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LIOUVILLE-TYPE THEOREMS FOR ELLIPTIC INEQUALITIES
WITH POWER NONLINEARITIES INVOLVING VARIABLE
EXPONENTS FOR A FRACTIONAL GRUSHIN OPERATOR

MOHAMED JLELI, MOKHTAR KIRANE, BESSEM SAMET

Abstract. We establish Liouville-type theorems for the elliptic inequality

u ≥ 0, Gα,β,θ
`
up(x,y), uq(x,y)

´
≥ ur(x,y), (x, y) ∈ RN1 × RN2 ,

where Gα,β,θ, 0 < α, β < 2, θ ≥ 0, is the fractional Grushin operator of mixed

orders α, β, defined by

Gα,β,θ(u, v) = (−∆x)α/2u+ |x|2θ(−∆y)β/2v,

where, (−∆x)α/2 is the fractional Laplacian operator of order α with respect

to the variable x ∈ RN1 , and (−∆y)β/2 is the fractional Laplacian operator

of order β with respect to the variable y ∈ RN2 . Here, p, q, r : RN1 × RN2 →
[1,∞) are measurable functions satisfying certain conditions.

1. Introduction

The standard Liouville theorem [20] states that any bounded complex function
which is harmonic (or holomorphic) on the entire space is constant. The first proof
of this theorem was published by Cauchy [4]. In the recent literature, Gidas and
Spruck [12] extended this result to the case of non-negative solutions of semilinear
elliptic equations in the whole space RN or in half-spaces. In the case of the whole
space RN , they established that if 1 ≤ r < N+2

N−2 , then the unique non-negative
solution of

−∆u = Cur in RN ,
where C is a strictly positive constant, is the trivial solution. A simple proof based
on the moving planes method was suggested by Chen and Li [5] in the whole range
of r, i.e., 0 < r < N+2

N−2 . This result is optimal in the sense that for any r ≥ N+2
N−2 ,

we have infinitely many positive solutions. The same result holds for the elliptic
inequality

−∆u ≥ Cur in RN ,
see [13]. Berestycki et al. [3], established Liouville-type theorems for semilinear
elliptic inequalities of the form

u ≥ 0, −∆u ≥ h(x)ur in Σ,

where Σ is a cone in RN and h is a positive function.
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Recently, several Liouville-type theorems were established for various classes of
degenerate elliptic equations. Serrin and Zou [26] generalized the standard Liouville
theorem for p-harmonic functions on the whole space RN and on exterior domains.
In [17, 18], Liouville-type theorems for some linear degenerate elliptic operators
such as X-elliptic operators, Kohn-Laplacian and Ornstein-Uhlenbeck operators
were proved. Dolcetta and Cutri [7] established a Liouville-type theorem for an
elliptic inequality involving the Grushin operator. More precisely, they considered
the problem

u ≥ 0, Gθu ≥ ur in RN1 × RN2 , (1.1)
where θ > 1 and Gθ is the Grushin operator defined by

Gθu = (−∆x)u+ |x|2θ(−∆y)u, (x, y) ∈ RN1 × RN2 . (1.2)

They proved that if 1 < r < Q
Q−2 , then the only solution of (1.1) is the trivial

solution. Here, Q is the homogeneous dimension of the space, given by Q = N1 +
(θ + 1)N2. For other related results, we refer to [1, 22, 23, 28].

Recently, a lot of attention has been paid to the study of linear and nonlinear
integral operators, involving the fractional Laplacian. In [21], using the moving
plane method, Ma and Chen established a Liouville-type result for the system of
equations

(−∆)µ/2u = vq,

(−∆)µ/2v = up,

where µ ∈ (0, 2), 1 < p, q ≤ N+µ
N−µ , and N ≥ 2. Here, (−∆)µ/2 is the fractional

Laplacian operator of order µ/2. Using the test function method [24], Dahmani et
al. [6] extended the result in [21] to various classes of systems involving fractional
Laplacian operators with different orders. Quaas and Xia [25] established Liouville-
type results for a class of fractional elliptic equations and systems in the half space.
For other related works, we refer to [8, 9, 10, 14, 16], and the references therein.

