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LORENTZ ESTIMATES FOR ASYMPTOTICALLY REGULAR
ELLIPTIC EQUATIONS IN QUASICONVEX DOMAINS

JUNJIE ZHANG, SHENZHOU ZHENG

Abstract. We derive a global Lorentz estimate of the gradient of weak so-

lutions to nonlinear elliptic problems with asymptotically regular nonlinearity

in quasiconvex domains. Here, we prove its Lorentz estimate for such an
asymptotically regular elliptic problem by constructing a regular problem via

Poisson’s formula, and quasiconvex domain locally approximated by convex

domain.

1. Introduction

Let Ω be a bounded domain in Rn with n ≥ 2, and 1 < p < ∞ be a fixed
real number. The main purpose of this paper is to attain a global estimate of the
gradient of weak solutions in Lorentz spaces for the following zero Dirichlet problem
of nonlinear elliptic equations:

div a(x,Du) = div(|f |p−2f), in Ω,
u = 0, on ∂Ω,

(1.1)

where the vector-valued function a(x,Du) : Rn×Rn → Rn is asymptotically regular
(for details to see Definition 1.1), and f is any given vector-valued function in
Lorentz spaces Lγ,q(Ω,Rn) with 1 < p ≤ γ < ∞ and 0 < q ≤ ∞. A weak
solution of the Dirichlet problem (1.1) is understood in the distributional sense, if
u ∈W 1,p

0 (Ω) satisfies∫
Ω

〈a(x,Du), Dφ〉dx =
∫

Ω

〈|f |p−2f , Dφ〉dx, for all φ ∈W 1,p
0 (Ω).

Recently, there have been a lot of research activities about regular elliptic prob-
lems, see the papers by Byun et al. [8, 9, 10, 11] and references therein. We notice
that these papers are concerned with the Calderón-Zygmund estimates or Orlicz es-
timates to elliptic and parabolic equations defined in the domain of Reifenberg flat
sense. Lorentz spaces are a two-parameter scale of spaces which refine Lebesgue
spaces in some sense. Since the pioneering work of Talenti [23] based on sym-
metrization, there were a large of literature on the topic of Lorentz regularity to
elliptic and parabolic PDEs. In particular, Mengesha-Phuc in [19] used a kind of
geometrical approach to prove the weighted Lorentz regularity of the gradient for
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quasilinear elliptic p-Laplacian equations, and Zhang-Zhou [24] extended their re-
sults to the setting of quasilinear p(x)-Laplacian. Meanwhile, Baroni in [3, 4] made
use of another approach, which is called Large-M-inequality principle introduced by
Acerbi-Mingione in [1], to prove the Lorentz estimates of gradient for evolutionary
p-Laplacian systems and obstacle parabolic p-Laplacian, respectively.

The objective of this paper is mainly devoted to considering Lorentz regularity
of the gradient to the Dirchlet problems (1.1) by focusing on those two optimal
conditions on the operator a(x, ξ) and ∂Ω; that is to say, one is the smoothness
on coefficients and the other is the geometry of ∂Ω. To the boundary geometry
of domain, the concept of Reifenberg flatness is already so general that it includes
very rough domains like Koch snowflake, see [9, 10, 11, 14] for the precise con-
cept of Reifenberg flat domains. However, as indicated in [7, 17, 18] Reifenberg
flatness excludes some geometrical simple domains such as polygons. To this end,
similar to the paper [7] we introduce the concept of quasiconvex domain, roughly
speaking, whose boundary can be approximated from inside and outside by two
convex surfaces in all scales, rather than two hyperplanes for Reifenberg flat do-
mains. Very recently, there have been many interesting regularity problems to
elliptic and parabolic PDEs defined over a quasiconvex domain. For example, Jia-
Li-Wang developed global regularity in Sobolev space W 1,p and Orlicz space W 1

0L
ψ

with ψ ∈ ∇2 ∩ 42 for linear divergence elliptic equations in [17] and [18], respec-
tively. Byun-Kwon-So-Wang [7] extended the global Calderón-Zygmund estimates
like ‖Du‖Lq(Ω) . ‖f‖Lq(Ω) for all q ∈ [p,∞) in quasiconvex domains to the setting
of p-Laplacian elliptic equations.

Another point in this paper is that a(x, ξ) is assumed an asymptotically regu-
lar. Chipot and Evans [13] first introduced the notion of asymptotically regular
in the elliptic framework, and Raymond [20] considered the Lipschitz regularity of
solutions to asymptotically regular problems with p-growth. Since then, there is a
large of literature on the topic of asymptotically regular. Scheven and Schmidt in
[21, 22] obtained a local higher integrability and a local partial Lipschitz continuity
with a singular set of positive measure for the gradient Du to the system which
exhibits a certain kind of elliptic behavior near infinity, respectively. Furthermore,
a global Lipschitz regularity result was extended by Foss in [15]. Very recently,
Byun-Oh-Wang [12] proved global Calderón-Zygmund estimates for nonhomoge-
neous asymptotically regular elliptic and parabolic problems in divergence form in
the Reifenberg flat domain by covering the given asymptotically regular problems
to suitable regular problems. Later, Byun-Cho-Oh [6] extended the same conclu-
sions to the setting of nonlinear obstacle elliptic problems. Zhang-Zheng [25] also
further extended the work of Byun-Oh-Wang [12] to the case of obstacle parabolic
problems in the scale of Lorentz spaces.

