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EVOLUTIONARY p(x)-LAPLACIAN EQUATION FREE FROM
THE LIMITATION OF THE BOUNDARY VALUE

HUASHUI ZHAN, JIE WEN

Abstract. In this article we consider the evolutionary p(x)-Laplacian equa-

tion
ut = div(ρα|∇u|p(x)−2∇u), (x, t) ∈ Ω× (0, T ),

where ρ(x) = dist(x, ∂Ω). If the diffusion coefficient degenerates on the bound-

ary, then and the solution may be free from any limitations of the boundary

condition.

1. Introduction

Consider the usual evolutionary p-Laplacian equation

ut = div(|∇u|p−2∇u), (x, t) ∈ QT = Ω× (0, T ), (1.1)

where Ω ⊂ RN is a bounded domain with appropriately smooth boundary. The
equation arises in the fields of mechanics, physics and biology [4, 7, 16, 17, 20, 33].
In the theory of non-Newtonian fluids, the quantity p is the characteristic of the
medium. The media with p > 2 is called dilatant fluids, those with p = 2 are
Newtonian fluids, and those with p < 2 are called pseudoplastics. Note that if p = 2,
equation (1.1) is known as the classical heat conduction equation, and the solution
of equation has infinite propagation speed of disturbance. This property seems
unreasonable. So, when p 6= 2, equation (1.1) can be better to reflect the actual
physical situation of the heat conduction. In particular, when p > 2 the solution of
equation has finite propagation speed of disturbance, see [7]. Much attention was
dedicated to its well-posedness [3, 9, 11, 12, 15, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30]
and the references therein.

Yin-Wang [21] considered

ut = div(ρα|∇u|p−2∇u), (x, t) ∈ QT , (1.2)

where ρ(x) = dist(x, ∂Ω) is the distance function from the boundary. An obvious
character of the equation is that, the diffusion coefficient ρα(x) depends on the
distance to the boundary. Since ρα(x) vanishes on the boundary ∂Ω, it seems that
there is no heat flux across the boundary. However, Yin-Wang showed that the fact
might not coincide with what we image. In fact, the exponent α which characterizes
the vanishing ratio of the diffusion coefficient, does determine the behavior of the
heat transfer near the boundary.
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If p(x) is only a measurable function, a new kind of fluids of prominent techno-
logical interest has recently emerged: the so-called electrorheological fluids. This
model includes parabolic equations which are nonlinear with respect to the gradient
of the thought solution, and with variable exponents of nonlinearity [1, 14]

ut = div(|∇u|p(x)−2∇u), (x, t) ∈ QT . (1.3)

A natural functional space used to study the well-posedness of the solutions of
equation (1.3) is W 1,p(x)(Ω). In what follows, we denote

p+ = ess supΩ̄ p(x), p− = ess infΩ̄ p(x).

In particular, we assume that

1 < p− ≤ p(x), ∀x ∈ Ω,

and quote some new function spaces with variable exponents [5, 8]:

Lp(x)(Ω) = {u : u is a measurable real-valued function,
∫

Ω

|u(x)|p(x)dx <∞},

which is equipped with the Luxemburg’s norm

|u|Lp(x)(Ω) = inf{λ > 0 :
∫

Ω

∣∣u(x)
λ

∣∣p(x)
dx ≤ 1},

and is a separable, uniformly convex Banach space.

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},
which is endowed with the norm

|u|W 1,p(x) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω), ∀u ∈W 1,p(x)(Ω).

W
1,p(x)
0 (Ω) is the closure of C∞0 (Ω) in W 1,p(x). Let us recall some properties of

these function spaces, see [5, 8].

Lemma 1.1. (i) The spaces
(
Lp(x)(Ω), | · |Lp(x)(Ω)

)
,
(
W 1,p(x)(Ω), | · |W 1,p(x)(Ω)

)
and

W
1,p(x)
0 (Ω) are reflexive Banach spaces.
(ii) p(x)-Hölder’s inequality. Let q1(x) and q2(x) be real functions with 1

q1(x) +
1

q2(x) = 1 and q1(x) > 1. Then, the conjugate space of Lq1(x)(Ω) is Lq2(x)(Ω). And
for any u ∈ Lq1(x)(Ω) and v ∈ Lq2(x)(Ω), we have∣∣∫

Ω

uvdx
∣∣≤ 2|u|Lq1(x)(Ω)|v|Lq2(x)(Ω).

