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SUFFICIENT CONDITIONS FOR HADAMARD
WELL-POSEDNESS OF A COUPLED

THERMO-CHEMO-POROELASTIC SYSTEM

TETYANA MALYSHEVA, LUTHER W. WHITE

Abstract. This article addresses the well-posedness of a coupled parabolic-
elliptic system modeling fully coupled thermal, chemical, hydraulic, and me-

chanical processes in porous formations that impact drilling and borehole sta-

bility. The underlying thermo-chemo-poroelastic model is a system of time-
dependent parabolic equations describing thermal, solute, and fluid diffusions

coupled with Navier-type elliptic equations that attempt to capture the elastic
behavior of rock around a borehole. An existence and uniqueness theory for a

corresponding initial-boundary value problem is an open problem in the field.

We give sufficient conditions for the well-posedness in the sense of Hadamard
of a weak solution to a fully coupled parabolic-elliptic initial-boundary value

problem describing homogeneous and isotropic media.

1. Introduction

In this article, we are concerned with the well-posedness of a coupled parabolic-
elliptic system arising in petroleum- and geothermal-related applications of rock
mechanics. This work is motivated by the problems of drilling and borehole stability
in porous formations that involve the modeling of fully coupled thermal, chemical,
hydraulic, and mechanical (elastic deformation) processes.

1.1. Literature review. The poroelasticity theory describing the coupled pro-
cesses of elastic deformation and pore fluid diffusion in fluid-saturated isothermal
porous media can be traced back to the pioneering works of von Terzaghi [26, 27]
and Biot [3]. Biot [4] pointed out a complete mathematical analogy between poroe-
lasticity and thermoelasticity with the temperature playing the same role as the
fluid pressure and heat conduction corresponding to fluid flow. A complete well-
posedness analysis of a general initial-boundary value problem for a system of cou-
pled partial differential equations that describes the Biot consolidation model [3]
in poroelasticity, as well as a coupled quasi-static problem in thermoelasticity, has
been carried out by Showalter [22, 23]. Based on the theory of linear degenerate
evolution equations in Hilbert spaces, the existence and uniqueness of strong and
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weak solutions, as well as regularity theory for the initial-boundary value problem,
were developed.

The Biot theory for isothermal systems was first extended by Schiffman [21] to
account for the effects of thermal expansion of both the pore fluid and the elastic
matrix. Since then, a substantial literature on thermo-poroelasticity theory and
the modeling of the coupled hydro-thermo-mechanical behavior of a fluid-saturated
porous media has been developed for rock mechanics, including petroleum and
geothermal borehole stability [1, 2, 5, 7, 8, 9, 14, 15, 16, 18, 19, 28]. Considerable
attention has been recently placed on the impact of chemical processes in porous
media on drilling and borehole stability [6, 11, 20, 29]. Due to the complexity
of cross-coupling mechanisms involved in thermo-poroelastic and chemo-thermo-
poroelastic models, the general question of existence and uniqueness of solutions
to the corresponding initial-boundary value problems remains open and very few
analytical solutions are currently available. Typically, the solutions are derived
under the assumptions that some of the couplings can be neglected [5, 11, 14,
15, 18, 20]. An exact unique analytical solution for a specific case of the fully
coupled thermo-hydro-mechanical response of a fluid-saturated porous sphere under
mechanical pulse load was developed by Belotserkovets and Prevost [2] using the
Laplace transformation and the residue theorem.

The model that we study is based on equations derived by Diek [6] and consti-
tutes the general theory of fully coupled chemical thermo-poroelasticity for porous
media saturated by a compressible fluid. The theory satisfies the first and second
laws of thermodynamics and is based on concepts of irreversible thermodynamics,
a novel rock constitutive relation, and Onsager’s transport phenomenology [6]. Our
objective here is to establish the well-posedness theory for the fully coupled thermo-
chemo-poroelastic (TCP) system describing homogeneous and isotropic fluid-sa-
turated porous media. The main result of this work is Theorem 4.1 which gives
a sufficient condition for the well-posedness in the sense of Hadamard of a weak
solution to the coupled linear parabolic-elliptic initial-boundary value problem de-
scribing the fully coupled TCP model.

1.2. Notation. Let Ω ⊂ Rn, n = 2, 3, be a bounded open domain with a suffi-
ciently smooth boundary Γ and Ω̄ = Ω ∪ Γ. We write x for (x, y, z) ∈ Ω̄ ⊂ R3

or (x, y) ∈ Ω̄ ⊂ R2. Let ΓF ⊂ Γ and ΓF have a nonempty interior relative to
Γ. The following notation will be used for the spaces of vector-valued functions:
Hn = L2(Ω)n, Vn = H1(Ω)n, Vn0 = H1

0 (Ω)n with the norm

‖u‖Vn
0

=
[ n∑
k=1

∫
Ω

|∇uk|2dΩ
]1/2

, u = [u1 . . . un]T

and Ṽn0 =
{
ϕ ∈ Vn : ϕ

∣∣
ΓF

= 0
}

with the norm inherited from Vn or from Vn0 ,
n ∈ N, as above. We denote by L2(a, b; X) the space of L2-integrable functions
from [a, b] ⊂ R into a Hilbert space X with the norm

‖u‖L2(a,b;X) =
[ ∫ b

a

‖u(t)‖2Xdt
]1/2

We also introduce the Hilbert space

W(a, b; X) =
{
u : u ∈ L2(a, b; X), u̇ ∈ L2(a, b; X′)

}
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with the norm

‖u‖W =
[
‖u‖2L2(a,b;X) + ‖u̇‖2L2(a,b;X′)

]1/2
where the superscript dot ( ˙ ) denotes a time derivative and X′ is the dual of X.

Let f = [f1 . . . fn]T ∈ Vn. We will use the notation ∇f = [∇f1 . . .∇fn]T and

(∇f ,∇g)Hn =
n∑
k=1

(∇fk,∇gk)Hn , f ,g ∈ Vn

Throughout this article, the symbol c will be used to denote the Poincaré constant:
c = c(Ω) > 0, ‖u‖2Hn ≤ c‖u‖2Vn

0
, u ∈ Vn0 .

