
Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 154, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

GLOBAL WELL-POSEDNESS OF THE 2D MICROPOLAR FLUID
FLOWS WITH MIXED DISSIPATION

YAN JIA, WENJUAN WANG, BO-QING DONG

Abstract. This article concerns the global well-posedness of the 2D microp-

olar fluid flows with mixed dissipation:

−∂yy(−∆)αu1, −∂xx(−∆)αu2, (−∆)βw.

We prove the existence and uniqueness of global smooth solution of 2D mi-
cropolar fluid flows when α+ β ≥ 1/2.

1. Introduction

Micropolar fluid flows derived by Eringe [10] are an important mathematical
model in some polymeric fluids and fluids which contain certain additives in narrow
films([15, 16]). They are non-Newtonian fluids with nonsymmetric stress tensor
which are coupled with the kinematic viscous effect, microrotational effects as well
as microrotational inertia. The two-dimensional (2D) incompressible micropolar
fluid flows is governed by

∂tu− (ν + κ)∆u− 2κ∇× w + u · ∇u+∇π = 0,
∇ · u = 0,

∂tw − γ∆w + 4κw − 2κ∇× u+ u · ∇w = 0.
(1.1)

Where u(x, y, t) = (u1(x, y, t), u2(x, y, t)) is the unknown velocity vector field,
π(x, y, t) is the unknown scalar pressure field and w(x, y, t) is the unknown scalar
micro-rotation angular velocity of the rotation of the particles of the fluid. ν, κ, γ ≥
0 are viscous coefficients. u0 and w0 represent the prescribed initial data for the
velocity and micro-rotation fields. Here and in what follows,

∇× u =
∂u2

∂x
− ∂u1

∂y
, ∇× w =

(∂w
∂y

,−∂w
∂x

)
.

Because of its importance in mathematics, there is much attention on the well-
posedness of the micropolar fluid flows [6, 11, 14]. In particular, when there is full
dissipation, Lukaszewicz [14] examined the global well-posedness of smooth solution
to the 2D micropolar fluid flows (1.1). A more explicit existence and uniqueness
result which is based on the decay estimates of the linearized equations is recently
investigated in Dong and Chen [7]. When there is partial dissipation, the issue on
global regularity becomes more difficult. Due to some new observation, Dong and
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Zhang [8] recently obtained the global existence and uniqueness of classic solution
of micropolar fluid flows (1.1) with only velocity dissipation ∆u. Xue[18] also
examined the well-posedness of the micropolar fluid flows (1.1) with only velocity
dissipation ∆u under the Besov space framework. Yamaziki[19] futher extended the
results of above the results to the magneto-micropolar equations. Chen[5] examined
the existence and uniqueness of smooth solution of micropolar fluid flows (1.1) with
partial dissipation (∂yyu, ∂xxw). Very recently, Dong, Li and Wu [9] proved the
global well-posedness of 2D micropolar fluid flows (1.1) with only angular viscosity
dissipation ∆w. One may also refer to some important and interesting results of
the 2D fluid dynamical models with partial dissipation such as the 2D Boussinesq
equations [1, 4, 12, 17] and the 2D magnetohydrodynamic (MHD) equations [3, 2].

Motivated by the above results of the 2D fluid dyanmical models with partial
dissipation, the purpose of this study is investigate the global existence and unique-
ness of the smooth solution of 2D micropolar fluid flows with mixed dissipation
(∂yy(−∆)αu1, ∂xx(−∆)αu2,−(−∆)βw). More precisely, we will examine the global
regularity issue of the following 2D micropolar fluid flows with unit viscosity

∂tu1 + (u · ∇)u1 − ∂yw + ∂xπ = ∂yy(−∆)αu1,

∂tu2 + (u · ∇)u2 + ∂xw + ∂yπ = ∂xx(−∆)αu2,

∂xu1 + ∂yu2 = 0,

∂tw + 2w −∇× u+ u · ∇w = −(−∆)βw.

(1.2)

where 0 < α, β < 1. We are able to prove the following existence and uniqueness
of smooth global solutions for (1.2).

Theorem 1.1. Assume (u0, w0) ∈ Hs(R2), s > 2 and ∇ · u0 = 0. There exists
a unique global smooth solution (u,w) for the 2D micropolar fluid flows (1.2) with
α+ β ≥ 1

2

u ∈ C([0,∞);Hs(R2)), u ∈ L2(0, T ;Hs+1+α(R2)),

w ∈ C([0,∞);Hs(R2)), w ∈ L2(0, T ;Hs+β(R2)), ∀T > 0.

