.5)

corresponding to the eigenvalue λnj
(Hkj

) and that it satisfies the initial conditions
ϕj,1(0, λnj (Hkj )) = 0 where ϕj = (ϕj,1, ϕj,2)T . We get

Bϕ′
1
(x, λn1(Hk1)) +Q(x)ϕ1(x, λn1(Hk1)) = λn1(Hk1)ϕ1(x, λn1(Hk1)), (2.2)

and

Bϕ′2(x, λn2(Hk2)) +Q(x)ϕ2(x, λn2(Hk2)) = λn2(Hk2)ϕ2(x, λn2(Hk2)). (2.3)

If we multiply (2.2) by ϕ2(x, λn2(Hk2)), and (2.3) by ϕ1(x, λn1(Hk1)) respectively
(in the sense of scalar product i.e.

〈(ϕ1,1, ϕ1,2)T , (ϕ2,1, ϕ2,2)T 〉 = ϕ1,1ϕ2,1 + ϕ1,2ϕ2,2

and subtract from each other and integrate from 0 to π, we obtain

ϕ2,2(x, λn2(Hk2))ϕ1,1(x, λn1(Hk1))− ϕ2,1(x, λn2(Hk2))ϕ1,2(x, λn1(Hk1)) |πx=0= 0.
(2.4)
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Using the initial conditions, we obtain

ϕ2,2(π, λn2(Hk2))ϕ1,1(π, λn1(Hk1))− ϕ2,1(π, λn2(Hk2))ϕ1,2(π, λn1(Hk1)) = 0.
(2.5)

On the other hand, note the equality

ϕ2,2(π, λn2(Hk2))ϕ1,1(π, λn1(Hk1))− ϕ2,1(π, λn2(Hk2))ϕ1,2(π, λn1(Hk1))

= ϕ1,1(π, λn1(Hk1))[ϕ2,2(π, λn2(Hk2)) +Hk2ϕ2,1(π, λn2(Hk2))]

− ϕ2,1(π, λn2(Hk2))[ϕ1,2(π, λn1(Hk1)) +Hk1ϕ1,1(π, λn1(Hk1))]

+ (Hk1 −Hk2)ϕ1,1(π, λn1(Hk1))ϕ2,1(π, λn2(Hk2))

= (Hk1 −Hk2)ϕ1,1(π, λn1(Hk1))ϕ2,1(π, λn2(Hk2)).

(2.6)

Since Hk1 −Hk2 6= 0, if ϕ1,1(π, λn1(Hk1))ϕ2,1(π, λn2(Hk2)) = 0, then

ϕ1,1(π, λn1(Hk1)) = 0 or ϕ2,1(π, λn2(Hk2)) = 0. (2.7)

This and (1.5) yield

ϕ1,1(π, λn1(Hk1)) = ϕ1,2(π, λn1(Hk1)) = 0, (2.8)

or
ϕ2,1(π, λn2(Hk2)) = ϕ2,2(π, λn2(Hk2)) = 0. (2.9)

Then (2.8) and (2.9) yield

ϕ1(x, λn1(Hk1)) ≡ 0 or ϕ2(x, λn2(Hk2)) ≡ 0 on [0, π], (2.10)

where ϕ1 = (ϕ1,1, ϕ1,2)T and ϕ2 = (ϕ2,1, ϕ2,2)T . This is impossible. Thus, we
obtain

ϕ2,2(π, λn2(Hk2))ϕ1,1(π, λn1(Hk1))− ϕ2,1(π, λn2(Hk2))ϕ1,2(π, λn1(Hk1)) 6= 0.
(2.11)

It is obvious that the contradiction between (2.5) and (2.11) implies that (2.1)
holds. Hence the proof is complete. �

Proof of Lemma 2.2. We prove the lemma by two steps. For the problem L1 :=
L1(q), µn is the n-th eiegenvalue with boundary conditions ϕ1(0) = ϕ1(π) = 0,
for the problem L2 := L2(q, h), λn is the n-th eigenvalue problem (1.3)-(1.5) with
H = Hk.
Step 1. We show that (see [6])

µn < λn ≤ µn+1. (2.12)

From the Green identity, we have

[ϕ2(x, λ)ϕ1(x, µ)− ϕ1(x, λ)ϕ2(x, µ)]
∣∣x=π

x=0

= (µ− λ)
∫ π

0

[ϕ1(x, µ)ϕ1(x, λ) + ϕ2(x, µ)ϕ2(x, λ)]dx.