(iii) We have

If |u|Lp(x)(Ω) = 1, then
∫

Ω

|u|p(x)dx = 1;

If |u|Lp(x)(Ω) > 1, then |u|p
−

Lp(x)
≤
∫

Ω

|u|p(x)dx ≤ |u|p
+

Lp(x)
;

If |u|Lp(x)(Ω) < 1, then |u|p
+

Lp(x)
≤
∫

Ω

|u|p(x)dx ≤ |u|p
−

Lp(x)
.

(iv) If p1(x) ≤ p2(x), then Lp1(x)(Ω) ⊃ Lp2(x)(Ω).
(v) If p1(x) ≤ p2(x), then W 1,p1(x)(Ω) ↪→W 1,p2(x)(Ω).
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(vi) p(x)-Poincaré inequality: if p(x) ∈ C(Ω), then there is a constant C > 0
such that

|u|Lp(x)(Ω) ≤ C|∇u|Lp(x)(Ω), ∀u ∈W 1,p(x)
0 (Ω).

This implies that |∇u|Lp(x)(Ω) and |u|W 1,p(x)(Ω) are equivalent norms of W 1,p(x)
0 (Ω).

Zhikov [34] showed that

W
1,p(x)
0 (Ω) 6= {v ∈W 1,p(x)

0 (Ω) | v|∂Ω = 0} = W̊ 1,p(x)(Ω).

This fact provides us a good idea which may be used to study the well-posedness of
evolutionary p-Laplacian equation [3, 9, 11, 15, 18, 12, 22, 23, 24, 25, 26, 27, 28, 29,
30]. However, if p(x) satisfies the so-called logarithmic Hölder continuity condition

|p(x)− p(y)| ≤ ω(|x− y|),∀x, y ∈ QT , |x− y| < 1
2
, (1.4)

with

lim sup
s→0+

ω(s) ln
(1
s

)
= C <∞,

then (see [35])

W
1,p(x)
0 (Ω) = W̊ 1,p(x)(Ω).

Using this fact, Antontsev-Shmarev [2] established existence and uniqueness results
for (1.3). Later, many researchers have been interested in studying (1.3), see [2, 13,
10, 31, 19].

In this article, we consider the equation

ut = div(ρα|∇u|p(x)−2∇u), (x, t) ∈ QT , (1.5)

with α > 0.
If we want to consider its initial boundary value problem, usually we need the

initial value condition
u|t=0 = u0(x), x ∈ Ω. (1.6)

Note that equation (1.5) is degenerate on the boundary. Can we impose the general
homogeneous boundary value condition as follows?

u|ΓT = 0, (x, t) ∈ ΓT = ∂Ω× (0, T ). (1.7)

In this study, we introduce the Fichera-Olěinik theory to study how to propose the
boundary condition of equation (1.5) with p− > 1.

Definition 1.2. A function u(x, t) is said to be a solution of (1.5) with initial
condition (1.6), if u ∈ L∞(QT ), ut ∈ L2(QT ), ρα|∇u|p(x) ∈ L1(QT ) and∫∫

QT

(−uϕt + ρα|∇u|p(x)−2∇u · ∇ϕ) dx dt = 0, (1.8)

for any function ϕ ∈ C∞0 (QT ).

Definition 1.3. A function u(x, t) is said to be a solution of equation (1.5) with the
initial-boundary conditions (1.6)-(1.7), if u satisfies Definition 1.2 and the boundary
condition (1.7) is satisfied in the sense of the trace.

We summarize our main result as follows.
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Theorem 1.4. Suppose p− > 1, u0 ∈ L∞(Ω), and ρα|∇u0|p
+ ∈ L1(Ω). If α <

p−−1, then there exists a unique solution of equation (1.5) with the initial-boundary
conditions (1.6)-(1.7). While, if α > p+ − 1, then there exists a unique solution of
(1.5) with the initial value (1.6).

Theorem 1.4 implies that, the solution of (1.5) is free from any limitations of
the boundary condition provided that α > p+− 1. When p+− 1 ≥ α ≥ p−− 1, the
problem of the well-posedness of equation (1.5) remains open.