2. The coupled TCP model: underlying equations

The underlying TCP model is a system of time-dependent parabolic partial dif-
ferential equations coupled with Navier-type elliptic equations with time, t ∈ (0, tf ),
as a parameter. The parabolic equations represent heat, solute, and fluid diffusions,
and the Navier-type elliptic equations attempt to capture the elastic behavior of
rock, while incorporating thermal, chemical, and porous media effects. The equa-
tions are developed in terms of the following variables: the absolute temperature
T (x, t), the solute mass fraction C(x, t), the pore pressure p(x, t), and the vector
of solid displacements u(x, t).

The coupled partial differential equations supplemented by the appropriate ini-
tial and boundary conditions constitute an initial-boundary-value problem with
constant coefficients defined in an open region Ω exterior to the borehole. The
region is specified with a sufficiently smooth boundary Γ such that, without loss
of generality, we may assume that, on the outer (far-field) boundary ΓF , the abso-
lute temperature, solute mass fraction, pore pressure, and displacements are time-
independent and displacements and their velocities are negligibly small. Specifi-
cally, the region is an elliptical annulus in a two-dimensional case and a vertical or
inclined finite cylinder in a three-dimensional case.

It is convenient to consider the thermal diffusion, solute diffusion, and fluid
diffusion as a system (diffusion system). Hence, we introduce the vector V =
[T C p]T and, with this notation, the initial-boundary value problem describing the
underlying TCP model has the form

MV̇ −A∇2V = −b0(∇ · u̇), in Ω× (0, tf ), (2.1)(
K +

G

3

)
∇(∇ · u̇) +G∇2u̇ = ∇(b1 · V̇), in Ω× (0, tf ) (2.2)

with boundary conditions

V(x, t) = VB(x, t), on Γ× (0, tf ) (2.3)

u(x, t) ≈ 0, on ΓF × (0, tf ) (2.4)

u̇(x, t) ≈ 0, on ΓF × (0, tf ) (2.5)

τ̇n =
(
(b1 · V̇)I + ˙̂σ

)
n, on Γ \ ΓF × (0, tf ) (2.6)

and initial conditions

V(x, 0) =

{
VI(x), in Ω
VB(x, 0), on Γ

(2.7)
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where M and A are 3 × 3 matrices of diffusion coefficients, b0 and b1 are 3 × 1
coupling vectors determined by physical properties and input parameters of the
rock/fluid system, K and G are the bulk and shear moduli, respectively, τ is the
stress tensor, n is the outward unit normal vector on the boundary, I is the n× n
identity matrix, n = 2 or 3 is the dimension of the problem, and σ̂ is the applied
boundary stress tensor. The boundary function VB is spatially independent on the
inner (borehole) boundary ΓB and time-independent on the far-field boundary ΓF .

Remark 2.1. The matrices M = [mij ] and A = [aij ], i, j = 1, 2, 3, of diffusion
coefficients are non-symmetric with the entries specified as follows: m21 = m23 = 0
and no other entries of M are zero, and aij 6= 0, i, j = 1, 2, 3. The second entry
in the coupling vector b0 is zero and all the entries of the coupling vector b1 are
non-zero. This implies that the TCP model is non-symmetric, and the diffusion
equation (2.1) cannot be rescaled to make the coupling vectors equal. Therefore,
the methods presented in [23] are not applicable to the fully coupled TCP problem
(2.1)-(2.7).

We begin with a lemma that provides an alternative formulation of the Navier-
type elastic system (2.2), (2.4)-(2.6). Its proof, based on the principle of minimum
total potential energy, will play an important role in well-posedness analysis pre-
sented in the next section.

Lemma 2.2. The Navier-type elastic system (2.2), (2.4)-(2.6) is equivalent to the
system (

K +
G

3
)
∇(∇ · u) +G∇2u = ∇(b1 ·V), in Ω× (0, tf ) (2.8)

u ≈ 0, on ΓF × (0, tf ) (2.4)

τn =
(
(b1 ·V)I + σ̂

)
n, on Γ \ ΓF × (0, tf ) (2.9)

Proof. For the sake of simplicity, we restrict the proof to the two-dimensional case
Ω ⊂ R2. Directly analogous arguments can be developed for the three-dimensional
case. By the principle of minimum total potential energy, the region Ω shall displace
to a position that minimizes the total potential energy of the elastic system,

V(u) = VS(u)−Wb(u)−WS(u) (2.10)

where VS(u) is the elastic energy of the system; Wb(u) is work done by body
forces due to the absolute temperature, solute mass fraction, and pore pressure;
and WS(u) is work done by applied boundary stress.

Now we will specify VS(u), Wb(u), and WS(u). Here and in the following we
will suppress the time dependence of the displacement vector u for convenience.
Given the displacement u(x) = u(x)i + v(x)j, the linearized strain is the second
order symmetric tensor

ε(u) =
1
2
(
∇u +∇uT

)
where

ε11 = ux, ε12 = ε21 =
1
2
(
uy + vx

)
, ε22 = vy

In linear elasticity, a relation between the stress tensor τ and the linearized strain
tensor ε(u) is given by the generalized Hooke’s law

τij(u) = aijklεkl(u) (2.11)
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where Einstein summation convention is used, indices run from 1 to n, and aijkh
are the coefficients of elasticity independent of the strain tensor with the properties
of symmetry

aijkh = ajihk = akhij (2.12)
and of ellipticity: there exists a constant α > 0 such that

aijkhεijεkh ≥ αεijεij , ∀εij .
Specifically, for a homogeneous elastic isotropic medium, the stress-strain relation
in terms of the bulk modulus K and the shear modulus G has the form

τ = 2Gε+
(
K − 2G

3
)
(trε)I (2.13)

With this notation, the elastic strain energy of the system is

VS(u) =
1
2

∫
Ω

τ11(u)ε11(u) + 2τ12(u)ε12(u) + τ22(u)ε22(u)dΩ; (2.14)

the work done by body forces due to the absolute temperature, solute mass fraction,
and pore pressure is

Wb(u) =
∫

Ω

(b1 ·V)
(
trε(u)