This article is devoted to the study of nonexistence results of solutions for the
elliptic inequality

u ≥ 0, Gα,β,θ
(
up(x,y), uq(x,y)

)
≥ ur(x,y), (x, y) ∈ RN1 × RN2 , (1.3)

where Gα,β,θ, 0 < α, β < 2, θ ≥ 0, is the fractional Grushin operator of mixed
orders α, β, defined by

Gα,β,θ(u, v) = (−∆x)α/2u+ |x|2θ(−∆y)β/2v,

where, (−∆x)α/2 is the fractional Laplacian operator of order α with respect to
the variable x ∈ RN1 , and (−∆y)β/2 is the fractional Laplacian operator of order
β with respect to the variable y ∈ RN2 . Here, p, q, r : RN1 × RN2 → [1,∞) are
supposed to be measurable functions satisfying certain conditions. Observe that
the standard Grushin operator defined by (1.2) can be written in the form

Gθu = G2,2,θ(u, u).

Up to our knowledge, there are not many works dealing with Liouville-type prop-
erties involving elliptic inequalities with variable exponents non-linearity. In this
direction, we refer to the recent paper [11].

Before stating and proving the main results of this work, let us present some
basic definitions and some lemmas that will be used later.
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The nonlocal operator (−∆)s, 0 < s < 1, is defined for any function h in the
Schwartz class through the Fourier transform

(−∆)sh(x) = F−1
(
|ξ|2sF(h)(ξ)

)
(x),

where F stands for the Fourier transform and F−1 for its inverse. It can be also
defined via the Riesz potential

(−∆)sh(x) = cN,s PV
∫

RN

h(x)− h(x)
|x− x|N+2s

dx,

where cN,s is a normalisation constant and PV is the Cauchy principal value (see
[19, 27]).

Lemma 1.1 ([15]). Suppose that δ ∈ (0, 2), β + 1 ≥ 0, and ψ ∈ C∞0 (RN ), ψ ≥ 0.
Then the following point-wise inequality holds:

(−∆)δ/2ψβ+2(x) ≤ (β + 2)ψβ+1(x)(−∆)δ/2ψ(x).

Lemma 1.2 (ε-Young’s inequality). Let 1 < p, q <∞, and 1
p + 1

q = 1. Then

ab ≤ εap + C(ε)bq, (a, b > 0, ε > 0),

where C(ε) = (εp)−q/pq−1.

For a measurable function p : RN1 × RN2 → [1,∞), we denote by Lp(·,·)(RN1 ×
RN2) the Lebesgue space with variable exponent, defined by

Lp(·,·)(RN1 × RN2)

=
{
u : RN1 × RN2 → R : u measurable,

∫
RN1×RN2

|u|p(x,y) dx dy <∞
}
.

We denote by Lp(·,·)loc (RN1 × RN2) the set defined by

L
p(·,·)
loc (RN1 × RN2)

=
{
u : RN1 × RN2 → R : u measurable,

∫
K

|u|p(x,y) dx dy <∞, K compact
}
.

For more details on Lebesgue spaces with variable exponents, we refer to [2].

2. Main results

We consider the elliptic inequality (1.3) under the assumptions:
θ ≥ 0, 0 < α, β < 2,
p, q, r ∈ L∞(RN ), N = N1 +N2,
r(x, y) > max{p(x, y), q(x, y)} ≥ 1,
λ := inf(x,y)∈RN1×RN2 {r(x, y)− p(x, y)} > 0,
µ := inf(x,y)∈RN1×RN2 {r(x, y)− q(x, y)} > 0.

The definition of solutions we adopt for (1.3) is the following.