Our consideration is inspired by [7, 12, 19] regarding the Lorentz scales by re-
fining Lebesgue spaces and the minimal smooth assumptions imposed on the non-
linearity ”coefficients” and the geometry of domain. More precisely, our aim is to
prove a global Lorentz estimate of the gradient for nonlinear elliptic problem with
asymptotically regular nonlinearity in a quasiconvex domain as mentioned above.
That is a natural refined outgrowth of Byun-Oh-Wang’s paper [12] and Byun-Kwon-
So-Wang’s paper [7] in the following two aspects, Indeed, the Lebesgue space Lγ is
a special case of Lorentz space Lγ,q when q = γ and the (δ,R)-Reifenberg flat do-
main in [12] is also a special case of (δ, σ,R)-quasiconvex domain. To attain our aim,
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some ideas from the papers [7, 12] are employed in our main proof. For example, to
get the global Lorentz estimate we will make use of an equivalent representation of
Lorentz norm, the Hardy-Littlewood maximal functions, and the Poisson formula
by constructing a regular problem from the given irregular problem. Before stating
the main result, let us give some basic concepts and facts.

We first recall that the Lorentz space Lγ,q(Ω) with 1 ≤ γ <∞, 0 < q <∞ is the
set of measurable function g : Ω→ R such that

‖g‖qLγ,q(Ω) := q

∫ ∞
0

(
µγ |{ξ ∈ Ω : |g(ξ)| > µ}|

)q/γ dµ
µ
< +∞.

While the Lorentz space Lγ,∞ for 1 ≤ γ < ∞, q = ∞ is set to be the usual
Marcinkiewicz space Mγ(Ω) with quasinorm

‖g‖Lγ,∞ = ‖g‖Mγ(Ω) := sup
µ>0

(
µγ |{ξ ∈ Ω : |g(ξ)| > µ}|

)1/γ

< +∞.

The local variant of such spaces is defined in the usual way. Moreover, we note that
by Fubini’s theorem there holds

‖g‖γLγ(Ω) = γ

∫ ∞
0

(
µγ |{ξ ∈ Ω : |g(ξ)| > µ}|

)dµ
µ

= ‖g‖γLγ,γ(Ω),

so that Lγ(Ω) = Lγ,γ(Ω); cf. [3, 4, 5].
Asymptotically regular a(x, ξ) says the case that it is getting closer to some

vector-valued function b(x, ξ) as |ξ| goes to infinity, where b(x, ξ) satisfies the
following assumptions:

(H1) b(x, ξ) : Rn×Rn → Rn is measurable in x and differential in ξ, and satisfies
the ellipticity and growth conditions:

〈∂ξb(x, ξ)η, η〉 ≥ λ|ξ|p−2|η|2,
|b(x, ξ)|+ |ξ||∂ξb(x, ξ)| ≤ Λ|ξ|p−1,

(1.2)

for almost every x ∈ Ω and all ξ, η ∈ Rn, where the structural constants
satisfy 0 < λ ≤ 1 ≤ Λ ≤ ∞.

(H2) ((δ,R)-vanishing) b(x, ξ) is (δ,R)-vanishing if we have

ωb(R) := sup
0<r≤R

sup
x0∈Ω

−
∫
Br(x0)∩Ω

β(b, Br(x0))(x)dx ≤ δ,

where

β(b, Br(x0))(x) := sup
ξ∈Rn

|b(x, ξ)− bBr(x0)(ξ)|
(1 + |ξ|)p−1

, bBr(x0)(ξ) = −
∫
Br(x0)∩Ω

b(x, ξ)dx.

Definition 1.1 (Asymptotically δ-Regular). Let b(x, ξ) satisfies the assumption
(H1). Then we say that a(x, ξ) is asymptotically δ-regular with b(x, ξ) if there
exists a uniformly bounded nonnegative function θ : [0,∞)→ [0,∞] such that

lim sup
ρ→0

θ(ρ) ≤ δ

and
|a(x, ξ)− b(x, ξ)| ≤ θ(|ξ|)(1 + |ξ|p−1)

for almost every x ∈ Ω and all ξ ∈ Rn.
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Remark 1.2. (i) From Definition 1.1, we can easily conclude that

lim
|ξ|→∞

sup
x∈Ω

|a(x, ξ)− b(x, ξ)|
|ξ|p−1

≤ 2δ, (1.3)

namely, for any sufficiently small δ > 0, a(x, ξ) is in a regular range as |ξ| is near
infinity. Throughout the paper we always assume that a(x, ξ) is asymptotically
δ-regular with b(x, ξ) satisfying the assumption H1, where δ is to be determined
later.