)
dΩ; (2.15)

and the work done by applied boundary stress is

WS(u) =
∫

Γ

(σ̂n) · udΓ (2.16)

At this point, we wish to express the elastic strain energy VS(u) as a functional on
V2. Let Φ(x) = φ(x)i + ψ(x)j. Define the bilinear form aE : V2 × V2 → R by

aE(u,Φ) =
∫

Ω

τ11(u)ε11(Φ) + 2τ12(u)ε12(Φ) + τ22(u)ε22(Φ)dΩ, (2.17)

for u,Φ ∈ V2. From (2.10) and (2.14)-(2.17), the total potential energy of the
system has the form

V(u) =
1
2
aE(u,u)−

∫
Ω

(b1 ·V)∇ · udΩ−
∫

Γ

(σ̂n) · udΓ (2.18)

Define the following vectors:

τ 1 = [τ11 τ12]T , τ 2 = [τ21 τ22]T

Then

aE(u,Φ) =
∫

Ω

τ11(u)φx + τ12(u)φy + τ21(u)ψx + τ22(u)ψydΩ

=
∫

Ω

τ 1(u) · ∇φ+ τ 2(u) · ∇ψdΩ

=
∫

Γ

(
τ (u)n

)
·ΦdΓ−

∫
Ω

[∇ · τ 1 ∇ · τ 2]T (u) ·ΦdΩ

and we obtain the Green’s formula:

aE(u,Φ) =
∫

Γ

(τ (u)n) ·ΦdΓ−
∫

Ω

[∇· τ 1 ∇· τ 2]T (u) ·ΦdΩ, ∀u,Φ ∈ V2 (2.19)

Referring to (2.4) and (2.5), the set of admissible displacements, in general, is

Uad =
{
u ∈ Ṽn0 : u̇ ∈ Ṽn0

}
, n = 2 or 3 (2.20)
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Using the principle of minimum total potential energy, the displacement u ∈ Uad
that the region Ω ⊂ R2 undergoes is given by

DV(u)Φ = 0, ∀Φ ∈ Ṽ2
0 (2.21)

where

DV(u)Φ =
d

dδ
V(u + δΦ)

∣∣∣
δ=0

is the Gâteaux differential of V with increment Φ. From (2.18) and (2.21),

aE(u,Φ)−
∫

Ω

(b1 ·V)∇ ·ΦdΩ−
∫

Γ\ΓF

(σ̂n) ·ΦdΓ = 0, ∀Φ ∈ Ṽ2
0 (2.22)

and applying the divergence theorem we have

aE(u,Φ)−
∫

Γ\ΓF

(
(b1 ·V)In) ·ΦdΓ

+
∫

Ω

∇(b1 ·V) ·ΦdΩ−
∫

Γ\ΓF

(σ̂n) ·ΦdΓ = 0, ∀Φ ∈ Ṽ2
0

(2.23)

Green’s formula (2.19) and (2.23) yield

[∇ · τ 1 ∇ · τ 2]T = ∇(b1 ·V), in Ω (2.24)

τn =
(
(b1 ·V)I + σ̂

)
n, on Γ \ ΓF , (2.25)

and the stress-strain relation (2.13) gives

[∇ · τ 1 ∇ · τ 2]T =
(
K +

G

3
)
∇(∇ · u) +G∇2u (2.26)

From (2.24)-(2.26) and (2.4), we obtain the system (2.8), (2.9), and (2.4).
On the other hand, since u̇ ∈ Ṽ2

0, differentiating (2.22) with respect to time, we
have

aE(u̇,Φ)−
∫

Ω

(b1 · V̇)∇ ·ΦdΩ−
∫

Γ\ΓF

( ˙̂σn) ·ΦdΓ = 0, ∀Φ ∈ Ṽ2
0

Using the same argument as above leads to the equivalence of the systems (2.8),
(2.9), (2.4) and (2.2), (2.4)-(2.6). �

Remark 2.3. From the condition of mechanical equilibrium

∇ · σ = 0

where σ = τ − (b1 ·V)I is the poroelastic stress tensor, and from the stress-strain
relation (2.13), it follows that (2.8) constitutes the equation of equilibrium.

3. Well-posedness of the diffusion and elastic systems

In this section, we discuss the well-posedness of the parabolic initial-boundary
value problem for the diffusion system and the elliptic initial-boundary value prob-
lem for the elastic system considering coupling terms as data.
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3.1. Diffusion system. The following assumptions will be made on the matrices
of diffusion coefficients and the boundary and initial functions.

Assumption 3.1. The matrix M is non-singular and all the eigenvalues of the
matrix M−1A are positive: λi > 0, i = 1, 2, 3.

Under Assumption 3.1, the matrix M−1A admits the eigendecomposition

M−1A = PDP−1 (3.1)

where P = [e1 e2 e3], ei is the eigenvector of M−1A corresponding to the
eigenvalue λi, ‖ei‖ = 1, i = 1, 2, 3, and D = diag(λ1, λ2, λ3).

Assumption 3.2. VB ∈ L2
(
0, tf ;H1/2(Γ)3

)
, V̇B ∈ L2

(
0, tf ;H1/2(Γ)3

)
, and VI ∈

V3.

We transform the parabolic diffusion system (2.1), (2.3), and (2.7) to the equiva-
lent diagonalized system with homogeneous boundary conditions. The inverse trace
theorem [24] yields that there exists a continuous mapping

γ−0 : L2
(
0, tf ;H1/2(Γ)3

)
→ L2

(
0, tf ; V3

)
such that γ0γ

−
0 w = w, w ∈ L2

(
0, tf ;H1/2(Γ)3

)
, where

γ0 : L2
(
0, tf ; V3

)
→ L2

(
0, tf ;H1/2(Γ)3

)
γ0(v) = v

∣∣
Γ
, v ∈ L2

(
0, tf ; V3

)
is a linear and continuous trace mapping. We define the vector W ∈ L2

(
0, tf ; V3

)
by

W(x, t) = γ−0 VB(x, t) (3.2)

and the vector
U(x, t) = P−1

(
V(x, t)−W(x, t)

)
(3.3)