Hence, we have

(µ− λ)
∫ π

0

[ϕ1(x, µ)ϕ1(x, λ) + ϕ2(x, µ)ϕ2(x, λ)]dx

= [ϕ2(π, λ)ϕ1(π, µ)− ϕ1(π, λ)ϕ2(π, µ)] = d(µ)∆(λ)− d(λ)∆(µ),

where d(µ) = ϕ1(π, µ), ∆(λ) = ϕ2(π, λ) +Hϕ1(π, λ).
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When λ→ µ, we obtain∫ π

0

[ϕ2
1(x, µ) + ϕ2

2(x, µ)]dx = d·(µ)∆(µ)− d(µ)∆·(µ),

with ∆·(µ) = d
dµ∆(µ) and d·(µ) = d

dµd(µ). In particular, this yields

αn = −∆·(µn)d(µn),

1
d2(µ)

∫ π

0

[ϕ2
1(x, µ) + ϕ2

2(x, µ)]dx = − d

dµ
(
∆(µ)
d(µ)

),

for −∞ < µ <∞ and d(µ) 6= 0, where αn are norming constants.
Thus the function ∆(µ)

d(µ) is monotonically decreasing on R− {λn : n ∈ Z} with

lim
µ→λn

∆(µ)
d(µ)

= ±∞.

Consequently from the asymptotic behavior of λn and µn, we prove (2.12).

Step 2. We show that the following formula holds,

λn(H0) < · · · < λn(Hk+1) < λn(Hk) < . . . . (2.13)

Let ϕ(x, λn(H)) be the solution of the boundary value problem (1.3)-(1.5) cor-
responding to the eigenvalue λn(H) and that it satisfies the initial conditions
ϕ1(0, λn(H)) = 0, ϕ2(0, λn(H)) = −1 and ϕ1(0, λn(H + ∆H)) = 0, ϕ2(0, λn(H +
∆H)) = −1. We have

Bϕ′(x, λn(H)) +Q(x)ϕ(x, λn(H)) = λn(H)ϕ(x, λn(H)), (2.14)

Bϕ′(x, λn(H + ∆H)) +Q(x)ϕ(x, λn(H + ∆H))

= λn(H + ∆H)ϕ(x, λn(H + ∆H)),
(2.15)

where ∆H is the increment of H. Multiplying (2.14) by ϕ(x, λn(H + ∆H)), and
multiplying (2.15) by ϕ(x, λn(H)) and subtracting from each other and integrating
from 0 to π, we obtain, from the initial conditions at zero,

∆λn(H)
∫ π

0

[
ϕ1(x, λn(H))ϕ1(x, λn(H + ∆H))

+ ϕ2(x, λn(H))ϕ2(x, λn(H + ∆H))
]
dx

= ∆Hϕ1(π, λn(H))ϕ1(π, λn(H + ∆H)),

(2.16)

where ∆λn(H) = λn(H + ∆H)− λn(H).
It is well known that ϕ(x, λn(H)) and λn(H) are real and continuous with respect

to H. Letting ∆H → 0, we have

∂λn(H)
∂H

=
ϕ2

1(π, λn(H))∫ π
0

[ϕ2
1(x, λn(H)) + ϕ2

2(x, λn(H))]dx
> 0. (2.17)

This implies that (2.13) holds. Therefore, from Step 1 and Step 2 we have that the
spectral set {λn(p, q,Hk)}∞k=1 is a bounded infinite set. The proof is complete �

Finally, using Lemma 2.2, the properties of entire functions and the result of
[29], we have shown that Theorem 2.3 holds.
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Proof of Theorem 2.3. By Lemma 1.1 the solutions to Equation (1.3) satisfying
ϕ(0, λ) = (0,−1)T , and solutions of (1.6) satisfying ϕ̃(0, λ) = (0,−1)T can be
respectively expressed in the integral forms:

ϕ(x, λ) =
(

sinλx
− cosλx

)
+
∫ x

0

K(x, t)
(

sinλt
− cosλt

)
dt, (2.18)

ϕ̃(x, λ) =
(

sinλx
− cosλx

)
+
∫ x

0

K̃(x, t)
(

sinλt
− cosλt

)
dt, (2.19)

where kernels K(x, t) and K̃(x, t) are symmetric matrix-valued functions whose
entries are continuously differentiable in both of its variables.

