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NONTRIVIAL CONVEX SOLUTIONS FOR SYSTEMS OF
MONGE-AMPÉRE EQUATIONS VIA GLOBAL BIFURCATION

ZEXIN QI

Abstract. We obtain existence results for some systems of Monge-Ampére

equations, using bifurcation theorems of Krasnosell’ski-Rabinowitz type.

1. Introduction

We study the system of coupled Monge-Ampére equations,

detD2u = f(u, v), x ∈ Ω,

detD2v = g(u, v), x ∈ Ω,
u = v = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded, smooth and strictly convex domain in Rn, and detD2u
stands for the determinant of Hessian matrix of u. We will restrict system (1.1) to
be elliptic and search for nontrivial convex solutions, thus we suppose the functions
f and g to be nonnegative.

Monge-Ampére equations have received considerable attention in the previous
decades, because of their important applications in geometry and other scientific
fields. However, systems coupled by Monge-Ampére equations have only been con-
sidered in recent years, see for example [5, 9, 10]. Wang [9] studied the system

detD2u1 = f(−u2), in B,

detD2u2 = g(−u1), in B,

u1 = u2 = 0, on ∂B,

(1.2)

with B := {x ∈ Rn : |x| < 1}. Under suitable assumptions on f and g, the author
found nontrivial radial convex solutions for (1.2), using ODE techniques together
with fixed point theorems in a cone. More precisely, he obtained

Theorem 1.1 ([9, Theorem 1.1]). Suppose f, g : [0,∞)→ [0,∞) are continuous.
(a) If f0 = g0 = 0 and f∞ = g∞ = ∞, then (1.2) has at least one nontrivial

radial convex solution.
(b) If f0 = g0 = ∞ and f∞ = g∞ = 0, then (1.2) has at least one nontrivial

radial convex solution.
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where

f0 := lim
x→0+

f(x)
xn

, f∞ := lim
x→∞

f(x)
xn

.

The above theorem implies the existence of a radial convex solution for the
system

detD2u1 = (−u2)α, in B,

detD2u2 = (−u1)β , in B

u1 < 0, u2 < 0, in B,

u1 = u2 = 0, on ∂B

(1.3)

if one of the following two conditions holds: (1) α > n, β > n, (2) α < n, β < n.
Theorem 1.1 was improved later in [10] by a decoupling method. For example,

for system (1.3), the authors in [10] proved that it has a radial convex solution if
and only if α > 0, β > 0 and αβ 6= n2. Moreover, as αβ = n2, for the eigenvalue
problem

detD2u1 = λ(−u2)α, in Ω,

detD2u2 = µ(−u1)β , in Ω,
u1 < 0, u2 < 0, in Ω,
u1 = u2 = 0, on ∂Ω,

(1.4)

with positive parameters λ and µ. They used a nonlinear version of Krein-Rutman
theorem developed in [3] to obtain the following result.

Theorem 1.2 ([10, Theorem 1.4]). Suppose Ω ⊂ Rn is a bounded, smooth and
strictly convex domain. If α > 0, β > 0 and αβ = n2, then system (1.4) admits a
convex solution if and only if λµ

α
n = C, where C is a positive constant depending

on n, α and Ω.

The motivation of this article come from a corollary of Theorem 1.2 (see Lemma
2.1 below), as well as the work in [3], where Jacobsen investigated global bifurcation
problems for a class of fully nonlinear elliptic equations, including the Monge-
Ampére equation. As byproducts, Jacobsen obtaied some interesting existence
results. We will show that, under suitable assumptions on the functions f and g,
one can generalize part of the work in [3] to get new existence results for problem
(1.1), see Theorem 3.8 and 4.6 below.

This article is organized as follows. In Section 2, we give some preliminaries.
In Section 3 and 4, we study two bifurcation problems, where we obtain the main
results in this paper.

2. Preliminaries

Unless otherwise stated Ω is supposed to be a bounded, smooth and strictly
convex domain in Rn. Let us recall the Monge-Ampére operator M : C2(Ω) →
C(Ω), M[u] = detD2u. Since it is n-homogeneous, the eigenvalue problem for a
single Monge-Ampére equation with Dirichlet boundary condition is described as

detD2u = |λu|n, x ∈ Ω,
u = 0, x ∈ ∂Ω.

It is known that there exists a unique positive λ = λ0(Ω) such that the above
problem admits nonzero convex solutions. In the literature, λ0(Ω) is called the
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first eigenvalue, or the principal eigenvalue, of the Monge-Ampére operator cor-
responding to Ω, see references [3, 4, 8]. As for systems, we have the following
lemma.

Lemma 2.1 ([10, Corollary 1.5]). The eigenvalue problem

detD2u = |λv|n, x ∈ Ω,

detD2v = |λu|n, x ∈ Ω,
u = v = 0, x ∈ ∂Ω

(2.1)

admits nonzero convex solutions if and only if |λ| = λ0(Ω).

Thanks to Lemma 2.1, we are able to study global bifurcation problems for some
systems of Monge-Ampére equations. Before we do this in the next sections, let
us make some preparations first. We begin with some notations and terminologies
that will be used later.