Clearly, Theorem 1.1 generalizes the global well-posedness results of Lukaszewicz
[14], Dong and Chen [7] where there is full dissipation. Moreover, Theorem 1.1 has
no inclusion relation between previous results of partial dissipative micropolar fluid
flows [5, 8, 18, 19]. Especially, the main trick based on a new quantity ∇× u− w
in [8, 18, 19] is not available here any more.

We briefly summarize the main challenge and explain what we have done to
achieve the global regularity. In order to prove Theorem 1.1, we need global a
priori bounds of (u,w) in sufficiently smooth functional spaces. More precisely, if
we can prove the Beale-Kato-Majda criterion of solutions for the 2D micropolar
fluid flows (1.2) ∫ T

0

‖(∇u(t),∇w(t))‖L∞ dt <∞, (1.3)

then the proof of Theorem 1.1 is a more or less standard procedure. The next
natural step is to examine a global H1-bound for (u,w) of (1.2) after the based
L2 energy estimates of (u,w). However, unlike the previous results where the
H1-bound can be derived from vorticity equation, the vorticity structure here is
destroyed due to the mixed dissipation (∂yy(−∆)αu1, ∂xx(−∆)αu2). If we directly
take the L2 inner product (1.2) with (∆u,∆w), then the H1-bound for (u,w) of
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(1.2) at least requires higher dissipation α+ β ≥ 1. To overcome the difficulty, we
first derive the optimal fractional-order derivative estimates of u,

‖Λα+βu(t)‖2L2 +
∫ t

0

‖Λ1+2α+βu(s)‖2L2ds ≤ C(t, ‖(u0, w0)‖Hs),

and then the optimal fractional-order derivative estimates of w

‖Λ2(α+β)w(t)‖2L2 +
∫ t

0

‖Λ2α+3βw(s)‖2L2ds ≤ C(t, ‖(u0, w0)‖Hs).

The Beale-Kato-Majda criterion of solutions then can be derived by an iterative
procedure.

2. Beale-Kato-Majda criterion

To prove the existence of global smooth solution for the 2D micropolar fluid
flows (1.2), we will examine the Beale-Kato-Majda criterion in this section. For
simplicity, we only need to prove the case α + β = 1/2, the case α + β > 1/2 can
be done in a slightly modification. To do so, we first examine the following lemma
which is mainly based on the divergence free of velocity.

Lemma 2.1. Suppose u = (u1, u2) is divergence free and for any s ∈ R, we have∫
R2

(
−∂yyu1Λ2su1 − ∂xxu2Λ2su2

)
dx dy ≥ 1

2
‖Λ1+su‖2L2 (2.1)

where Λ = (−∆)1/2 denotes the Zygmund operator, defined via the Fourier trans-
form

Λ̂αf(ξ) = |ξ|α f̂(ξ).

Proof. Integrating by parts and applying the divergence free property of velocity,
it is easy to check that∫

R2

(
− ∂yyu1Λ2su1 − ∂xxu2Λ2su2

)
dx dy

=
∫

R2

(
∂yyu1 ∆Λ2s−2u1 + ∂xxu

2 ∆Λ2s−2u2

)
dx dy

=
∫

R2

(
∇∂yΛs−1u1∇∂yΛs−1u1 +∇∂xΛs−1u2∇∂xΛs−1u2

)
dx dy

=
∫

R2

(
|∂yyΛs−1u1|2 + |∂xyΛs−1u1|2 + |∂xxΛs−1u2|2 + |∂xyΛs−1u2|2

)
dx dy

=
∫

R2

(
|∂yyΛs−1u1|2 + |∂yyΛs−1u2|2 + |∂xxΛs−1u2|2 + |∂xxΛs−1u1|2

)
dx dy

≥ 1
2

∫
R2

(
|∆Λs−1u1|2 + |∆Λs−1u2|2

)
dx dy =

1
2
‖Λ1+su‖2L2 .

�

To prove a priori estimates of solutions, we recall the following classical com-
mutator estimate [13].