2. Fichera-Oleinik theory and its applications

If for any real vector ξ = (ξ1, ξ2, · · · , ξm) and any point x ∈ Ω,

arsξrξs > 0, (2.1)

the second-order equation of the form

L(u) = ars(x)uxrxs + br(x)uxr + c(x)u = f(x), (2.2)

is called the second-order equation with nonnegative characteristic form in Ω. Ob-
viously, it contains elliptic equation, parabolic equation, first-order equation (the
case arsξrξs ≡ 0), ultra parabolic equation, Brown motion equation, and Tricomi
equation on the half-plane and so on.

Consider the first-boundary value problem of equation (2.2) in Ω, Fichera once
dealt with this problem in [6]. Suppose that on Ω̄ = Ω ∪

∑
, all the points x and

all ξ ∈ Rn satisfy the condition (2.1), and ars ∈ C2(Ω), br ∈ C1(Ω), c ∈ C0(Ω). Let
{ns} be the unit inner normal vector of ∂Ω̃. The Fichera function is defined as

b(x) ≡ (br − arsxs)nr. (2.3)

We denote

Σ0 = {x ∈ Σ : arsnrns = 0},
Σ1 = {x ∈ Σ0 : (br − arsxs)nr > 0},
Σ2 = {x ∈ Σ0 : (br − arsxs)nr < 0},
Σ0 = {x ∈ Σ0 : (br − arsxs)nr = 0},

Σ3 = Σ\Σ0.

The first boundary value problem of equation (2.2) is quoted as follows, in Ω̄ =
Ω ∪

∑
, to find a function u such that

L(u) = f(x), x ∈ Ω, (2.4)

u(x) = g(x), x ∈ Σ2 ∪ Σ3, (2.5)

where f is a given function in Ω, and g is a given function on Σ2 ∪ Σ3. Clearly,
if (2.2) is an elliptic equation, then (2.4)-(2.5) is the usual Dirichlet problem. For
the cylindrical region, (2.4)-(2.5) consists of the mixed problem, also known as
parabolic equations with the initial boundary values.

Consider the evolutionary p(x)-Laplacian equation

ut = div(ρα|∇u|p(x)−2∇u), (x, t) ∈ QT . (2.6)

Since

div(ρα|∇u|p(x)−2∇u)
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= αρα−1|∇u|p(x)−2∇u · ∇ρ+ ρα|∇u|p(x)−2∇p · ∇u

+ ρα|∇u|p(x)−4[(p(x)− 2)uxixjuxiuxj + |∇u|2uxixi ],

we rewrite (2.6) as

ut = aij(x, t)
∂2u

∂xi∂xj
+ βi(x, t)

∂u

∂xi
, (2.7)

where

aij(x, t) = ρα|∇u|p(x)−2[δij + (p(x)− 2)|∇u|−2uxiuxj ],

βi = αρα−1|∇u|p(x)−2ρxi + ρα|∇u|p(x)−2pxi .

Then

aijxj = αρα−1ρxj |∇u|p(x)−4[δij |∇u|2 + (p(x)− 2)uxiuxj ]

+ ρα|∇u|p(x)−4[pxj |∇u|2 log |∇u|+ (p(x)− 2)uxkuxkxj + pxjuxjuxi ]

+ (p(x)− 2)ρα|∇u|p(x)−6uxjuxi [pxj |∇u|2 log |∇u|+ (p(x)− 4)uxkuxkxj ]

+ (p(x)− 2)|∇u|p(x)−4(uxixjuxj + uxiuxjxj ).

If we compare (2.7) with (2.5), according to Fichera-Oleinik theory, the initial
value condition is necessary. As for the boundary condition of equation (2.6), let
us discuss it as follows.
Case 1: When α > 1, by ρ|∂Ω = 0, then (βi − αijxi)ni ≡ 0, x ∈ ∂Ω,

Σ2 ∪ Σ3 = ∅.

Case 2: When α ≤ 1, by the fact of that ρxj = nj , it has

(βi − αijxj )ni
= αρα−1|∇u|p(x)−4[ρxi |∇u|2 − ρxj (δij |∇u|2 + (p(x)− 2)uxiuxj )]ni

= −(p(x)− 2)αρα−1(|∇u|p(x)−4uxiuxj )ninj .