As in reference [3], we will use the following terminologies. Let Z be a real Banach
space with a cone P ⊂ Z. The cone P induces a partial order via u � v ⇔ v−u ∈ P .
Let A0 : Z → Z.

• A0 is called homogeneous if it is positively homogeneous with degree 1.
• A0 is monotone if it satisfies x � y ⇒ A0(x) � A0(y).

Now we recall a result due to Trudinger. As a special case of Trudinger [7,
Theorem 1.1], in the second paragraph on p. 1253, we have

Lemma 2.2. Let Ω be a strictly convex bounded domain in Rn, ψ ∈ C(Ω) with ψ ≥
0, φ ∈ C(Ω). Then there exists a unique admissible weak solution u ∈ C1(Ω)∩C(Ω)
of the equation

detD2u = ψ, x ∈ Ω,
u = φ, x ∈ ∂Ω.

Remark 2.3. The definition of admissible weak solution coincides with the Alek-
sandrov sense weak solution (please see [7, page 1252-1253]), thus the admissible
weak solutions occurred in the rest of the paper are also Aleksandrov solutions.
For the notion of Aleksandrov solution, see [2, Definition 1.1.1, Theorem 1.1.13 and
Definition 1.2.1].

By Lemma 2.2, we can define a solution operator as follows. Denote C(Ω) to be
the usual Banach space of continuous functions with sup-norm. Define a cone

K0 := {u ∈ C(Ω) : u(x) ≤ 0,∀x ∈ Ω},

and an operator
T : C(Ω)→ C(Ω), T (f) = u,

where u is the unique admissible weak solution of

detD2u = |f(x)|, x ∈ Ω,
u = 0, x ∈ ∂Ω.

(2.2)

Note the Monge-Ampére operator is n-hessian (see [1]), so the solution operator
defined by (2.2) coincides with Tn, where Tk(k = 1, 2, · · · , n) are solution operators
for k-hessian equations defined in Section 3.1 in [3]. By [3, Proposition 3.2], T :
C(Ω)→ C(Ω) is completely continuous.
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Let us define another operator. Take the Banach space E := C(Ω)×C(Ω), with
norm ‖(u, v)‖ := ‖u‖∞ + ‖v‖∞. Define a cone

K = {(u, v) ∈ E : u(x) ≤ 0, v(x) ≤ 0, ∀x ∈ Ω}.

We remark that we don’t distinguish the writing of norms in E and C(Ω), and both
are denoted by ‖ · ‖ in the paper. Define

A : E → E, A(u, v) = (w, z),

where (w, z) is the unique admissible weak solution pair of

detD2w = |v|n, x ∈ Ω,

detD2z = |u|n, x ∈ Ω,
w = z = 0, x ∈ ∂Ω.

(2.3)

By the completely continuity of T it is easy to see A is also completely continuous
from E to E. Now E is a real Banach space, and the cone K induced a partial
order on E via (u1, v1) � (u2, v2) ⇔ (u2 − u1, v2 − v1) ∈ K. It is readily checked
that A is homogeneous; by [2, Lemma 1.4.6], the comparison principle, we see T is
monotone, so is A, i.e., (u1, v1) � (u2, v2)⇒ A(u1, v1) � A(u2, v2).

Properties of the operators T and A can be summarized as follows.

Lemma 2.4. T : C(Ω) → C(Ω) is a completely continuous, monotone operator.
A : E → E is a completely continuous, monotone operator; moreover, it is homo-
geneous.

In this article, we take b0 a fixed number such that b0 > λ0. We have the following
crucial result essentially given by Jacobsen[3], and give a proof for completeness.

Lemma 2.5. For Leray-Schauder degree, we have

deg(id−b0A(·, ·), Br(0, 0), 0) = 0, ∀r > 0. (2.4)

Proof. First we note, by Lemma 2.1, that the degree in (2.4) is well defined for any
r > 0, and it is independent with the value of r.

We argue by contradiction. Let (u0, v0) be a nonzero solution pair of (2.1)
corresponding to λ0, then we have

λ0A(u0, v0) = (u0, v0). (2.5)

Fix r > 0. By the continuity of Leray-Schauder degree, we can choose ε > 0 small,
such that

deg(id−b0A(·, ·), Br(0, 0), 0) = deg(id−b0A((·, ·) + ε(u0, v0)), Br(0, 0), 0).

When (2.4) not true, we obtain

deg(id−b0A((·, ·) + ε(u0, v0)), Br(0, 0), 0) 6= 0,

which implies the existence of (u, v) ∈ Br(0, 0) such that

(u, v) = b0A((u, v) + ε(u0, v0)). (2.6)

Recall the partial order induced by K in E, we have (u, v) � (u, v) + ε(u0, v0).
Since A is monotone, we obtain

A(u, v) � A((u, v) + ε(u0, v0)). (2.7)
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Equations (2.6) and (2.7) give us

A(u, v) � (u, v)
b0

. (2.8)

On the other hand, from ε(u0, v0) � (u, v) + ε(u0, v0), we have

A(ε(u0, v0)) � A((u, v) + ε(u0, v0));

using (2.6) again, we reach

b0A(ε(u0, v0)) � (u, v). (2.9)

By (2.5), (2.9) and the homogeneity of A,

b0ε(u0, v0)
λ0

� (u, v). (2.10)

Now operate A on both sides of (2.10), we have

b0εA(u0, v0)
λ0

� A(u, v). (2.11)

Combining (2.11) with (2.5) and (2.8), we deduce

b20ε(u0, v0)
λ2

0

� (u, v). (2.12)

Noticing (2.10) and (2.12), one can prove by induction that

bn0 ε(u0, v0)
λn0

� (u, v), ∀n ∈ N.