Lemma 2.2. Let s > 0. Let 1 < r < ∞ and 1
r = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
with

q1, p2 ∈ (1,∞) and p1, q2 ∈ [1,∞]. Then,

‖[Λs, f ]g‖Lr ≤ C
(
‖∇f‖Lp1‖Λs−1g‖Lq1 + ‖Λsf‖Lp2‖g‖Lq2

)
,
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where C is a constant depending on the indices s, r, p1, q1, p2 and q2.

Proposition 2.3. Under the conditions of Theorem 1.1 and let (u,w) be the cor-
responding solution of (1.2). Then (u,w) obeys the following global bounds, for any
0 < t <∞,

‖u(t)‖2L2 + ‖w(t)‖2L2 +
∫ t

0

(‖Λ1+αu(s)‖2L2 + ‖Λβw(s)‖2L2)ds ≤ C, (2.2)

‖Λα+βu(t)‖2L2 +
∫ t

0

‖Λ1+2α+βu(s)‖2L2ds ≤ C, (2.3)

‖Λ2α+2βw(t)‖2L2 +
∫ t

0

‖Λ2α+3βw(s)‖2L2ds ≤ C, (2.4)

where the positive constants C depend on t and ‖(u0, w0)‖Hs only.

Proof. Taking the L2 inner product of equations (1.2) with (u1, u2, w), it is easy to
verify after applying Lemma 2.1, the Hölder inequality and the Young inequality

d

dt

(
‖u(t)‖2L2 + ‖w(t)‖2L2

)
+ ‖Λ1+αu(t)‖2L2 + 2‖Λβw(t)‖2L2 + 4‖w(t)‖2L2

≤ 2
∫

R2
{(∇× w) · u+ (∇× u)w} dx dy

≤ 4‖Λ1−βu‖L2‖Λβw‖L2 ≤ C‖u(t)‖2L2 +
1
2
‖Λ1+αu(t)‖2L2 + ‖Λβw(t)‖2L2 ,

where we have used the following fact due to the divergence free of velocity u,∫
R2

(u · ∇u) · u dx dy = 0,
∫

R2
(u · ∇w)w dxdy = 0.

Integrating in time for 0 < t <∞,

‖u(t)‖2L2 + ‖w(t)‖2L2 +
∫ t

0

(‖Λ1+αu(s)‖2L2 + ‖Λβw(s)‖2L2)ds ≤ ect(‖u0‖2L2 + ‖w0‖2L2)

which implies (2.2).
To examine (2.3), we take the L2 inner product of the first two equations of (1.2)

with (Λ2α+2βu1,Λ2α+2βu2) and use Lemma 2.1 to obtain

d

dt
‖Λα+βu(t)‖2L2 + ‖Λ1+2α+βu(t)‖2L2

= 2
∫

R2
(∇× w) · Λ2α+2βu dx dy + 2

∫
R2

Λα+β [u · ∇u]Λα+βu dx dy

= I1 + I2

(2.5)

For I1, it is easy to check that

2
∫

R2
(∇× w) · Λ2α+2βu dx dy ≤ C‖Λ1+2α+βu(t)‖L2‖Λβw(t)‖L2

≤ 1
4
‖Λ1+2α+βu(t)‖2L2 + C‖Λβw(t)‖2L2

For I2, using Lemma 2.2, the Hölder inequality, Young inequality, and interpo-
lation inequality gives

I2 = 2
∫

R2
Λα+β [u · ∇u]Λα+βu dx dy
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≤ C‖∇u‖
L

2
1−β
‖Λα+βu‖

L
2
β
‖Λα+βu‖L2

≤ C‖Λ1+βu‖L2‖Λ1+αu‖L2‖Λα+βu‖L2

≤ 1
2
‖Λ1+βu‖2L2 + C‖Λ1+αu‖2L2‖Λα+βu‖2L2

≤ 1
4
‖u‖2L2 +

1
4
‖Λ1+2α+βu‖2L2 + C‖Λ1+αu‖2L2‖Λα+βu‖2L2 .