The transformation given by (3.1)-(3.3) leads to the following initial-boundary value
problem equivalent to the parabolic diffusion system (2.1), (2.3), and (2.7):

U̇−D∇2U = −P−1Ẇ +DP−1∇2W − P−1M−1b0(∇ · u̇), in Ω× (0, tf )
(3.4)

U(x, t) = 0, on Γ× (0, tf ) (3.5)

U(x, 0) = U0(x), in Ω̄ (3.6)

where

U0(x) =

{
P−1

(
VI(x)−W(x, 0)

)
, in Ω

0, on Γ
(3.7)

Remark 3.3. From (2.20), u ∈ Uad satisfies ∇ · u̇ ∈ L2(0, tf ;L2(Ω)). Also, As-
sumption 3.2 and (3.2) yield Ẇ ∈ L2

(
0, tf ; V3

)
and, with the use of (3.7), it follows

that U0 ∈ V3
0.

Define a bilinear form a : V3
0 × V3

0 → R by

a(v,w) =
3∑
k=1

λk

∫
Ω

∇vk · ∇wkdΩ,
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where v = [v1 v2 v3]T and w = [w1 w2 w3]T . The form a(·, ·) defines a scalar
product on V3

0 with the norm equivalent to the standard norm on V3
0 and the

following inequalities hold:

|a(v,w)| ≤ 3λmax‖v‖V3
0
‖w‖V3

0
, v,w ∈ V3

0 (3.8)

λmin‖v‖2V3
0
≤ a(v,v) ≤ λmax‖v‖2V3

0
, v ∈ V3

0 (3.9)

We denote this scalar product by (·, ·)a; that is,

a(v,w) = (v,w)a (3.10)

and the corresponding norm is ‖ · ‖a = (·, ·)1/2
a .

We consider the following weak formulation of the problem (3.4)-(3.7).
Given W ∈ L2

(
0, tf ; V3

)
, Ẇ ∈ L2

(
0, tf ; V3

)
, ∇ · u̇ ∈ L2(0, tf ;L2(Ω)), and

U0 ∈ H3, find U ∈ L2(0, tf ; V3
0) such that, for all ϕ ∈ V3

0,

d

dt
(U,ϕ)H3 + (U,ϕ)a = (−P−1Ẇ,ϕ)H3 + (DP−1∇2W,ϕ)H3

+ (−P−1M−1b0(∇ · u̇),ϕ)H3

(3.11)

and
U(0) = U0 (3.12)

The next lemma establishes the Hadamard well-posedness of the problem (3.11)
and (3.12).

Lemma 3.4. Problem (3.11) and (3.12) admits a unique solution U ∈ W(0, tf ; V3
0)

and this solution depends continuously on the data, that is the mapping

W,Ẇ,∇ · u̇,U0 7→ U

from L2
(
0, tf ; V3

)
×L2

(
0, tf ; V3

)
×L2(0, tf ;L2(Ω))×H3 to W(0, tf ; V3

0) is contin-
uous.

Proof. The result is based on the standard Faedo-Galerkin approximation technique
and we omit the proof of the existence and uniqueness of a solution, as it essentially
follows the proofs of [17, Theorem 1.2, Chapter III] and [25, Theorem 1.1, Chapter
III].

We will show that the solution U ∈ W(0, tf ; V3
0) depends continuously on the

data W,Ẇ,∇ · u̇ and U0. For each m ∈ Z+, define an approximate solution Um

as

Um(x, t) =
m∑
i=1

gim(t)wi(x)

where gim(t), 1 ≤ i ≤ m, are scalar functions defined on [0, tf ], w1, . . . ,wm, . . . is a
countable set of functions which is dense in V3

0, Um(x, t) satisfies

(U̇m(t),wi)H3 + (Um(t),wi)a

= (−P−1Ẇ(t),wi)H3 +
(
∇(−DP−1W(t)),∇wi

)
H3

+
(
− P−1M−1b0(∇ · u̇(t)),wi

)
H3 , 1 ≤ i ≤ m

(3.13)

and
Um(x, 0) = U0m −→

m→∞
U0 in H3 (3.14)
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Multiplying (3.13) by gjm(t), adding for j, and using

(U̇m(t),Um(t))H3 =
1
2
‖U̇m(t)‖2H3

we have
d

dt
‖Um(t)‖2H3 + 2‖Um(t)‖2a

≤ 2|(P−1Ẇ(t),Um(t))H3 |+ 2|
(
∇(DP−1W(t)),∇Um(t)

)
H3 |

+ 2|
(
P−1M−1b0(∇ · u̇(t)),Um(t)

)
H3 |

Applying (3.9), (3.10), and the Poincaré inequality gives

d

dt
‖Um(t)‖2H3 + 2λmin‖Um(t)‖2V3

0

≤ 3c
λmin

‖P−1‖2‖Ẇ‖2V3 +
λmin

3c
c‖Um(t)‖2V3

0

+
3

λmin
‖DP−1‖2‖W‖2V3 +

λmin

3
‖Um(t)‖2V3

0

+
3c
λmin

|P−1M−1b0|2‖∇ · u̇(t)‖2L2(Ω) +
λmin

3c
c‖Um(t)‖2V3

0

and therefore

d

dt
‖Um(t)‖2H3 + λmin‖Um(t)‖2V3

0
≤ 3c
λmin

‖P−1‖2‖Ẇ‖2V3 +
3λ2

max

λmin
‖P−1‖2‖W‖2V3

+
3c
λmin

|P−1M−1b0|2‖∇ · u̇(t)‖2L2(Ω)

Integrating the last inequality over (0, tf ) and applying (3.14), we obtain

‖Um‖2L2(0,tf ;V3
0) ≤

1
λmin

‖U0‖2H3 +
3c
λ2

min

‖P−1‖2‖Ẇ‖2L2(0,tf ;V3)

+
3λ2

max

λ2
min

‖P−1‖2‖W‖2L2(0,tf ;V3)

+
3c
λ2

min

|P−1M−1b0|2‖∇ · u̇‖2L2(0,tf ;L2(Ω))

(3.15)