So

(u0, v0) �
(λ0

b0

)n
· (u, v)

ε
, ∀n ∈ N.

Letting n→∞, from b0 > λ0 > 0 we obtain (u0, v0) � (0, 0). Thus −(u0, v0) ∈ K,
giving (u0, v0) ∈ K ∩ (−K) = {(0, 0)}, a contradiction with (u0, v0) 6= (0, 0). This
finishes the proof of the lemma. �

3. Global bifurcation

Our basic assumption on f and g is
(A1) f, g : R× R→ R+ := [0,+∞) are continuous.

We seek nontrivial solutions to (1.1). The approach used is motivated by [3]. More
precisely, we embed (1.1) into the one-parameter family of problems

detD2u = |λv|n + f(u, v), x ∈ Ω,

detD2v = |λu|n + g(u, v), x ∈ Ω,
u = v = 0, x ∈ ∂Ω,

(3.1)

and consider the behavior of global bifurcation or global asymptotic bifurcation
continuum. By continuum we shall mean a closed connected set.

We associated to (3.1) the solution operator H : R × E → E,H(λ, (u, v)) =
(w, z), where (w, z) is the unique solution pair of

detD2w = |λv|n + f(u, v), x ∈ Ω,

detD2z = |λu|n + g(u, v), x ∈ Ω,
w = z = 0, x ∈ ∂Ω.

(3.2)
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Using the operator T defined in Section 2, we can write H = (H1, H2), where
H1(λ, (u, v)) = T (|λv|n+f(u, v)), H2(λ, (u, v)) = T (|λu|n+g(u, v)). By assumption
(A1) and the completely continuity of T (see Lemma 2.4), it is easy to check H1

and H2 are both completely continuous. So H is completely continuous. Define
h : R× E → E, h(λ, (u, v)) = (u, v)−H(λ, (u, v)) and consider the equation

h(λ, (u, v)) = 0. (3.3)

We see that λ, u and v satisfy (3.1) if and only if (λ, (u, v)) is a solution of (3.3).
Note that (3.1) can be seen as a perturbation of the eigenvalue problem (2.1).

For our purpose in this section, the perturbation terms also need to satisfy:
(A2) f(s, t) = o((|s|+ |t|)n), g(s, t) = o((|s|+ |t|)n), as |s|+ |t| → 0;
(A3) either f(s,t)

(|s|+|t|)n →∞ or g(s,t)
(|s|+|t|)n →∞, as |s|+ |t| → ∞.

Under assumptions of (A1) and (A2), one has f(0, 0) = g(0, 0) = 0, thus (3.3)
admits trivial solution branch R × (0, 0). In order to obtain a nontrivial branch
of solutions to (3.3), we need the following bifurcation theorem of Krasnosell’ski-
Rabinowitz type.

Theorem 3.1 (global bifurcation, [6]). Let Y be a Banach space, let F : R×Y → Y
be completely continuous, such that F (λ, 0) = 0, for all λ ∈ R. Suppose there exist
constants a, b ∈ R, with a < b, such that (a, 0), (b, 0) are not bifurcation points for
the equation

y − F (λ, y) = 0.
Furthermore, assume for Leray-Schauder degree that

deg(id−F (a, ·), Br(0), 0) 6= deg(id−F (b, ·), Br(0), 0),

where Br(0) = {y ∈ E : ‖y‖ < r} is an isolating neighborhood of the trivial solution
for both constants a and b. Let

S = {(λ, y) : y − F (λ, y) = 0, y 6= 0} ∪ ([a, b]× {0}),

and let C be the component of S containing [a, b]× {0}. Then either
(1) C is unbounded in R× Y , or
(2) C ∩ [(R\[a, b])× {0}] 6= ∅.

We shall apply Theorem 3.1 to the Banach space E and the operator H after we
collect some lemmas.

Lemma 3.2. Assuming (A1) and (A2), a necessary condition for (µ, (0, 0)) to be
a bifurcation point of (3.3) is that |µ| = λ0.

Proof. Suppose (µ, (0, 0)) is a bifurcation point for (3.3). Then there exists a
sequence (λk, (uk, vk)) → (µ, (0, 0)) such that ‖uk‖ + ‖vk‖ 6= 0 for all k, and
h(λk, (uk, vk)) = 0, i.e.,

detD2uk = |λkvk|n + f(uk, vk), x ∈ Ω,

detD2vk = |λkuk|n + g(uk, vk), x ∈ Ω,
uk = vk = 0, x ∈ ∂Ω.