Using the estimates of I1, I2 into (2.5) gives
d

dt
‖Λα+βu(t)‖2L2 +

1
2
‖Λ1+2α+βu(t)‖2L2

≤ C‖Λβw(t)‖2L2 + C‖u(t)‖2L2 + C‖Λ1+αu‖2L2‖Λα+βu‖2L2

Taking the Gronwall inequality into consideration together with (2.2) implies

‖Λα+βu(t)‖2L2 +
∫ t

0

‖Λ1+2α+βu(s)‖2L2ds

≤ exp
(
C

∫ t

0

‖Λ1+αu‖2L2dτ
) (
‖Λα+βu0‖2L2 + Ct

)
≤ C, 0 < t <∞

which is (2.3).
For (2.4), we take the inner product of fourth equation of (1.2) with Λ4(α+β)w

to obtain
1
2
d

dt
‖Λ2α+2βw‖2L2 + ‖Λ2α+3βw‖2L2 + 2‖Λ2α+2βw‖2L2

= 2
∫

R2
(∇× u)Λ4(α+β)w dxdy −

∫
R2

[Λ2α+2β , u · ∇]wΛ2α+2βw dxdy

:= J1 + J2.

(2.6)

Expression J1 is bounded by applying the Hölder inequality and the Young inequal-
ity,

J1 ≤ C‖Λ1+2α+βu‖L2‖Λ2α+3βw‖L2 ≤ 1
4
‖Λ2α+3βw‖2L2 + C‖Λ1+2α+βu‖2L2 .

As in the estimates for I2, employing Lemma 2.2, the Sobolev’s imbedding inequal-
ity and the Young inequality, it follows that

J2 = −
∫

R2
[Λ2α+2β , u · ∇]wΛ2α+2βw dxdy

≤
(
‖∇u‖

L
2
β
‖Λ2α+2βw‖

L
2

1−β
+ ‖Λ2α+2βu‖

L
2
β
‖∇w‖

L
2

1−β

)
‖Λ2α+2βw‖L2

≤ C
(
‖Λ2−βu‖L2‖Λ1+βw‖L2 + ‖Λ1+2α+βu‖L2‖Λ2α+3βw‖L2

)
‖Λ2α+2βw‖L2

≤ C‖Λ1+2α+βu‖L2‖Λ2α+3βw‖L2‖Λ2α+2βw‖L2

≤ 1
4
‖Λ2α+3βw‖2L2 + C‖Λ1+2α+βu‖2L2‖Λ2α+2βw‖2L2

Inserting the estimates for J1 and J2 into (2.6) gives
d

dt
‖Λ2α+2βw‖2L2 + ‖Λ2α+3βw‖2L2 ≤ C‖Λ1+2α+βu‖2L2

(
‖Λ2α+2βw‖2L2 + 1

)
and applying Gronwall’s inequality, we have

‖Λ2α+2βw(t)‖2L2 +
∫ t

0

‖Λ2α+3βw(s)‖2L2ds ≤ C(t, u0, w0)
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which gives (2.4). This completes the proof of Proposition 2.3.
To obtain the Beale-Kato-Majda criterion for the solutions. we further need to

prove the following a priori bounds for higher-order derivatives of the solutions.

Proposition 2.4. Suppose (u,w) is the corresponding solution in Theorem 1.1.
Then (u,w) obeys the following global bounds, for any 0 < t <∞,

‖Λ3α+3βu(t)‖2L2 +
∫ t

0

‖Λ1+4α+3βu(s)‖2L2ds ≤ C, (2.7)

‖Λ4α+4βw(t)‖2L2 +
∫ t

0

‖Λ4α+5βw(s)‖2L2ds ≤ C. (2.8)

In particular, we have the Beale-Kato-Majda criterion of solutions for the 2D mi-
cropolar fluid flows (1.2),

∫ T

0

‖(∇u(t),∇w(t))‖L∞ dt <∞. (2.9)

Proof. Similar to the estimation of (2.2), multiplying the both sides of the first two
equations of (1.2) with (Λ6α+6βu1,Λ6α+6βu2) and applying Lemmas 2.1 and 2.2,
we have

d

dt
‖Λ3α+3βu‖2L2 + ‖Λ1+4α+3βu‖2L2

= 2
∫

R2
(∇× w) · Λ6α+6βu dx dy + 2

∫
R2

Λ3α+3β [u · ∇u]Λ3α+3βu dx dy

≤ C‖Λ1+4α+3βu‖L2‖Λ2α+3βw‖L2

+ C‖∇u‖
L

2
1−(2α+β)

‖Λ3α+3βu‖
L

2
2α+β
‖Λ3α+3βu‖L2

≤ C‖Λ1+4α+3βu‖L2‖Λ2α+3βw‖L2

+ C‖Λ1+2α+βu‖L2‖Λ1+α+2βu‖L2‖Λ3α+3βu‖L2

≤ C‖Λ1+4α+3βu‖L2‖Λ2α+3βw‖L2

+ C‖Λ1+2α+βu‖L2(‖Λ1+4α+3βu‖L2 + ‖u‖L2)‖Λ3α+3βu‖L2

≤ 1
2
‖Λ1+4α+3βu‖2L2 + C‖Λ2α+3βw‖2L2

+ C‖Λ1+2α+βu‖2L2‖Λ3α+3βu‖2L2 + C.