The inequality (3.15) holds for each m ∈ Z+ and therefore,

‖U‖2L2(0,tf ;V3
0) ≤

1
λmin

‖U0‖2H3 +
3c
λ2

min

‖P−1‖2‖Ẇ‖2L2(0,tf ;V3)

+
3λ2

max

λ2
min

‖P−1‖2‖W‖2L2(0,tf ;V3)

+
3c
λ2

min

|P−1M−1b0|2‖∇ · u̇‖2L2(0,tf ;L2(Ω))

(3.16)

To estimate U̇m(t), note that U̇m(t) =
∑m
i=1ġim(t)wi(x) ∈ span{w1, . . . ,wm} =

Em ⊂ V3
0 and

‖U̇m(t)‖H−1(Ω)3 = sup
v∈Em\{0}

|(U̇m(t),v)H3 |
‖v‖V3

0

(3.17)
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Using (3.8), (3.10), (3.13), the Poincaré inequality, and linearity argument yields

(U̇m(t),ϕ)H3 ≤ |a(Um(t),ϕ)|+ |(P−1Ẇ,ϕ)H3 |+ |(∇(DP−1W),∇ϕ)H3 |
+ |(P−1M−1b0(∇ · u̇),ϕ)H3 |

≤
(

3λmax‖Um(t)‖V3
0

+ c‖P−1‖‖Ẇ‖V3 + λmax‖P−1‖‖W‖V3

+ c|P−1M−1b0|‖∇ · u̇‖L2(Ω)

)
‖ϕ‖V3

0
, ∀ϕ ∈ V3

0

(3.18)

From (3.17) and (3.18), we have

‖U̇m(t)‖H−1(Ω)3 ≤ 3λmax‖Um(t)‖V3
0

+ c‖P−1‖‖Ẇ‖V3 + λmax‖P−1‖‖W‖V3

+ c|P−1M−1b0|‖∇ · u̇‖L2(Ω)

Squaring the last inequality and integrating it over (0, tf ) gives

‖U̇m‖2L2(0,tf ;H−1(Ω)3) ≤ 36λ2
max‖Um‖2L2(0,tf ;V3

0)

+ 4c2‖P−1‖2‖Ẇ‖2L2(0,tf ;V3) + 4λ2
max‖P−1‖2‖W‖2L2(0,tf ;V3)

+ 4c2|P−1M−1b0|2‖∇ · u̇‖2L2(0,tf ;L2(Ω))

Applying (3.15) to the first term on the right-hand side of this inequality, we obtain

‖U̇m‖2L2(0,tf ;H−1(Ω)3) ≤
36λ2

max

λmin
‖U0‖2H3

+
(108cλ2

max

λ2
min

+ 4c2
)
‖P−1‖2‖Ẇ‖2L2(0,tf ;V3)

+
(108λ4

max

λ2
min

+ 4λ2
max

)
‖P−1‖2‖W‖2L2(0,tf ;V3)

+
(108cλ2

max

λ2
min

+ 4c2
)
|P−1M−1b0|2‖∇ · u̇‖2L2(0,tf ;L2(Ω))

The last inequality holds for each m ∈ Z+ and therefore,

‖U̇‖2L2(0,tf ;H−1(Ω)3)

≤ 36λ2
max

λmin
‖U0‖2H3 +

(108cλ2
max

λ2
min

+ 4c2
)
‖P−1‖2‖Ẇ‖2L2(0,tf ;V3)

+
(108λ4

max

λ2
min

+ 4λ2
max

)
‖P−1‖2‖W‖2L2(0,tf ;V3)

+
(108cλ2

max

λ2
min

+ 4c2
)
|P−1M−1b0|2‖∇ · u̇‖2L2(0,tf ;L2(Ω))

(3.19)

The result follows from (3.16) and (3.19). �

Lemma 3.4 yields the Hadamard well-posedness in the weak sense of the diffusion
system (2.1), (2.3), and (2.7), namely, the existence and uniqueness of a weak
solution to the model and its continuous dependence on the boundary data, initial
data, and the divergence of the rock deformation velocity field.

Theorem 3.5 (Well-posedness of the diffusion system). Given boundary data
VB ∈ L2

(
0, tf ;H1/2(Γ)3

)
with V̇B ∈ L2

(
0, tf ;H1/2(Γ)3

)
, initial data VI ∈ H3,

and ∇ · u̇ ∈ L2
(
0, tf ;L2(Ω)

)
, the diffusion system (2.1), (2.3), and (2.7) admits
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a unique weak solution V ∈ L2
(
0, tf ; V3

)
with V̇ ∈ L2

(
0, tf ;H−1(Ω)3

)
and this

solution depends continuously on the data VB , V̇B ,VB(0),VI , and ∇ · u̇. That is,
the mapping

VB , V̇B ,VB(0),VI ,∇ · u̇ 7→ V, V̇

from L2
(
0, tf ;H1/2(Γ)3

)
× L2

(
0, tf ;H1/2(Γ)3

)
×H1/2(Γ)3 ×H3 × L2

(
0, tf ;L2(Ω)

)
to L2

(
0, tf ; V3

)
× L2

(
0, tf ;H−1(Ω)3

)
is continuous.

Proof. The existence and uniqueness of a weak solution follow immediately from
the transformation (3.3). It remains to prove the continuous dependence on data.
From (3.2), (3.3) and the Poincaré inequality, we have

‖V‖2L2(0,tf ;V3) ≤ 2(1 + c)‖P‖2‖U‖2L2(0,tf ;V3
0) + 2Ĉ‖VB‖2L2(0,tf ;H1/2(Γ)3) (3.20)

‖V̇‖2L2(0,tf ;H−1(Ω)3) ≤ 2‖P‖2‖U̇‖2L2(0,tf ;H−1(Ω)3) + 2Ĉ‖V̇B‖2L2(0,tf ;H1/2(Γ)3) (3.21)

where Ĉ > 0 is a constant. Also, the transformation (3.7) gives

‖U0‖2H3 ≤ 2‖P−1‖2‖VI‖2H3 + 2‖P−1‖2Ĉ‖VB(0)‖2H1/2(Γ)3 (3.22)

Applying (3.22) to (3.16) and (3.19) and substituting the results together with

‖W‖2L2(0,tf ;V3) ≤ Ĉ‖VB‖2L2(0,tf ;H1/2(Γ)3)

‖Ẇ‖2L2(0,tf ;V3) ≤ Ĉ‖V̇B‖2L2(0,tf ;H1/2(Γ)3)

into (3.20) and (3.21), respectively, complete the proof. �

The next lemma further characterizes the solution V to the diffusion system
(2.1), (2.3), and (2.7) dealing with the initial data VI ∈ V3. This result will be
needed in the later discussion of the coupled TCP model.