(3.4)

Divide each equation in (3.4) by (‖uk‖+ ‖vk‖)n, and denote

ũk =
uk

‖uk‖+ ‖vk‖
, ṽk =

vk
‖uk‖+ ‖vk‖

,
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f̃k =
f(uk, vk)

(‖uk‖+ ‖vk‖)n
, g̃k =

g(uk, vk)
(‖uk‖+ ‖vk‖)n

,

we obtain
detD2ũk = |λkṽk|n + f̃k, x ∈ Ω,

detD2ṽk = |λkũk|n + g̃k, x ∈ Ω,

ũk = ṽk = 0, x ∈ ∂Ω.

(3.5)

This system can be rewritten as

ũk = T (|λkṽk|n + f̃k),

ṽk = T (|λkũk|n + g̃k).
(3.6)

Note ‖uk‖ + ‖vk‖ 6= 0, and uk, vk are both convex functions with zero boundary
data, we have |uk(x)|+ |vk(x)| 6= 0 for any x ∈ Ω. Thus, for x ∈ Ω,

0 ≤ f̃k =
f(uk, vk)

(|uk|+ |vk|)n
·
( |uk|+ |vk|
‖uk‖+ ‖vk‖

)n
≤ f(uk, vk)

(|uk|+ |vk|)n
.

Noticing (uk, vk) → (0, 0) in C(Ω) × C(Ω), we deduce from the above inequalities
and (A2) that f̃k(x) → 0, uniformly for x ∈ Ω, as k → ∞. Combining this with
the facts ‖ṽk‖ ≤ 1 and λk → µ, we see {|λkṽk|n + f̃k} is bounded in C(Ω). Hence,
by (3.6) and the compactness of T , we obtain a sub-sequence of {ũk}, still denoted
{ũk}, such that ũk → u∗ for some u∗ ∈ C(Ω). Similarly, one can prove g̃k(x)→ 0,
uniformly for x ∈ Ω, as k → ∞, and there exists a sub-sequence of {ṽk}, still
denoted {ṽk}, such that ṽk → v∗ for some v∗ ∈ C(Ω). By the continuity of T , we
infer from (3.6)

u∗ = T (|µv∗|n),

v∗ = T (|µu∗|n).
(3.7)

We claim (u∗, v∗) 6= (0, 0). Indeed,

‖u∗‖ = lim
k→∞

‖uk‖
‖uk‖+ ‖vk‖

, ‖v∗‖ = lim
k→∞

‖vk‖
‖uk‖+ ‖vk‖

,

which yield

‖u∗‖+ ‖v∗‖ = lim
k→∞

‖uk‖+ ‖vk‖
‖uk‖+ ‖vk‖

= 1.

Now, by (3.7) and Lemma 2.1, we reach the conclusion |µ| = λ0. �

Lemma 3.3. Assume (A1) and (A2) hold, then there exists r > 0, sufficiently
small, such that

(1) deg(id−H(0, (·, ·)), Br(0, 0), 0) = 1,
(2) deg(id−H(b0, (·, ·)), Br(0, 0), 0) = 0.

Proof. First of all, by Lemma 3.2, (0, (0, 0)) and (b0, (0, 0)) are not bifurcation
points for (3.3), so one can take r > 0 sufficiently small, such that the degrees in
assertions (1) and (2) are well defined.

Let b̃ ∈ {0, b0}. Define a homotopic mapping Fb̃ : [0, 1]× E → E,Fb̃(t, (u, v)) =
(w, z), where (w, z) is the unique solution pair of

detD2w = |b̃v|
n

+ tf(u, v), x ∈ Ω,

detD2z = |b̃u|
n

+ tg(u, v), x ∈ Ω,
w = z = 0, x ∈ ∂Ω.
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By the complete continuity of T , Fb̃ : [0, 1] × E → E is completely continuous.
We claim when r > 0 is sufficiently small, deg(id−Fb̃(t, (·, ·)), Br(0, 0), 0) is well
defined for all t ∈ [0, 1]. If this were not true, then there exist {tm} ⊂ [0, 1] with
tm → t0 ∈ [0, 1], and {(um, vm)} ⊂ E with ‖(um, vm)‖ = rm > 0, rm → 0, such
that (um, vm) = Fb̃(tm, (um, vm)), i.e.,

detD2um = |b̃vm|
n

+ tmf(um, vm), x ∈ Ω,

detD2vm = |b̃um|
n

+ tmg(um, vm), x ∈ Ω,
um = vm = 0, x ∈ ∂Ω.

By mimicking the rest proof after (3.4) in Lemma 3.2, one reaches again |b̃| = λ0,
a contradiction with b̃ ∈ {0, b0}. So for r > 0 sufficiently small we have

(u, v) 6= Fb̃(t, (u, v)), ∀(u, v) ∈ ∂Br(0, 0), ∀t ∈ [0, 1].

This implies Fb̃ is a degree-preserving homotopic mapping. We distinguish the
following two cases.
Case b̃ = 0. For r > 0 small, we have

deg(id−F0(1, (·, ·)), Br(0, 0), 0) = deg(id−F0(0, (·, ·)), Br(0, 0), 0)

= deg(id, Br(0, 0), 0) = 1.