(2.8)

In this case, it is difficult to know that the Fichera function (βi−αijxj )ni is negative
or not, except the dimension of spatial variable, N = 1. When α < 1 and p(x) ≤
p+ < 2, (2.8) is transformed into

(β − ax)n = −(p(x)− 2)αρα−1|ux|p(x)−2 = +∞ > 0. (2.9)

When α < 1 and p(x) ≥ p− > 2, (2.8) is transformed into

(β − ax)n = −(p(x)− 2)αρα−1|ux|p(x)−2 = −∞ < 0. (2.10)

If α = 1 and p+ < 2, then we have

(β − ax)n = −(p(x)− 2)αρα−1|ux|p(x)−2 = −(p(x)− 2)α > 0. (2.11)

If α = 1 and p− > 2, then we get

(β − ax)n = −(p(x)− 2)αρα−1|ux|p(x)−2 = −(p(x)− 2)α < 0. (2.12)

In a word, if p+ < 2 and N = 1, we may conjecture that Σ2 ∪Σ3 = ∅. If p− > 2
and N = 1, we may conjecture that Σ2 ∪ Σ3 = ∂Ω. While, N > 1, the partial
boundary Σ2 ∪ Σ3 ⊆ ∂Ω may be very complicated.

Certainly, equation(1.5) is a degenerate parabolic equation, it only has a weak
solution generally, so the above linearization is informal. We just give some ideas to
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the partial boundary condition to assure the well-posedness of the weak solutions.
Whether these ideas are true or not remains to be verified.

3. Existence of solutions

In this section, we consider the initial value problem of equation (1.5).

Theorem 3.1. If p− > 1, and

u0 ∈ L∞(Ω), ρα|∇u0|p
+
∈ L1(Ω), (3.1)

then there exists a weak solution of (1.5) with initial condition (1.6). Moreover, if
α ≥ 1 and u0 ∈ C∞0 (Ω), then ut ∈ L∞(QT ).

If u0 ∈ C∞0 (Ω), we consider the regularized problem

uεt − div(ραε (|∇uε|2 + ε)
p(x)−2

2 ∇uε) = 0, (x, t) ∈ QT , (3.2)

uε(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (3.3)

uε(x, 0) = u0(x), x ∈ Ω. (3.4)

where ρε = ρ+ε, ε > 0. Just as we had done on the usual evolutionary p-Laplacian
equation, we are able to prove that the above problem has a unique weak solution
uε, which satisfies

uε ∈ L∞(QT ), uεt ∈ L2(QT ), uε ∈ L∞(0, T ;W 1,p(x)
0 (Ω)). (3.5)

Lemma 3.2. If u0 ∈ C∞0 (Ω), then the solution uε of initial boundary-value problem
(3.2)-(3.4) is weakly star convergent and strongly convergent to u ∈ Lrloc(QT ), and
the limit function u is the solution of equation (1.5) with the initial condition (1.6).
Here, if p− < 2 and 1 < r < p−∗ = Np−

N−p− as usual, while p− ≥ 2 and r = 2.

Proof. By the maximum principle, there is a constant c depending on ‖u0‖L∞(Ω)

but independent on ε, such that

‖uε‖L∞(QT ) 6 c. (3.6)

Multiplying (3.2) by uε, integrating it over QT , we have

1
2

∫
Ω

u2
εdx+

∫∫
QT

ραε (|∇uε|2 + ε)
p(x)−2

2 |∇uε|2 dx dt 6 c. (3.7)

If we denote Ωλ = {x ∈ Ω : d(x) > λ} for any given λ > 0, by that ρ(x) > λ when
x ∈ Ωλ, then∫ T

0

∫
Ωλ

|∇uε|p
−
dx dt ≤

∫∫
QT

ρα(|∇uε|2 + ε)
p(x)−2

2 |∇uε|2 dx dt 6 c(λ). (3.8)

Multiplying (3.2) by uεt, integrating it over QT , we have∫∫
QT

(uεt)2 dx dt =
∫∫

QT

div(ραε |∇uε|p(x)−2∇uε) · uεt dx dt. (3.9)

Since

(|∇uε|2 + ε)
p(x)−2

2 ∇uε · ∇uεt =
1
2
d

dt

∫ |∇uε(x,t)|2+ε

0

s
p(x)−2

2 ds,
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it follows that ∫∫
QT

div(ραε (|∇uε|2 + ε)
p(x)−2

2 ∇uε) · uεt) dx dt

= −
∫∫

QT

ραε (|∇uε|2 + ε)
p(x)−2

2 ∇uε∇uεt dx dt

= −1
2

∫∫
QT

ραε
d

dt

∫ |∇uε(x,t)|2+ε

0

s
p(x)−2

2 ds dx dt.