Definition 2.1. We say that u is a weak solution of (1.3), if u ∈ Li(·,·)loc (RN1×RN2),
i ∈ {p, q, r}, u ≥ 0, and∫

RN
up(x,y)(−∆x)α/2ϕdx dy +

∫
RN
|x|2θuq(x,y)(−∆y)β/2ϕdx dy

≥
∫

RN
ur(x,y)ϕdx dy,
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for all ϕ ∈ C∞0 (RN ), ϕ ≥ 0.

Given R > 0, we denote by ΩR,θ the subset of RN1 × RN2 defined by

ΩR,θ =
{

(x, y) ∈ RN1 × RN2 : 1 ≤ |x|
2

R2
+
|y|2

R2(θ+1)
≤ 2
}
.

We have the following Liouville-type theorem for the elliptic inequality (1.3).

Theorem 2.2. Suppose that

lim
R→∞

(∫
ΩR,θ

R
−αr(x,y)

r(x,y)−p(x,y) dx dy +
∫

ΩR,θ

R
[2θ−β(θ+1)]r(x,y)
r(x,y)−q(x,y) dx dy

)
= 0. (2.1)

Then inequality (1.3) has no nontrivial weak solution.

Proof. Suppose that u is a nontrivial weak solution of (1.3). Let ω be a real number
such that

ω > max
{‖r‖L∞(RN )

λ
,
‖r‖L∞(RN )

µ
, 1
}
. (2.2)

By the weak formulation of (1.3), we have∫
RN

up(x,y)(−∆x)α/2ϕω dx dy +
∫

RN
|x|2θuq(x,y)(−∆y)β/2ϕω dx dy

≥
∫

RN
ur(x,y)ϕω dx dy,

(2.3)

for all ϕ ∈ C∞0 (RN ), ϕ ≥ 0. By Lemma 1.1, we have∫
RN

up(x,y)(−∆x)α/2ϕω dx dy ≤ ω
∫

RN
up(x,y)ϕω−1|(−∆x)α/2ϕ| dx dy.

Using the ε-Young inequality (see Lemma 1.2) with parameters s(x, y) = r(x,y)
p(x,y) and

s′(x, y) = r(x,y)
r(x,y)−p(x,y) , for all ε > 0, we obtain∫

RN
up(x,y)ϕω−1|(−∆x)α/2ϕ| dx dy

=
∫

RN
up(x,y)ϕ

ω
s(x,y)ϕω−1− ω

s(x,y) |(−∆x)α/2ϕ| dx dy

≤ ε
∫

RN
ur(x,y)ϕω dx dy

+
∫

RN
C1(x, y, ε)ϕ[ω−1− ω

s(x,y) ]s′(x,y)|(−∆x)α/2ϕ|s
′(x,y) dx dy,

where

C1(x, y, ε) =
(εr(x, y)
p(x, y)

) −p(x,y)
r(x,y)−p(x,y)

(r(x, y)− p(x, y)
r(x, y)

)
,

(x, y) ∈ RN1 × RN2 , and ε > 0. Observe that for all ε > 0, we have C1(·, ·, ε) ∈
L∞(RN ). In fact, under the considered assumptions, we have

C1(x, y, ε) ≤ ε
‖p‖

L∞(RN )
λ , (x, y) ∈ RN1 × RN2 .

Let C1(ε) = ‖C1(·, ·, ε)‖L∞(RN ). Therefore,∫
RN

up(x,y)ϕω−1|(−∆x)α/2ϕ| dx dy
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≤ ε
∫

RN
ur(x,y)ϕω dx dy + C1(ε)

∫
RN

ϕ[ω−1− ω
s(x,y) ]s′(x,y)|(−∆x)α/2ϕ|s

′(x,y) dx dy.

Observe that thanks to (2.2), we have∫
RN

ϕ[ω−1− ω
s(x,y) ]s′(x,y)|(−∆x)α/2ϕ|s

′(x,y) dx dy <∞.