Since F0(1, (·, ·)) = H(0, (·, ·)), assertion (1) is valid.
Case b̃ = b0. For r > 0 small, we have

deg(id−H(b0, (·, ·)), Br(0, 0), 0) = deg(id−Fb0(1, (·, ·)), Br(0, 0), 0)

= deg(id−Fb0(0, (·, ·)), Br(0, 0), 0)

= deg(id−A(b0(·, ·)), Br(0, 0), 0)

= deg(id−b0A(·, ·), Br(0, 0), 0).

(3.8)

By Lemma 2.5 and (3.8), we see assertion (2) is also valid. �

Now let us recall a known blow-up result. Since the Monge-Ampére operator is
n-hessian, we have a special case of Jacobsen [3, Lemma 5.1].

Lemma 3.4. Let {vm} ⊂ C(Ω) be a collection of admissible weak solutions to the
Dirichlet problem

detD2vm = gm, x ∈ Ω,
vm = 0, x ∈ ∂Ω,

where gm : Ω → R form a collection of nonnegative continuous functions. If
gm(x)→∞, uniformly on some compact sub-domain of Ω, then ‖vm‖ → ∞.

Using this lemma, we can establish some priori bounds concerning solutions of
(3.3).

Lemma 3.5. Under assumption (A1), there exists M1 > 0, such that any solution
(λ, (u, v)) of (3.3) with (u, v) 6= (0, 0) must satisfy |λ| ≤M1.

Proof. We argue by contradiction. If the conclusion of Lemma 3.5 is false, then
there exists {(λk, (uk, vk))}, solving (3.3) for each k, such that ‖uk‖ + ‖vk‖ > 0,
and |λk| → ∞ as k →∞. Let

ũk :=
uk

‖uk‖+ ‖vk‖
, ṽk :=

vk
‖uk‖+ ‖vk‖

,
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and let Ω′ be a compact sub-domain of Ω. Since ‖ũk‖+ ‖ṽk‖ = 1, we may assume,
without loss of generality, that there exists a γ > 0 such that

‖ṽk‖ ≥ γ. (3.9)

Moreover, by [3, Lemma 5.10], there exists η > 0 such that

|ṽk(x)| ≥ η‖ṽk‖, ∀x ∈ Ω′. (3.10)

As (λk, (uk, vk)) solves (3.3), we have

detD2uk = |λkvk|n + f(uk, vk), x ∈ Ω,
uk = 0, x ∈ ∂Ω.

Dividing the above equation by (‖uk‖+ ‖vk‖)n, we obtain

detD2ũk = ψk, x ∈ Ω,

ũk = 0, x ∈ ∂Ω,
(3.11)

where

ψk := |λkṽk|n +
f(uk, vk)

(‖uk‖+ ‖vk‖)n
. (3.12)

Equations (3.12), (3.9) and (3.10) yield that, for x ∈ Ω′,

ψk(x) ≥ |λkṽk|n ≥ |λkηγ|n →∞, k →∞. (3.13)

By Lemma 3.4, we deduce from (3.11) and (3.13) that ‖ũk‖ → ∞ as k → ∞, a
contradiction with ‖ũk‖ ≤ 1. �

Lemma 3.6. Under assumptions (A1) and (A3), there exists M2 > 0, such that a
solution (λ, (u, v)) of (3.3) must satisfy ‖u‖+ ‖v‖ ≤M2.

Proof. Without loss of generality, we assume the first alternative of (A3) holds, i.e.,

f(s, t)
(|s|+ |t|)n

→∞, as |s|+ |t| → ∞. (3.14)

We argue by contradiction. If the conclusion of Lemma 3.6 is false, then there exists
{(λk, (uk, vk))}, solving (3.3) for each k, such that ‖uk‖+ ‖vk‖ > 0, ‖uk‖+ ‖vk‖ →
∞ as k →∞. Now we have

detD2uk = |λkvk|n + f(uk, vk), x ∈ Ω,
uk = 0, x ∈ ∂Ω.

Divide the above equation by (‖uk‖+ ‖vk‖)n, and denote

ϕk(x) :=
|λkvk(x)|n + f(uk(x), vk(x))

(‖uk‖+ ‖vk‖)n
,

we reach
detD2

( uk
‖uk‖+ ‖vk‖

)
= ϕk, x ∈ Ω,

uk
‖uk‖+ ‖vk‖

= 0, x ∈ ∂Ω.
(3.15)

Note that

ϕk(x) ≥ f(uk, vk)
(|uk|+ |vk|)n

( |uk|+ |vk|
‖uk‖+ ‖vk‖

)n
,∀x ∈ Ω. (3.16)

Let Ω′ be a compact sub-domain of Ω. By [3, Lemma 5.10], there exists δ > 0, such
that |uk(x)| ≥ δ‖uk‖ and |vk(x)| ≥ δ‖vk‖ for any x ∈ Ω′. Thus |uk(x)|+ |vk(x)| ≥
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δ(‖uk‖+ ‖vk‖) for any x ∈ Ω′. Since ‖uk‖+ ‖vk‖ → ∞, we see it holds uniformly
for x ∈ Ω′ that |uk(x)| + |vk(x)| → ∞. Using these facts and (3.14), we deduce
from (3.16) that for x ∈ Ω′, it holds uniformly

ϕk(x)→∞, as k →∞. (3.17)

By (3.15) and (3.17), we infer from Lemma 3.4 that

‖uk‖
‖uk‖+ ‖vk‖

→ ∞, as k →∞,

which contradicts
‖uk‖

‖uk‖+ ‖vk‖
≤ 1, ∀k ∈ N.