(3.10)

By (3.9)-(3.10), we have∫∫
QT

(uεt)2 dx dt+
∫∫

QT

ραε
d

dt

∫ |∇uε(x,t)|2
0

s
p(x)−2

2 ds dx dt 6 c,

and ∫∫
QT

(uεt)2 dx dt ≤ c+ c

∫
Ω

ραε |∇uε,0|p(x)dx ≤ c. (3.11)

Differentiating (3.2) with t, and denoting w = uεt, we obtain
∂w

∂t
= (ρ+ ε)α(p(x)− 2)(|∇uε|2 + ε)

p−4
2 uxkuxiwxkxi

+ (ρ+ ε)α(|∇uε|2 + ε)
p(x)−2

2 wxixi

+ (p(x)− 2)∇[(ρ+ ε)α] · ∇uε(|∇uε|2 + ε)
p−4
2 uxkwxk

+∇[(ρ+ ε)α](|∇uε|2 + ε)
p(x)−2

2 · ∇w

+ (ρ+ ε)α(p(x)− 2)(p(x)− 4)(|∇uε|2 + ε)
p(x)−6

2 uxjuxixjuxiwxkuxk

+ (ρ+ ε)α(p(x)− 2)(|∇uε|2 + ε)
p(x)−4

2
(
uxiuxixkwxk + uxkuxkxiwxi

+ uxkuxixiwxk
)
.

We can rewrite it as
∂w

∂t
= aij

∂2w

∂xi∂xj
+ fi(x, t, w)wxi ,

where

aij = (ρ+ ε)α(|∇uε|2 + ε)
p(x)−2

2 (δij + (p(x)− 2)(|∇uε|2 + ε)−1uxiuxj ).

fi(x, t, w) = (p(x)− 2)∇[(ρ+ ε)α] · ∇uε(|∇uε|2 + ε)
p(x)−4

2 uxi

+ (|∇uε|2 + ε)
p(x)−2

2 [(ρ+ ε)α]xi

+ (ρ+ ε)α(p(x)− 2)(p(x)− 4)(|∇uε|2 + ε)
p(x)−6

2 uxjuxkxjuxkuxi

+ (ρ+ ε)α(p(x)− 2)(|∇uε|2 + ε)
p(x)−4

2
(
uxkuxkxi + uxiuxixk

+ uxiuxkxk
)
.

Clearly, w satisfies

w(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

w(x, 0) = div((ρ+ ε)α(|∇u0|2 + ε)
p(x)−2

2 ∇u0), x ∈ Ω.

If we denote
a0 = (|∇uε|2 + ε)

p(x)−2
2 ,
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then
min{p(x)− 1, 1}a0|ξ|2 ≤ aijξiξj ≤ max{p(x)− 1, 1}a0|ξ|2.

By the maximum principle, we have

sup
Ω×(0,T )

|uεt| ≤ sup
Ω
|div((ρ+ ε)α(|∇u0|2 + ε)

p(x)−2
2 ∇u0| ≤ c, (3.12)

because u0(x) ∈ C∞0 (Ω), α ≥ 1.
By (3.6),(3.8) and (3.11), we know that there exist a subsequence (still denoted

as uε) of uε, a n−dimensional vector function
−→
ζ = (ζ1, · · · , ζn), such that

uε ⇀ ∗u, in L∞(QT ),

uε → u, in Lrloc(QT ),

∇uε ⇀ ∇u in L
p(x)
loc (QT ),

ραε (|∇uε|2 + ε)
p(x)−2

2 ⇀
−→
ζ in L

p(x)
p(x)−1 (QT ).