Indeed, we have∫
RN

ϕ[ω−1− ω
s(x,y) ]s′(x,y)|(−∆x)α/2ϕ|s

′(x,y) dx dy

=
∫

RN
ϕω−

r(x,y)
r(x,y)−p(x,y) |(−∆x)α/2ϕ|

r(x,y)
r(x,y)−p(x,y) dx dy.

On the other hand, from (2.2), we have

r(x, y)
r(x, y)− p(x, y)

≤
‖r‖L∞(RN )

λ
< ω, (x, y) ∈ RN1 × RN2 .

As consequence, we have the estimate∫
RN

up(x,y)(−∆x)α/2ϕω dx dy

≤ ωε
∫

RN
ur(x,y)ϕω dx dy

+ C1(ε)ω
∫

RN
ϕω−

r(x,y)
r(x,y)−p(x,y) |(−∆x)α/2ϕ|

r(x,y)
r(x,y)−p(x,y) dx dy.

(2.4)

Again, using Lemma 1.1, we obtain∫
RN
|x|2θuq(x,y)(−∆y)β/2ϕω dx dy ≤ ω

∫
RN
|x|2θuq(x,y)ϕω−1|(−∆y)β/2ϕ| dx dy.

Using the ε-Young inequality with parameters k(x, y) = r(x,y)
q(x,y) and k′(x, y) =

r(x,y)
r(x,y)−q(x,y) , for all ε > 0, we obtain∫

RN
|x|2θuq(x,y)ϕω−1|(−∆y)β/2ϕ| dx dy

=
∫

RN
uq(x,y)ϕ

ω
k(x,y)ϕω−1− ω

k(x,y) |x|2θ|(−∆y)β/2ϕ| dx dy

≤ ε
∫

RN
ur(x,y)ϕω dx dy

+
∫

RN
C2(x, y, ε)ϕ[ω−1− ω

k(x,y) ]k′(x,y)|x|2θk
′(x,y)|(−∆y)β/2ϕ|k

′(x,y) dx dy,

where

C2(x, y, ε) =
(εr(x, y)
q(x, y)

) −q(x,y)
r(x,y)−q(x,y)

(r(x, y)− q(x, y)
r(x, y)

)
, (x, y) ∈ RN1×RN2 , ε > 0.

As previously, under the considered assumptions, we have

C2(x, y, ε) ≤ ε
‖q‖

L∞(RN )
µ ,
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(x, y) ∈ RN1 × RN2 , which implies that C2(·, ·, ε) ∈ L∞(RN ), for all ε > 0. Let
C2(ε) = ‖C2(·, ·, ε)‖L∞(RN ). Therefore, we have∫

RN
|x|2θuq(x,y)ϕω−1|(−∆y)β/2ϕ| dx dy

≤ ε
∫

RN
ur(x,y)ϕω dx dy

+ C2(ε)
∫

RN
ϕ[ω−1− ω

k(x,y) ]k′(x,y)|x|2θk
′(x,y)|(−∆y)β/2ϕ|k

′(x,y) dx dy.

On the other hand, we have∫
RN

ϕ[ω−1− ω
k(x,y) ]k′(x,y)|x|2θk

′(x,y)|(−∆y)β/2ϕ|k
′(x,y) dx dy

=
∫

RN
ϕω−

r(x,y)
r(x,y)−q(x,y) |x|

2θr(x,y)
r(x,y)−q(x,y) |(−∆y)β/2ϕ|

r(x,y)
r(x,y)−q(x,y) dx dy.

From (2.2), we have

r(x, y)
r(x, y)− q(x, y)

≤
‖r‖L∞(RN )

µ
< ω, (x, y) ∈ RN1 × RN2 ;

then ∫
RN

ϕ[ω−1− ω
k(x,y) ]k′(x,y)|x|2θk

′(x,y)|(−∆y)β/2ϕ|k
′(x,y) dx dy <∞.