�

We are in a position to give the main results in this section. Recall that, by
continuum we mean a closed connected set.

Theorem 3.7. Under assumptions (A1)–(A3), there exists a bounded continuum
of solutions to (3.3) bifurcating from (λ0, (0, 0)) in R×E. This continuum connects
(λ0, (0, 0)) to (−λ0, (0, 0)). It is nontrivial in the sense that it intersects the trivial
solution branch of (3.3) only at (±λ0, (0, 0)).

Proof. Let us apply Theorem 3.1 to the Banach space E and the operator H. By
Lemmas 3.2 and 3.3, we infer from Theorem 3.1 that there exists a nontrivial branch
of solutions to (3.3), say C, bifurcating from (λ0, (0, 0)), and it holds ([0, b0]×(0, 0))∩
C = (λ0, (0, 0)). Furthermore, either

(1) C is unbounded in R× E, or
(2) C ∩ [(R\[0, b0])× (0, 0)] 6= ∅.

By Lemmas 3.5 and 3.6, C must be bounded in R × E, so C must connect to
another bifurcation point. By Lemma 3.2, C connects (λ0, (0, 0)) to (−λ0, (0, 0)),
and it cannot intersect the trivial solution branch of (3.3) at points other than
(±λ0, (0, 0)). �

Theorem 3.8. Assume the functions f and g satisfy (A1)–(A3), then (3.1) admits
at least a nontrivial convex solution for all λ ∈ (−λ0, λ0). In particular, (1.1) admits
at least a nontrivial convex solution.

Proof. By Theorem 3.7, there exists a bounded continuum of solutions to (3.3)
that is nontrivial, and it connects (−λ0, (0, 0)) to (λ0, (0, 0)) in R × E. Since it is
connected, for arbitrarily fixed λ̂ ∈ (−λ0, λ0), the continuum must cross λ = λ̂ at
a point, say (λ̂, (u, v)). By Lemma 3.2, λ̂ is not a bifurcation value, thus (u, v) 6=
(0, 0), and it is a nontrivial convex solution for (3.1) with λ = λ̂. �

4. Global asymptotic bifurcation

Besides (A1), we also need the following assumptions on f and g:

(A4) either f(s,t)
(|s|+|t|)n →∞, or g(s,t)

(|s|+|t|)n →∞, as |s|+ |t| → 0;

(A5) f(s,t)
(|s|+|t|)n → 0, and g(s,t)

(|s|+|t|)n → 0, as |s|+ |t| → ∞.

In this section, we study global asymptotic bifurcation problems for (3.3). Our
analysis is based on the theorem below.
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Theorem 4.1 (Global asymptotic bifurcation, [6]). Let Y be a Banach space, let
F : R × Y → Y be completely continuous. Suppose there exist constants a, b ∈ R,
with a < b, such that solutions of

y − F (λ, y) = 0 (4.1)

are a priori bounded in Y for λ = a and λ = b; i.e., there exists a constant M > 0
such that

F (a, y) 6= y 6= F (b, y),

for all y ∈ Y with ‖y‖ ≥M . Furthermore, assume that

deg(id−F (a, ·), BR(0), 0) 6= deg(id−F (b, ·), BR(0), 0),

for R > M . Then there exists at least one continuum C of solutions to (4.1) that
is unbounded in [a, b]× Y and either

(1) C in unbounded in the λ direction, or else,
(2) there exists an interval [c, d] such that (a, b) ∩ (c, d) = ∅, and C bifurcates

from infinity in [c, d]× Y .

In Theorem 4.1, to say C bifurcates from infinity in [c, d] × Y , we mean there
exist ν ∈ [c, d] and a sequence {(λk, yk)} ⊆ C, such that λk → ν and ‖yk‖Y → ∞
as k → ∞. We shall apply Theorem 4.1 to the Banach space E and the operator
H after we collect some lemmas.

Lemma 4.2. Under assumptions (A1) and (A5), a necessary condition for µ to be
an asymptotic bifurcation value of (3.3) is |µ| = λ0.

Proof. Suppose µ is an asymptotic bifurcation value for (3.3), i.e., there exists a
sequence {(λk, (uk, vk))} such that ‖uk‖ + ‖vk‖ → ∞, λk → µ as k → ∞, and it
satisfies h(λk, (uk, vk)) = 0,∀k ∈ N. Thus we have

detD2uk = |λkvk|n + f(uk, vk), x ∈ Ω,

detD2vk = |λkuk|n + g(uk, vk), x ∈ Ω,
uk = vk = 0, x ∈ ∂Ω.