Here, if p− ≥ 2, r = 2, while p− < 2, 1 < r < p−∗ = Np−

N−p− as usual.
Since for any function ϕ ∈ C∞0 (QT ),∫∫

QT

(−uεϕt + ραε (|∇uε|2 + ε)
p(x)−2

2 ∇uε · ∇ϕ) dx dt = 0, (3.13)

if ε→ 0, then ∫∫
QT

(
∂u

∂t
ϕ+
−→
ζ · ∇ϕ) dx dt = 0. (3.14)

As in [32], we can prove that∫∫
QT

ρα|∇u|p(x)−2∇u · ∇ϕdx dt =
∫∫

QT

−→
ζ · ∇ϕdx dt (3.15)

for any function ϕ ∈ C∞0 (QT ), then u is the solution of equation (1.5) with the
initial condition (1.6). Thus, we have completed the proof. �

If u0 only satisfies (3.1), we choose uε,0 ∈ C∞0 (Ω), then ‖uε,0‖L∞(Ω) and

‖ραε |∇uε,0|p
+
‖L1(Ω)

are uniformly bounded, and uε,0 converge to u0 in W 1,p+

loc (Ω). We consider the
regularized problem

uεt − div(ραε (|∇uε|2 + ε)
p(x)−2

2 ∇uε) = 0, (x, t) ∈ QT , (3.16)

uε(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (3.17)

uε(x, 0) = uε,0(x), x ∈ Ω, (3.18)

where ρε = ρ + ε, ε > 0. For any uε,0 ∈ C∞0 (Ω), ραε |∇uε,0|p
+ ∈ L1(Ω), the above

problem has a unique weak solution, and hence for any ϕ ∈ C∞0 (QT ), uε satisfies∫∫
QT

(uεtϕ+ ραε |∇uε|p(x)−2∇uε · ∇ϕ) dx dt = 0. (3.19)

As in the proof of Lemma 3.2, except that the uniformly bounded estimate of uεt,
we can prove the following lemma.
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Lemma 3.3. If p− > 1, u0 satisfies (3.1). Then the solution uε of initial boundary
value problem (3.16)-(3.18) is convergent to u weakly star, and strongly convergent
to u ∈ Lrloc(QT ), and u is the solution of equation (1.5) with the initial condition
(1.6).

Clearly, Theorem 3.1 is a direct corollary of Lemmas 3.2 and 3.3.

4. Uniqueness of the solution

Lemma 4.1. If α < p− − 1, let u(x, t) be the solution of (1.5) with the initial
condition (1.6). Then there exists a constant γ > 1, such that∫∫

QT

|∇u|γ dx dt ≤ c. (4.1)

Proof. Since α
p−−1 < 1 and p− − α > 1, there exists a constant β ∈ ( α

p−−1 , 1) such
that p− − α

β > 1. Because of β < 1 and p− − α
β > 1, there exists γ ∈ (1, p− − α

β )
such that βγ < 1. Then we find∫∫

QT

|∇u|γ dx dt

=
∫∫
{(x,t)∈QT ;ρβ |∇u|61}

|∇u|γ dx dt+
∫∫
{(x,t)∈QT ;ρβ |∇u|>1}

|∇u|γ dx dt

6
∫∫

QT

ρ−βγ dx dt+
∫∫

QT

ρα|∇u|α/β+γ
dx dt

6
∫∫

QT

ρ−βγ dx dt+
∫∫

QT

ρα(1 + |∇u|p
−

) dx dt 6 c.

�

Thus, if α < p− − 1, u(x, t) is the solution of equation (1.5) with the initial
condition (1.6), then we can define the trace of u on the boundary of Ω.

Theorem 4.2. If α < p− − 1, let u and v be two weak solutions of (1.5) with dif-
ferent initial values u(x, 0) and v(x, 0) respectively, and with the same homogeneous
boundary condition

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ). (4.2)

Then ∫
Ω

|u(x, t)− v(x, t)|dx ≤
∫

Ω

|u0 − v0|dx, ∀t ∈ [0, T ).

Proof. From the definition of the weak solution, ρα|∇u|p(x), ρα|∇v|p(x) ∈ L1(QT ),
and for all ϕ ∈ C∞0 (QT ), we have∫∫

QT

ϕ
∂(u− v)

∂t
dx dt = −

∫∫
QT

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇ϕdx dt.

(4.3)
For any given positive integer n, let gn(s) be an odd function. When s ≥ 0, it is

defined as

gn(s) =

{
1, s > 1/n,
n2s2e1−n2s2 , s 6 1/n.
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Choosing gn(u− v) as the test function in (4.3), we have∫∫
QT

gn(u− v)
∂(u− v)

∂t
dx dt

+
∫∫

QT

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇(u− v)g′n(u− v) = 0.
(4.4)

Thus we further have ∫
Ω

gn(u− v)
∂(u− v)

∂t
dx =

d

dt
‖u− v‖1,∫∫

QT

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v) · ∇(u− v)g′n(u− v) dx dt > 0,

Let n→∞ in (4.4). Then d
dt‖u− v‖1 6 0. This implies∫

Ω

|u(x, t)− v(x, t)|dx 6
∫

Ω

|u0 − v0|dx, ∀t ∈ [0, T ).

In addition, if u0(x) = v0(x), by the arbitrariness of t,

u(x, t) = v(x, t) a.e. in (x, t) ∈ QT ;

then the solution of (1.5) with the homogeneous boundary value is unique. �

Theorem 4.3. Suppose that u0 ∈ L∞(Ω) and ρα|∇u0|p
+ ∈ L1(Ω). If α > p+ − 1,

then for any t ∈ [0, T ), we have∫
Ω

[u(x, t)− v(x, t)]2dx ≤
∫

Ω

[u(x, 0)− v(x, 0)]2dx. (4.5)

In other words, the solution of equation (1.5) is free from any limitations of the
boundary condition.

Proof. Denote Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} as before, and let ξε ∈ C∞0 (Ωε) such
that ξε = 1 on Ω2ε, 0 ≤ ξε ≤ 1 and |∇ξε| ≤ c/ε. From the definition of the weak
solution, we have∫∫

QT

ϕ
∂(u− v)

∂t
dx dt

= −
∫∫

QT

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇ϕdx dt, ∀ϕ ∈ C∞0 (QT ).
(4.6)

For any fixed s ∈ [0, T ), after an approximate procedure, we may choose χ[0,s](u−
v)ξε as a test function in the above equality, where χ[0,s] is the characteristic func-
tion on [0, s]. Thus we have∫∫

Qs

ϕ
∂(u− v)

∂t
dx dt = −

∫∫
Qs

ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇ϕdx dt,
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and ∫
Ω

[u(x, s)− v(x, s)]2ξεdx

=
∫

Ω

[u(x, 0)− v(x, 0)]2ξεdx

− 2
∫∫

Qs

ξερ
α(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇(u− v) dx dt

− 2
∫∫

Qs

(u− v)ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇ξε dx dt

≤
∫

Ω

[u(x, 0)− v(x, 0)]2ξεdx

− 2
∫∫

Qs

(u− v)ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇ξε dx dt.

(4.7)

Since∣∣− 2
∫∫

Qs

(u− v)ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇ξε dx dt
∣∣

≤ 2
∫∫

Qs

|u− v|ρα(|∇u|p(x)−1 + |∇v|p(x)−1)|∇ξε| dx dt

≤ c
∫ T

0

∫
Ωε\Ω2ε

[p(x)− 1
p(x)

ρα(|∇u|p(x) + |∇v|p(x)) +
1

p(x)
ρα|∇ξε|p(x)

]
dx dt

≤ c
∫ T

0

∫
Ωε\Ω2ε

[p(x)− 1
p(x)

ρα(|∇u|p(x) + |∇v|p(x)) +
1

p(x)
εα−p(x)

]
dx dt,

(4.8)

by α > p+ − 1 and α− p(x) > −1, using (4.8) yields

lim
ε→0

∣∣− 2
∫∫

Qs

(u− v)ρα(|∇u|p(x)−2∇u− |∇v|p(x)−2∇v)∇ξε dx dt
∣∣ = 0. (4.9)

Let ε → 0. By (4.7)-(4.9), the stability (4.5) is obviously true. The proof is
complete. �

By Theorem 3.1, Theorem 4.2 and Theorem 4.3, we arrive at Theorem 1.4.
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