As consequence, we have the estimate∫
RN
|x|2θuq(x,y)(−∆y)β/2ϕω dx dy

≤ ωε
∫

RN
ur(x,y)ϕω dx dy

+ C2(ε)ω
∫

RN
ϕω−

r(x,y)
r(x,y)−q(x,y) |x|

2θr(x,y)
r(x,y)−q(x,y) |(−∆y)β/2ϕ|

r(x,y)
r(x,y)−q(x,y) dx dy.

(2.5)

Now, combining (2.3), (2.4) and (2.5), we obtain

(1− 2ωε)
∫

RN
ur(x,y)ϕω dx dy

≤ C1(ε)ω
∫

RN
ϕω−

r(x,y)
r(x,y)−p(x,y) |(−∆x)α/2ϕ|

r(x,y)
r(x,y)−p(x,y) dx dy

+ C2(ε)ω
∫

RN
ϕω−

r(x,y)
r(x,y)−q(x,y) |x|

2θr(x,y)
r(x,y)−q(x,y) |(−∆y)β/2ϕ|

r(x,y)
r(x,y)−q(x,y) dx dy.

Taking ε = (4ω)−1, we obtain∫
RN

ur(x,y)ϕω dx dy ≤ C (A(ϕ) +B(ϕ)) , (2.6)

where

A(ϕ) =
∫

RN
ϕω−

r(x,y)
r(x,y)−p(x,y) |(−∆x)α/2ϕ|

r(x,y)
r(x,y)−p(x,y) dx dy,

B(ϕ) =
∫

RN
ϕω−

r(x,y)
r(x,y)−q(x,y) |x|

2θr(x,y)
r(x,y)−q(x,y) |(−∆y)β/2ϕ|

r(x,y)
r(x,y)−q(x,y) dx dy.
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Let ϕ0 be the standard cutoff function; that is, ϕ0 ∈ C∞0 (0,∞) is a smooth
decreasing function such that

0 ≤ ϕ0 ≤ 1, |ϕ′0(σ)| ≤ C

σ
, ϕ0(σ) =

{
1 if 0 < σ ≤ 1,
0 if σ ≥ 2.

As a test function, we take

ϕ(x, y) = ϕ0

( |x|2
R2

+
|y|2

R2(θ+1)

)
, (x, y) ∈ RN1 × RN2 ,

where R > 0 is a real number (large enough). Let Ω be the subset of RN1 × RN2

defined by
Ω =

{
(z, w) ∈ RN1 × RN2 : 1 ≤ |z|2 + |w|2 ≤ 2

}
.

Let
η(z, w) = |z|2 + |w|2, (z, w) ∈ RN1 × RN2 .

Using the change of variables

z =
x

R
, w =

y

R2(θ+1)
,

we obtain

A(ϕ) =
∫

Ω

[ϕ0(η)]ω−s
′(Rz,Rθ+1w)|(−∆z)α/2ϕ0(η)|s

′(Rz,Rθ+1w)

×RN1+N2(θ+1)−αs′(Rz,Rθ+1w) dz dw

≤ C
∫

Ω

RN1+N2(θ+1)−αs′(Rz,Rθ+1w) dz dw

= C

∫
ΩR

R
−αr(x,y)

r(x,y)−p(x,y) dx dy.

Therefore, we have the estimate

A(ϕ) ≤ C
∫

ΩR

R
−αr(x,y)

r(x,y)−p(x,y) dx dy. (2.7)

Under the same change of variables, we obtain

B(ϕ) ≤ C
∫

Ω

RN1+N2(θ+1)+[2θ−β(θ+1)]k′(Rz,Rθ+1w) dz dw

= C

∫
ΩR

R
[2θ−β(θ+1)]r(x,y)
r(x,y)−q(x,y) dx dy.