(4.2)

Divide (4.2) by (‖uk‖+ ‖vk‖)n, and denote

uk =
uk

‖uk‖+ ‖vk‖
, vk =

vk
‖uk‖+ ‖vk‖

,

fk =
f(uk, vk)

(‖uk‖+ ‖vk‖)n
, gk =

g(uk, vk)
(‖uk‖+ ‖vk‖)n

,

we obtain
detD2uk = |λkvk|n + fk, x ∈ Ω,

detD2vk = |λkuk|n + gk, x ∈ Ω,
uk = vk = 0, x ∈ ∂Ω.

(4.3)

This system can be rewritten as

uk = T (|λkvk|n + fk),

vk = T (|λkuk|n + gk).
(4.4)
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We claim that fk(x)→ 0, uniformly for x ∈ Ω, as k →∞. Indeed, by (A5), for
each ε > 0, there exists M0 > 0, such that if |(s, t)| := |s|+ |t| > M0, then

f(s, t)
(|s|+ |t|)n

< ε. (4.5)

For this M0 > 0, denote f0 := max|(s,t)|≤M0 f(s, t), then for large k,

f0

(‖uk‖+ ‖vk‖)n
< ε. (4.6)

By (4.5), (4.6) and (A1), we deduce that for k sufficiently large,

0 ≤ fk(x) < ε, ∀x ∈ Ω.

So our claim holds.
Similarly, gk(x) → 0, uniformly for x ∈ Ω, as k → ∞. By mimicking the

counterpart in the proof of Lemma 3.2, one is ready to reach |µ| = λ0. We omit
the details. �

Recall b0 is a fixed number such that b0 > λ0.

Lemma 4.3. Assume (A1) and (A5). Then there exists M > 0, such that for
R > M ,

(1) deg(id−H(0, (·, ·)), BR(0, 0), 0) = 1;
(2) deg(id−H(b0, (·, ·)), BR(0, 0), 0) = 0.

Proof. By Lemma 4.2, there exists M > 0 such that for all (u, v) ∈ E with
‖(u, v)‖ ≥M ,

H(0, (u, v)) 6= (u, v) 6= H(b0, (u, v)).
So when R > M , the degrees in the assertions are well defined and independent of
R.

Let b̃ ∈ {0, b0}. Define a homotopic mapping Fb̃ : [0, 1]× E → E, be defined by
Fb̃(t, (u, v)) = (w, z), where (w, z) is the unique solution pair of

detD2w = |b̃v|
n

+ tf(u, v), x ∈ Ω,

detD2z = |b̃u|
n

+ tg(u, v), x ∈ Ω,
w = z = 0, x ∈ ∂Ω.

By the complete continuity of T , one verifies Fb̃ : [0, 1] × E → E is completely
continuous. We point out that when R > M is sufficient large, the function
deg(id−Fb̃(t, (·, ·)), BR(0, 0), 0) is well defined for all t ∈ [0, 1]. If this were not
true, then there exist {tm} ⊂ [0, 1] with tm → t0 ∈ [0, 1], and {(um, vm)} ⊂ E with
‖(um, vm)‖ = Rm → +∞, such that (um, vm) = Fb̃(tm, (um, vm)), i.e.,

detD2um = |b̃vm|
n

+ tmf(um, vm), x ∈ Ω,

detD2vm = |b̃um|
n

+ tmg(um, vm), x ∈ Ω,
um = vm = 0, x ∈ ∂Ω.

Divide the above system by (‖um‖+‖vm‖)n, and then follow the arguments used in
the proof of Lemma 4.2, one reaches again |b̃| = λ0, a contradiction with b̃ ∈ {0, b0}.
So when R > M is sufficiently large,

(u, v) 6= Fb̃(t, (u, v)), ∀(u, v) ∈ ∂BR(0, 0), ∀t ∈ [0, 1].
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This implies Fb̃ is a degree-preserving homotopic mapping. We distinguish the
following two cases.
Case b̃ = 0. For R > M large, we have

deg(id−F0(1, (·, ·)), BR(0, 0), 0) = deg(id−F0(0, (·, ·)), BR(0, 0), 0)

= deg(id, BR(0, 0), 0) = 1.

Since F0(1, (·, ·)) = H(0, (·, ·)), assertion (1) is valid.
Case b̃ = b0. For R > M large, we have

deg(id−H(b0, (·, ·)), BR(0, 0), 0) = deg(id−Fb0(1, (·, ·)), BR(0, 0), 0)

= deg(id−Fb0(0, (·, ·)), BR(0, 0), 0)

= deg(id−A(b0(·, ·)), BR(0, 0), 0)

= deg(id−b0A(·, ·), BR(0, 0), 0).

By this equality and Lemma 2.5, we see assertion (2) is also valid. �

Lemma 4.4. Assume (A1) and (A4). Then there exists ε > 0, such that any
solution (λ, (u, v)) of (3.3) with (u, v) 6= (0, 0) must satisfy ‖(u, v)‖ ≥ ε.