(2.10)

Employing the Gronwall inequality and Proposition 2.3 gives

‖Λ3α+3βu(t)‖2L2 +
∫ t

0

‖Λ1+4α+3βu(s)‖2L2ds ≤ C(t, u0, w0), 0 < t <∞

which gives (2.7).
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To prove (2.8), similarly, multiplying both sides of the fourth equation in (1.2)
by Λ8(α+β)w yields

1
2
d

dt
‖Λ4α+4βw‖2L2 + ‖Λ4α+5βw‖2L2 + 2‖Λ4α+4βw‖2L2

= 2
∫

R2
(∇× u)Λ8(α+β)w dxdy −

∫
R2

[Λ4α+4β , u · ∇]wΛ4α+4βw dxdy

≤ C‖Λ1+4α+3βu‖L2‖Λ4α+5βw‖L2 + C
(
‖∇u‖

L
2
β
‖Λ4α+4βw‖

L
2

1−β

+ ‖Λ4α+4βu‖
L

2
β
‖∇w‖

L
2

1−β

)
‖Λ4α+4βw‖L2

≤ C‖Λ1+4α+3βu‖L2‖Λ4α+5βw‖L2 + C
(
‖Λ2−βu‖L2‖Λ4α+5βw‖L2

+ ‖Λ1+4α+3βu‖L2‖Λ2−βw‖L2

)
‖Λ2α+2βw‖L2

≤ C‖Λ1+4α+3βu‖L2‖Λ4α+5βw‖L2 + C(‖w‖L2 + ‖Λ4α+5βw‖L2)

×
(
‖u‖L2 + ‖Λ1+4α+3βu‖L2‖Λ2−βw‖L2

)
‖Λ2α+2βw‖L2

≤ 1
2
‖Λ4α+5βw‖2L2 + C(1 + ‖Λ1+4α+3βu‖2L2‖Λ4α+4βw‖2L2 + C.

(2.11)

and then Gronwall’s inequality gives

‖Λ4α+4βw(t)‖2L2 +
∫ t

0

‖Λ4α+5βw(s)‖2L2ds ≤ C(t, u0, w0)

which is (2.8).
Moreover, since

1 + 4α+ 3β, and 4α+ 5β > 2,
a priori estimates (2.7) and (2.8) actually imply the following Beale-Kato-Majda
criterion of solutions u and w,∫ T

0

‖∇u(t)‖L∞ dt <∞,
∫ T

0

‖∇w(t)‖L∞ dt <∞

by the Sobolev imbedding inequality. The proof is complete. �

3. Proof of Theorem 1.1

Under the Beale-Kato-Majda criterion in Section 2, the proof of Theorem 1.1 is
more or less standard.

Existence. We now borrow the classic Friedrichs method to prove the existence of
global smooth solutions. Firstly we consider the following approximate equations
of (1.2)

∂tun1 + JnP (Jnun · ∇Jnun1)− P∂ywn + ∂xπn = Jn∂yy(−∆)αun1,

∂tun2 + JnP (Jnun · ∇Jnun2) + P∂xwn + ∂yπn = Jn∂xx(−∆)αun2,

∂xun1 + ∂yun = 0,

∂twn + 2wn −∇× u+ Jnun · ∇Jnwn = −Jn(−∆)βwn,

un(x, y, 0) = Jnu0, wn(x, y, 0) = Jnw0,

(3.1)

where Jn is defined as Jnϕ = F−1(χB(0,n)(ξ)F(ϕ)(ξ)), and χB(0,n) denotes the
characteristic function on the ball B(0, n). P denotes the standard projection onto
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divergence-free vector fields. The standard Picard type theorem ensures that, for
some Tn > 0, there exists a unique local smooth solution (un, wn) ∈ C([0, Tn);L2).
Additionally, it is easy to see that (Jnun, Jnwn) is also a local smooth solution of
(3.1). Thus (un, wn) also satisfies