Therefore, we have the estimate

B(ϕ) ≤ C
∫

ΩR

R
[2θ−β(θ+1)]r(x,y)
r(x,y)−q(x,y) dx dy. (2.8)

Combining (2.6), (2.7) and (2.8), we obtain∫
RN

ur(x,y)ϕω0

( |x|2
R2

+
|y|2

R2(θ+1)

)
dx dy

≤ C
(∫

ΩR

R
−αr(x,y)

r(x,y)−p(x,y) dx dy +
∫

ΩR

R
[2θ−β(θ+1)]r(x,y)
r(x,y)−q(x,y) dx dy

)
.
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Passing to the limit as R → ∞ in the above inequality, using the monotone con-
vergence theorem and (2.1), we obtain∫

RN
ur(x,y) dx dy = 0,

which is a contradiction with the fact that u is a nontrivial solution. �

In the case of constant exponents, we have the following Liouville-type theorem.

Theorem 2.3. Let u be a non-negative weak solution of the elliptic inequality

(−∆x)α/2up + |x|2θ(−∆y)β/2uq ≥ ur, (x, y) ∈ RN1 × RN2 ,

where 0 < α, β < 2, θ ≥ 0, and N = N1 +N2 ≥ 2. Suppose that

1 ≤ max{p, q} < r < Qmin
{ p

Q− α
,

q

θ(2− β) +Q− β

}
, (2.9)

where Q = N1 +N2(θ + 1). Then u is trivial.

Proof. Following the proof of Theorem 2.2 and taking

(p(x, y), q(x, y), r(x, y)) = (p, q, r), (x, y) ∈ RN1 × RN2 ,

we obtain

A(ϕ) ≤ C|Ω|RN1+N2(θ+1)− αr
r−p , B(ϕ) ≤ C|Ω|RN1+N2(θ+1)+

[2θ−β(θ+1)]r
r−q .

Using (2.6), we obtain∫
RN

ur(x,y)ϕω0

( |x|2
R2

+
|y|2

R2(θ+1)

)
dx dy

≤ C
(
RN1+N2(θ+1)− αr

r−p +RN1+N2(θ+1)+
[2θ−β(θ+1)]r

r−q

)
.

(2.10)

Now, we impose the conditions

N1 +N2(θ + 1)− αr

r − p
< 0,

N1 +N2(θ + 1) +
[2θ − β(θ + 1)]r

r − q
< 0,

which are equivalent to

r < Qmin
{ p

Q− α
,

q

θ(2− β) +Q− β
}
.

Therefore, under the condition (2.9), passing to the limit as R → ∞ in (2.10), we
obtain ∫

RN
ur dx dy = 0,

which proves that u is trivial. �

For the limit cases α → 2− and β → 2−, we obtain the following Liouville-type
theorem.

Corollary 2.4. Let u be a non-negative weak solution of the elliptic inequality

(−∆x)up + |x|2θ(−∆y)uq ≥ ur, (x, y) ∈ RN1 × RN2 ,

where θ ≥ 0 and N = N1 +N2 ≥ 2. Suppose that

1 ≤ max{p, q} < r <
Qmin{p, q}
Q− 2

.
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Then u is trivial.

The above corollary follows by taking α = β = 2 in Theorem 2.3, The fol-
lowing Liouville-type result which was established by Dolcetta and Cutri [7] is an
immediate consequence of Corollary 2.4.

Corollary 2.5. Let u be a non-negative weak solution of the elliptic inequality

(−∆x)u+ |x|2θ(−∆y)u ≥ ur, (x, y) ∈ RN1 × RN2 ,

where θ ≥ 0 and N = N1 +N2 ≥ 2. Suppose that

1 < r <
Q

Q− 2
.

Then u is trivial.

The above corollary follows by taking p = q = 1 in Corollary 2.4.

Remark 2.6. The obtained results in this paper can be extended to various classes
of systems of elliptic inequalities including the system

(−∆x)α/2up(x,y) + |x|2θ(−∆y)β/2uq(x,y) ≥ vr(x,y),

(−∆x)γ/2vµ(x,y) + |x|2λ(−∆y)τ/2vσ(x,y) ≥ uξ(x,y),

with appropriate functional parameters.
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