Lemma 3.6. Under assumption VI ∈ V3, the weak solution V of the diffusion
system (2.1), (2.3), and (2.7) satisfies V̇ ∈ L2(0, tf ; H3) and the following a priori
estimate holds

‖V̇‖2L2(0,tf ;H3) ≤
(

4 +
6

λ2
min

)
‖P‖2|P−1M−1b0|2‖∇ · u̇‖2L2(0,tf ;L2(Ω)) + θ (3.23)

where θ > 0 is a constant that does not depend on ∇ · u̇.

Proof. As before, we use the standard Faedo-Galerkin approximation method ap-
plied to the problem (3.11) and (3.12). Note that the assumption VI ∈ V3 and
(3.7) imply U0 ∈ V3

0. Multiplying (3.13) by ġjm(t), adding for j, and using
(Um(t), U̇m(t))a = 1

2‖U̇m(t)‖a yield the inequality

2‖U̇m(t)‖2H3 +
d

dt
‖Um(t)‖2a

≤ 2|(P−1Ẇ, U̇m(t))H3 |+ 2
d

dt

(
∇(−DP−1W),∇Um(t)

)
H3

+ 2|
(
∇(DP−1Ẇ),∇Um(t)

)
H3 |+ 2|

(
P−1M−1b0(∇ · u̇), U̇m(t)

)
H3 |

which, in turn, gives

2‖U̇m(t)‖2H3 +
d

dt
‖Um(t)‖2a

≤ 2‖P−1‖2‖Ẇ‖2V3 +
1
2
‖U̇m(t)‖2H3
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+ 2
d

dt

(
∇(−DP−1W),∇Um(t)

)
H3 + c‖DP−1‖2‖Ẇ‖2V3

+
1
c
‖Um(t)‖2V3

0
+ 2|P−1M−1b0|2‖∇ · u̇‖2L2(Ω) +

1
2
‖U̇m(t)‖2H3

and then

‖U̇m(t)‖2H3 +
d

dt
‖Um(t)‖2a ≤ (2 + cλ2

max)‖P−1‖2‖Ẇ‖2V3 +
1
c
‖Um(t)‖2V3

0

+ 2
d

dt

(
∇(−DP−1W),∇Um(t)

)
H3

+ 2|P−1M−1b0|2‖∇ · u̇‖2L2(Ω)

Integrating the above inequality over (0, tf ) and using (3.9) and (3.10), we have

‖U̇m‖2L2(0,tf ;H3) + λmin‖Um(tf )‖2V3
0

≤ λmax‖Um(0)‖2V3
0

+ (2 + cλ2
max)‖P−1‖2‖Ẇ‖2L2(0,tf ;V3)

+ λmax‖P−1‖2‖W(0)‖2V3 + λmax‖Um(0)‖2V3
0

+
λ2

max

λmin
‖P−1‖2‖W(tf )‖2V3 + λmin‖Um(tf )‖2V3

0

+
1
c
‖Um‖2L2(0,tf ;V3

0) + 2|P−1M−1b0|2‖∇ · u̇‖2L2(0,tf ;L2(Ω))

Applying (3.15) and the Poincaré inequality to the last inequality, we obtain

‖U̇m‖2L2(0,tf ;H3) ≤
( 1
λmin

+ 2λmax

)
‖U0‖2V3

0
+ λmax‖P−1‖2‖W(0)‖2V3

+
λ2

max

λmin
‖P−1‖2‖W(tf )‖2V3 +

3λ2
max

cλ2
min

‖P−1‖2‖W‖2L2(0,tf ;V3)

+
(

2 + cλ2
max +

3
λ2

min

)
‖P−1‖2‖Ẇ‖2L2(0,tf ;V3)

+
(

2 +
3

λ2
min

)
|P−1M−1b0|2‖∇ · u̇‖2L2(0,tf ;L2(Ω)), ∀m ∈ Z+

This shows that the sequence U̇m ranges in a bounded set of L2(0, tf ; H3) and

‖U̇‖2L2(0,tf ;H3) ≤
(

2 +
3

λ2
min

)
|P−1M−1b0|2‖∇ · u̇‖2L2(0,tf ;L2(Ω)) + θ̂ (3.24)

where θ̂ > 0 is a constant independent of ∇ · u̇. From (3.2) and (3.3),

‖V̇‖2L2(0,tf ;H3) ≤ 2‖P‖2‖U̇‖2L2(0,tf ;H3) + 2Ĉ‖V̇B‖L2(0,tf ;H1/2(Γ)3)

where Ĉ > 0 is a constant, and applying (3.24) the result follows. �

3.2. Elastic system. From now on, we will consider the Navier-type elastic system
(2.8), (2.9), and (2.4). The following assumption will be made on the applied
boundary stress tensor σ̂.

Assumption 3.7.