∂tun1 + Jn(un · ∇un1)− ∂ywn + ∂xπn = ∂yy(−∆)αun1,

∂tun2 + Jn(un · ∇un2) + ∂xwn + ∂yπn = ∂xx(−∆)αun2,

∂xun1 + ∂yun = 0,

∂twn + 2wn −∇× u+ un · ∇wn = −(−∆)βwn,

un(x, y, 0) = Jnu0, wn(x, y, 0) = Jnw0,

(3.2)

A basic L2 energy estimate for (un, wn) in (3.2) implies

‖un(t)‖2L2 + ‖wn(t)‖2L2 +
∫ t

0

(
‖Λ1+αun(τ)‖2L2 + ‖Λβwn(τ)‖2L2

)
τ ≤ C(t, u0, w0),

where C is independent of n. Therefore, the local solution can be extended into a
global one by the standard Picard Extension Theorem. Next we show that (un, wn)
admits a uniform global bound in Hs(R2) with (s > 2). By a standard energy
estimate involving (3.2), it is easy to obtain

d

dt

(
‖un‖2Hs + ‖wn‖2Hs

)
+ ‖Λ1+αun‖2Hs + ‖Λβwn‖2Hs

≤
∫

R2
{(∇× wn) · Λ2sun + (∇× un)Λ2swn} dxdy

+
∫

R2
[Λs, un · ∇]un · Λsun dx dy +

∫
R2

[Λs, un · ∇]wnΛswn dx dy

≤ 1
2
(
‖Λ1+αun‖2Hs + ‖Λβwn‖2Hs

)
+ C (‖∇un‖L∞ + ‖∇wn‖L∞ + 1)

(
‖un‖2Hs + ‖wn‖2Hs

)
.

Applying the Gronwall’s inequality and the Beale-Kato-Majda criterion in Propo-
sition 2.4, we have

‖un‖2Hs + ‖wn‖2Hs +
∫ t

0

(‖Λ1+αun‖2Hs + ‖Λβw‖2Hs)ds

≤ (‖u0‖2Hs + ‖w0‖2Hs)eC
R t
0 (‖∇un‖L∞+‖∇wn‖L∞+1)ds

≤ C(t, ‖(u0, w0)‖Hs).

Hence the above uniform Hs estimates allows us to obtain the global existence of
the desired solution (u,w) to (1.2) by a standard compactness argument.

3.1. Uniqueness. We show that any two solutions (u,w) and (ū, w̄) to (1.2) must
be the same. The difference (U,W ) with U = u− ū and W = w − w̄ satisfies

∂tU1 + (U · ∇)u1 + (ū · ∇)U1 − ∂yW + ∂xπ = ∂yy(−∆)αU1,

∂tU2 + (U · ∇)u2 + (ū · ∇)U2 + ∂xW + ∂yπ = ∂xx(−∆)αU2,

∂xU1 + ∂yU2 = 0,

∂tW + 2W −∇× U + (U · ∇)w + (ū · ∇)W = −(−∆)βW.

(3.3)
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Taking the L2 inner product of (U,W ) with (3.3), we have

1
2
d

dt

(
‖U‖2L2 + ‖W‖2L2

)
+

1
2
‖Λ1+αU‖2L2 + ‖ΛβW‖2L2 + 2‖W‖2L2

=
∫

R2
(∇×W · U +∇× UW )dx− 2

∫
R2

(U · ∇u) · Udx−
∫

R2
(U · ∇w)Wdx

≤ C‖Λ1−βU‖L2‖ΛβW‖L2 + C‖∇u1‖L∞‖U‖2L2 + 2‖U‖L2‖∇w1‖L∞‖W‖L2

≤ 1
2
‖ΛβW‖2L2 +

1
4
‖Λ1+αU‖2L2

+ C (‖∇u‖L∞ + ‖∇w‖L∞ + 1) (‖U‖2L2 + ‖W‖2L2).

Gronwall’s inequality then implies

‖U(t)‖2L2 + ‖W (t)‖2L2 ≤ C(t, u0, w0)
(
‖U0‖2L2 + ‖W0‖2L2

)
, (3.4)

which implies the uniqueness. �
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