Proof. Without loss of generality, we assume the first alternative of (A4) holds, i.e.,
f(s, t)

(|s|+ |t|)n
→∞, as |s|+ |t| → 0. (4.7)

We argue by contradiction. If the conclusion of Lemma 4.4 is false, then there exists
{(λk, (uk, vk))}, solving (3.3) for each k, such that (uk, vk) 6= (0, 0), (uk, vk)→ (0, 0)
as k →∞. Now we have

detD2uk = |λkvk|n + f(uk, vk), x ∈ Ω,
uk = 0, x ∈ ∂Ω.

Divide the above equation by (‖uk‖+ ‖vk‖)n, and denote

ζk(x) :=
|λkvk(x)|n + f(uk(x), vk(x))

(‖uk‖+ ‖vk‖)n
,

we reach
detD2

( uk
‖uk‖+ ‖vk‖

)
= ζk, x ∈ Ω,

uk
‖uk‖+ ‖vk‖

= 0, x ∈ ∂Ω.
(4.8)

Note that

ζk(x) ≥ f(uk, vk)
(|uk|+ |vk|)n

( |uk|+ |vk|
‖uk‖+ ‖vk‖

)n
,∀x ∈ Ω. (4.9)

Let Ω′ be a compact sub-domain of Ω. By [3, Lemma 5.10], there exists δ̃ > 0, such
that |uk(x)| ≥ δ̃‖uk‖ and |vk(x)| ≥ δ̃‖vk‖, for any x ∈ Ω′. Thus

|uk(x)|+ |vk(x)| ≥ δ̃(‖uk‖+ ‖vk‖), ∀x ∈ Ω′. (4.10)

Note (uk, vk)→ (0, 0) in E, so for x ∈ Ω′, it holds uniformly

|uk(x)|+ |vk(x)| → 0, k →∞. (4.11)

By (4.7), (4.10) and (4.11), it is easy to deduce from (4.9) that for x ∈ Ω′, it holds
uniformly

ζk(x)→∞, k →∞. (4.12)
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By (4.8) and (4.12), we infer from Lemma 3.4 that
‖uk‖

‖uk‖+ ‖vk‖
→ ∞, k →∞,

which contradicts ‖uk‖
‖uk‖+‖vk‖ ≤ 1 for all k ∈ N. �

Now we can give the main results of this section.

Theorem 4.5. Assume (A1), (A4) and (A5). Then there exists an unbounded
continuum of nontrivial solutions to (3.3) in R×E. The continuum bifurcates from
infinity at µ = ±λ0, and it is bounded in the λ direction.

Proof. Let us apply Theorem 4.1 to the Banach space E and the operator H. By
Lemma 4.2, there exists M > 0 such that for (u, v) ∈ E with ‖(u, v)‖ ≥M , it holds
H(0, (u, v)) 6= (u, v) 6= H(b0, (u, v)). By Lemma 4.3, we can choose M > 0 large,
so that

deg(id−H(0, ·), BR(0), 0) 6= deg(id−H(b0, ·), BR(0), 0)
for R > M . We infer from Theorem 4.1 that there exists a continuum of solutions
to (3.3), say C̃, that is unbounded in [0, b0]×E, which forces λ0 to be an asymptotic
bifurcation value by Lemma 4.2. Furthermore, either

(1) C̃ is unbounded in the λ direction, or
(2) there exist an interval [c, d] such that (0, b0) ∩ (c, d) = ∅, and C̃ bifurcates

from infinity in [c, d]× E.

By Lemma 3.5, C̃ is bounded in the λ direction, so it must bifurcate from infinity
at −λ0 by Lemma 4.2. Since C̃ is connected and unbounded, we infer from Lemma
4.4 that

(u, v) 6= (0, 0), ∀(λ, (u, v)) ∈ C̃. (4.13)
�

Theorem 4.6. Assume (A1), (A4) and (A5). Then (3.1) has a nontrivial convex
solution for all λ ∈ (−λ0, λ0). In particular, (1.1) admits a nontrivial convex
solution.

Proof. Note that the continuum C̃ obtained in the proof of Theorem 4.5 bifurcates
from infinity at µ = ±λ0. So by connectedness and (4.13), we see (3.1) has a
nontrivial convex solution for all λ ∈ (−λ0, λ0). �

Remark 4.7. We say that a solution (u, v) of (3.1) is a vector solution if u 6= 0
and v 6= 0. When 0 < |λ| < λ0, the solutions for (3.1) obtained in Theorem 3.8
and 4.6 are vector solutions, which can be inferred from system (3.1) itself and the
assumption (A1). Similarly, if f and g are such that

f(s, t) > 0, g(s, t) > 0, ∀(s, t) 6= (0, 0),

then solutions for (1.1) obtained in Theorem 3.8 and Theorem 4.6 are also vector
solutions.

To illustrate our results for problem (1.1), We present the following example:
Let Ω be a bounded, smooth, and strictly convex domain in Rn. If 0 < p1, p2 < n
or p1, p2 > n, then the system

detD2u1 = λ(−u1 − u2)p1 , x ∈ Ω,

detD2u2 = λ(−u1 − u2)p2 , x ∈ Ω,
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u1 = u2 = 0, x ∈ ∂Ω

admits at least a nontrivial convex solution for any λ > 0.
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