σ̂ ∈ L2
(
0, tf ;L2(Γ)n×n

)
and ˙̂σ ∈ L2

(
0, tf ;L2(Γ)n×n

)
where n = 2 or 3 is the dimension of the problem.
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In solid mechanics the weak or variational formulation of a boundary value prob-
lem is equivalent to the principle of minimum total potential energy. Utilizing the
notation introduced in Section 2, let aE : Vn × Vn → R, n = 2 or 3, be a bilinear
form defined as

aE(u,Φ) =
∫

Ω

n∑
i,j=1

τij(u)εij(Φ)dΩ, u,Φ ∈ Vn (3.25)

where τ = [τij ] and ε = [εij ], i, j = 1, . . . , n, are the stress and strain tensors,
respectively. From (2.18), (2.20), and (2.21), under Assumption 3.7, we obtain the
following weak formulation of problem (2.8), (2.9), and (2.4):

Given V ∈ L2
(
0, tf ; V3

)
with V̇ ∈ L2

(
0, tf ; H3

)
and σ̂ ∈ L2

(
0, tf ;L2(Γ)n×n

)
with ˙̂σ ∈ L2

(
0, tf ;L2(Γ)n×n

)
, find u ∈ L2(0, tf ; Ṽn0 ) such that u̇ ∈ L2(0, tf ; Ṽn0 )

and, for each t ∈ [0, tf ),

aE(u,Φ)−
∫

Ω

(b1 ·V)∇ ·ΦdΩ−
∫

Γ\ΓF

(σ̂n) ·ΦdΓ = 0, ∀Φ ∈ Ṽn0 (3.26)

where n is the outward unit normal vector on the boundary.
Next we will show that problem (3.26) is well-posed in the sense of Hadamard.

Define continuous linear functionals F and Ḟ on Vn by the pairings

Φ 7→ 〈F,Φ〉 and Φ 7→ 〈Ḟ ,Φ〉

where

〈F,Φ〉 =
∫

Ω

(b1 ·V)∇ ·ΦdΩ +
∫

Γ\ΓF

(σ̂n) ·ΦdΓ, (3.27)

〈Ḟ ,Φ〉 =
∫

Ω

(b1 · V̇)∇ ·ΦdΩ +
∫

Γ\ΓF

( ˙̂σn) ·ΦdΓ, ∀Φ ∈ Vn (3.28)

From (3.26)-(3.28), it follows that, for each t ∈ [0, tf ),

aE(u,Φ) = 〈F,Φ〉, aE(u̇,Φ) = 〈Ḟ ,Φ〉, ∀Φ ∈ Ṽn0

and, using the trace theorem, for each Φ ∈ Ṽn0 and t ∈ [0, tf ),

|aE(u,Φ)| ≤ ‖b1 ·V‖L2(Ω)‖∇ ·Φ‖L2(Ω) + ‖σ̂n‖L2(Γ)n‖Φ‖L2(Γ)n

≤
(√
n|b1|‖V‖Vn + Ĉ‖σ̂‖L2(Γ)n×n

)
‖Φ‖Vn

(3.29)

|aE(u̇,Φ)| ≤ ‖b1 · V̇‖L2(Ω)‖∇ ·Φ‖L2(Ω) + ‖ ˙̂σn‖L2(Γ)n‖Φ‖L2(Γ)n

≤
(√
n|b1|‖V̇‖Hn + Ĉ‖ ˙̂σ‖L2(Γ)n×n

)
‖Φ‖Vn

(3.30)

where Ĉ > 0 is a constant.
To prove the existence and uniqueness of a solution to the problem (3.26), we

will use of the Korn inequality [10, Theorem 3.1, Chapter III] and its consequence
[10, Theorem 3.3, Chapter III] which imply that there exists a constant cE > 0
such that

aE(v,v) ≥ cE‖v‖2Vn , ∀v ∈ Ṽn0 , t ∈ [0, tf ) (3.31)

Also, from (2.11), (2.12), and (3.25), we have

aE(u,v) = aE(v,u), ∀u,v ∈ Vn, ∀v ∈ Ṽn0 (3.32)
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and, for each t ∈ [0, tf ),

|aE(u,v)| ≤ max
i,j,k,l

{aijkl}
n∑

i,j,k,l=1

∣∣ ∫
Ω

εij(u)εkl(v)dΩ
∣∣

≤ n · max
i,j,k,l

{aijkl}‖u‖Vn‖v‖Vn

(3.33)

Equations (3.31)-(3.33) yield that aE(·, ·) is symmetric and continuous on Ṽn0 and
there exist constants cE > 0 and β > 0 such that

cE‖u‖2Vn ≤ aE(u,u) ≤ β‖u‖2Vn , ∀u ∈ Ṽn0 , t ∈ [0, tf )

Thus, for each t ∈ [0, tf ), aE(·, ·) is an inner product on Ṽn0 that is associated with a
topology equivalent to the standard topology on Ṽn0 . From the Riesz representation
theorem and (3.27)-(3.31) we have the following result.

Lemma 3.8. For each t ∈ [0, tf ), there exists a unique function u ∈ Ṽn0 with
u̇ ∈ Ṽn0 such that (3.26) holds for all Φ ∈ Ṽn0 . Furthermore,

‖u‖Vn ≤
√
n

cE
|b1|‖V‖Vn +

Ĉ

cE
‖σ̂‖L2(Γ)n×n

‖u̇‖Vn ≤
√
n

cE
|b1|‖V̇‖Hn +

Ĉ

cE
‖ ˙̂σ‖L2(Γ)n×n

As a consequence, we obtain the Hadamard well-posedness in the weak sense of
the Navier-type elastic system (2.8), (2.9), and (2.4):

Corollary 3.9 (Well-posedness of the elastic system). Assume V ∈ L2
(
0, tf ; V3

)
with V̇ ∈ L2

(
0, tf ; H3

)
and σ̂ ∈ L2

(
0, tf ;L2(Γ)n×n

)
with ˙̂σ ∈ L2

(
0, tf ;L2(Γ)n×n

)
.

Then (2.8), (2.9), and (2.4) admits a unique weak solution u ∈ L2
(
0, tf ; Ṽn0

)
with

u̇ ∈ L2
(
0, tf ; Ṽn0

)
and this solution depends continuously on the data. That is, the

mapping
V, V̇, σ̂, ˙̂σ 7→ u, u̇

from L2
(
0, tf ; V3

)
× L2

(
0, tf ; H3

)
× L2

(
0, tf ;L2(Γ)n×n

)
× L2

(
0, tf ;L2(Γ)n×n

)
to

L2
(
0, tf ; Ṽn0

)
× L2

(
0, tf ; Ṽn0

)
is continuous.