If we multiply (1.3) by ϕ̃(x, λ) and (1.6) by ϕ(x, λ) respectively (in the sense of
scalar product in R2) and subtract from each other, then we obtain

d

dx
{ϕ1(x, λ)ϕ̃2(x, λ)− ϕ̃1(x, λ)ϕ2(x, λ)} = 〈[Q(x)− Q̃(x)]ϕ(x, λ), ϕ̃(x, λ)〉. (2.20)

Integrating the last equality from 0 to π with respect to the variable x, we give

{ϕ1(x, λ)ϕ̃2(x, λ)− ϕ̃1(x, λ)ϕ2(x, λ)}
∣∣π
x=0

=
∫ π

0

〈[Q(x)− Q̃(x)]ϕ(x, λ), ϕ̃(x, λ)〉dx.

(2.21)
Because ϕ(x, λ) and ϕ̃(x, λ) satisfy the same initial conditions, it follows that

ϕ1(0, λ)ϕ̃2(0, λ)− ϕ̃1(0, λ)ϕ2(0, λ) = 0. (2.22)

Define

P (x) = Q(x)− Q̃(x), p1(x) = p(x)− p̃(x), q1(x) = q(x)− q̃(x), (2.23)

and

H(λ) :=
∫ π

0

〈P (x)ϕ(x, λ), ϕ̃(x, λ)〉dx. (2.24)

Considering the properties of ϕ(x, λ) and ϕ̃(x, λ), we conclude that H(λ) is an
entire function in λ. Because the first term of (2.21) for λ = λn(p, q,Hk) and x = π
is zero, then

H(λn(p, q,Hk)) = 0.

From Lemma 2.2, we see that the spectral set {λn(p, q,Hk)}+∞k=1 is a bounded
infinite set. Hence, there exists λn0(p, q) ∈ R, such that λn0(p, q) is a finite accu-
mulation point of the spectrum set {λn(p, q,Hk)}+∞k=1. It is well known that the
set of zeros of every entire function which is not identically zero hasn’t any finite
accumulation point. Therefore

H(λ) = 0, ∀λ ∈ C.

We can show from (2.24) that

H(λ) =
∫ π

0

p1(x)
{
− cos 2λx+

∫ x

0

R1(x, t) exp(2iλt)dt

−
∫ x

0

R2(x, t) exp(−2iλt)dt
}
dx+

∫ π

0

q1(x)
{
− sin 2λx

+
∫ x

0

R3(x, t) exp(2iλt)dt+
∫ x

0

R4(x, t) exp(−2iλt)dt
}
dx = 0

(2.25)
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where Rl(x, t), l = 1, 4 are piecewise-continuously differentiable on 0 ≤ t ≤ x ≤ π.
Moreover, by using Euler’s formula, (2.25) can be written as∫ π

0

f1(x)
{

exp(2iλx) +
∫ x

0

S11(x, t) exp(2iλt)dt

+
∫ x

0

S12(x, t) exp(−2iλt)dt
}
dx+

∫ π

0

f2(x){exp(−2iλx)

+
∫ x

0

S21(x, t) exp(2iλt)dt+
∫ x

0

S22(x, t) exp(−2iλt)dt}dx = 0,

(2.26)

where

f1(x) = − 1
2i

(q1(x) + ip1(x)), f2(x) =
1
2i

(q1(x)− ip1(x)), i =
√
−1, (2.27)

and the matrix S(x, t) = (Sij(x, t)), i, j = 1, 2 with entries being piecewise-con-
tinuously differentiable on 0 ≤ t ≤ x ≤ π. By changing the order of integration,
(2.26) can be written as∫ π

0

exp(2iλt)
[
f1(t) +

∫ π

t

(f1(x)S11(x, t) + f2(x)S21(x, t))dx]dt

+
∫ π

0

exp(−2iλt)
[
f2(t) +

∫ π

t

(f1(x)S12(x, t) + f2(x)S22(x, t))dx
]
dt = 0,

or ∫ π

0

〈
e0(λt), f(t) +

∫ π

t

S(x, t)f(x)dx
〉
dt = 0. (2.28)

Here e0(λt) = (exp(2iλt), exp(−2iλt)) T and f(x) = (f1(x), f2(x)) T . Thus from
the completeness of the functions e0(λt), it follows that

f(t) +
∫ π

t

S(x, t)f(x)dx = 0, for 0 < t < π.

But this equation is a homogeneous Volterra integral equation and has only the
zero solution. Thus we have f(x) = (f1(x), f2(x))T = 0 on the interval [0, π]. From
(2.27)), it holds

q1(x) + ip1(x) = 0 = q1(x)− ip1(x),
i.e. q1(x) = 0 and p1(x) = 0. From (2.23) we obtain

(p(x), q(x)) = (p̃(x), q̃(x)),

a.e. on [0, π]. This result completes the proof. �
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