4. Main results

In this section, we present the main result of this paper, Theorem 4.1, and
an example of its application. Theorem 4.1 gives a sufficient condition for the
well-posedness in the weak sense of the coupled parabolic-elliptic initial-boundary
value problem (2.1)-(2.7) describing the fully coupled TCP model. This condition
depends on physical parameters of the system, coupling vectors, and the Korn
constant which in turn depends only on the shape of a domain. Evaluation of
the Korn constant becomes necessary for each specific domain and is essential for
the proposed well-posedness theory. For instance, in the case of a two-dimensional
annular region that does not experience pure rotation, the Korn constant can be
expressed explicitly in terms of the ratio of the inner and outer radii of the domain.
As a consequence, for such regions, the sufficient condition for the well-posedness of
the problem can be formulated in terms of physical parameters, coupling vectors,
and the ratio of the inner and outer radii. This result is presented in Corollary 4.2.
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The sufficient conditions presented in Theorem 4.1 and Corollary 4.2 also provide
compatibility conditions on the coupling vectors.

Theorem 4.1. Under Assumptions 3.1, 3.2, and 3.7, the coupled TCP system
(2.1)-(2.7) admits a unique weak solution

(V,u) ∈ L2
(
0, tf ; V3

)
× L2

(
0, tf ; Ṽn0

)
with (V̇, u̇) ∈ L2

(
0, tf ; H3

)
× L2

(
0, tf ; Ṽn0

) (4.1)

if

cE − 2
(

2n+
3n
λ2

min

)1/2

‖P‖ |P−1M−1b0| |b1| > 0 (4.2)

where cE = cE(Ω) > 0 is the Korn constant, n is the dimension of the prob-
lem, M−1A = PDP−1, D = diag(λ1, λ2, λ3), and b0 and b1 are coupling vectors.
Moreover, this solution depends continuously on the boundary data VB and V̇B, the
initial data VI and VB(0), the applied boundary stress σ̂, and its time derivative
˙̂σ.

Proof. Property (4.1) of the solution (V,u) and the continuous dependence of the
solution on the data follow immediately from Theorem 3.5, Lemma 3.6, and Corol-
lary 3.9. We only need to prove that condition (4.2) is sufficient for well-posedness
of the system.

Since, for each t ∈ [0, tf ), u̇ ∈ Ṽn0 , from (3.26), the trace theorem, and the
Poincaré inequality we have

aE(u̇, u̇) =
∫

Ω

(b1 · V̇)∇ · u̇dΩ +
∫

Γ\ΓF

( ˙̂σn) · u̇dΓ

≤ ‖b1 · V̇‖L2(Ω)‖∇ · u̇‖L2(Ω) + ‖ ˙̂σn‖L2(Γ)n‖u̇‖L2(Γ)n

≤
√
n|b1‖|V̇‖H3‖∇u̇‖Hn + Ĉ‖ ˙̂σ‖L2(Γ)n×n‖∇u̇‖Hn

where Ĉ > 0 is a constant. Utilizing (3.31), the last inequality yields

cE‖∇u̇‖Hn ≤
√
n|b1| ‖V̇‖H3 + Ĉ‖ ˙̂σ‖L2(Γ)n×n , ∀t ∈ [0, tf )

and therefore,

cE‖∇u̇‖L2(0,tf ;Hn) ≤
√

2n|b1‖|V̇‖L2(0,tf ;H3) +
√

2Ĉ‖ ˙̂σ‖L2(0,tf ;L2(Γ)n×n) (4.3)

Substituting the a priori estimate (3.23) into (4.3), we have

cE‖∇u̇‖L2(0,tf ;Hn)

≤ 2
(

2n+
3n
λ2

min

)1/2

‖P‖ |P−1M−1b0| |b1| ‖∇u̇‖L2(0,tf ;Hn) + Θ
(4.4)

where Θ > 0 is a constant independent of u and u̇. Applying the Hadamard
well-posedness condition for operator equations [13] to (4.4) yields the sufficient
condition (4.2). �

Corollary 4.2. For an annular domain Ω ⊂ R2 of inner radius RB and outer
radius RF with δ = RB

RF
≤ e−1, under the side condition on the displacement u =

ui + vj, ∫
Ω

(∂u
∂y
− ∂v

∂x

)
dΩ = 0 (4.5)
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the coupled TCP system (2.1)-(2.7) has a unique weak solution if
G

2

[
1−

( 3
δ−2 + 1 + δ2

)1/2]
− 2
(

4 +
6

λ2
min

)1/2

‖P‖ |P−1M−1b0| |b1| > 0 (4.6)

where G is the shear modulus, M−1A = PDP−1, D = diag(λ1, λ2, λ3), and b0 and
b1 are coupling vectors.

Proof. Under the given conditions, the following inequality holds [12]:
D(u̇)
S(u̇)

≤ 4
[
1−

( 3
δ−2 + 1 + δ2

)1/2]−1

where D(u̇) = ‖∇u̇‖2H2 and S(u̇) =
∫

Ω

∑2
i,j=1 εij(u̇)2dΩ. Therefore,

S(u̇) ≥ 1
4

[
1−

( 3
δ−2 + 1 + δ2

)1/2]
‖∇u̇‖2H2 (4.7)

For homogeneous and isotropic medium, the coefficients of elasticity aijkl, i, j, k, l =
1, 2, in terms of the Lamé parameters λ and µ are a1111 = a2222 = 2µ+ λ, a1122 =
a2211 = λ, a1212 = a2121 = a1221 = a2112 = µ and, from (2.11) and (2.12), we have

aE(u̇, u̇) =
∫

Ω

2µ(ε2
11 + ε2

12 + ε2
21 + ε2

22) + λ(ε11 + ε22)2dΩ

≥ 2µ
∫

Ω

ε2
11 + ε2

12 + ε2
21 + ε2

22dΩ

= 2µS(u̇)

(4.8)

where µ = G is the shear modulus. Equations (3.31), (4.7), and (4.8) give the Korn
constant

cE =
G

2

[
1−

( 3
δ−2 + 1 + δ2

)1/2]
Applying this constant to the sufficient condition (4.2) yields (4.6). �

Remark 4.3. The purpose of the condition (4.5) is to eliminate a pure rotation.
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