(ii) The above assumption (1.2) implies that the following monotonicity condi-
tion: for all ξ, η ∈ Rn and for almost every x ∈ Rn,

〈b(x, ξ)− b(x, η), ξ − η〉 ≥

{
ν(n, p, λ)(|ξ|+ |η|)p−2|ξ − η|2, if 1 < p < 2,
ν(n, p, λ)|ξ − η|p, if p ≥ 2.

(iii) By Browder-Minty Theorem, it is well known that under the basic assump-
tion H1, the problem (1.1) has a unique weak solution provided f ∈ Lp(Ω,Rn) and
|Ω| <∞, with the estimate

‖Du‖Lp(Ω) ≤ C(λ, p)‖f‖Lp(Ω). (1.4)

(iv) The assumption that b(x, ξ) is (δ,R)-vanishing refines the assumption that
b(x, ξ) is VMOx, that is to say the nonlinearity b(x, ξ) has small BMO semi-norm
uniformly with respect to the independent variables.

Next we introduce the definition of quasiconvex domain, see [7, Definition 1.3].

Definition 1.3. A bounded domain Ω is said to be (δ, σ,R)-quasiconvex if for all
x ∈ ∂Ω, 0 < r ≤ R, the following properties hold:

(i) there exists a ball Bσr(x0) ⊂ Ωr(x), where x0 is relative to x and σ ∈ (0, 1
4 )

is a uniform constant;
(ii) there exist a hyperplane A(x, r) containing x, a unit normal vector n(x, r)

to A(x, r), and a half space H(x, r) = {y + tn(x, r) : y ∈ L(x, r), t ≥ −δr}
such that

Ωr(x) ⊂ H(x, r) ∩Br(x).

We would like to remark two points. The constant δ here is to be chosen in the
range (0, 1

2n+1 ). By scaling the problem (1.1), we can take R = 1 or any number
bigger than 1, while δ is invariant under such scaling, see [7, Lemma 2.6].

Let us summarize our main result as follows.

Theorem 1.4. Assume 1 < p ≤ γ < ∞, 0 < q ≤ ∞ and 0 < σ < 1
4 . Let u ∈

W 1,p
0 (Ω) be the solution to Dirichlet problem (1.1) with the vector-valued function

a(x, ξ) and f ∈ Lγ,q(Ω). Then there exists a small δ = δ(σ, n, p, γ, q, λ,Λ) > 0 such
that if a(x, ξ) is asymptotically δ-regular with b(x, ξ) satisfying the assumptions H1
and H2, and Ω is (δ, σ,R)-quasiconvex, then Du ∈ Lγ,q(Ω) with the estimate

‖Du‖Lγ,q(Ω) ≤ C‖F‖Lγ,q(Ω), (1.5)

for some positive constant C = C(n, λ,Λ, p, γ, q, θ) (except in the case q =∞, where
it depends only on n, λ,Λ, p, γ, θ).

The rest of this article is organized as follows. In section 2, we state some
properties of quasiconvex domains, Lorentz spaces and Hardy-Littlewood maximal
function. Section 3 is devoted to proving Theorem 1.4. On the basis of global
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Lorentz regularity for a regular problem, we prove our main result by taking a
transformation from given asymptotically regular problem to a suitable regular
problem.

2. Preliminaries

We begin this section by introducing some properties of quasiconvex domains.
Set

Ωr(x) = Ω ∩Br(x), ∂ωΩ(x) = ∂Ω ∩Br(x),
and by

D(E,F ) = max{sup
x∈E

dist(x, F ), sup
y∈F

dist(y,E)}

we denote the Hausdorff distance between two sets E and F in Rn. It is clear
that the quasiconvex domains are W 1,p extension domains (see [16]) in which the
extension theorem and Sobolev embedding theorem are available. The property
(ii) in Definition 1.3 implies that quasiconvex domains are locally approximated by
convex domains in the following sense, see [7, Lemma 3.3].

Lemma 2.1. If Ω is a (δ, σ,R)-quasiconvex domain, then for each x ∈ ∂Ω and for
every r ∈ (0, R2 ), there exist two convex domains Fr(x) and F ∗r (x) such that

F ∗r (x) ⊂ Ωr(x) ⊂ Fr(x) D(F ∗r (x), Fr(x)) ≤ 34δr
σ3

. (2.1)

It is worthwhile noting that

Fr(x) = ∩y∈∂ωΩr(x)H(y, 2r) ∩Br(x),

F ∗r (x) =
{
x0 +

(
1− 16rδ

σ3

)
(y − y0) : y ∈ Fr(x)

}
,

where H(y, 2r) and x0 ∈ Ωr(x) are given in Definition 1.3.
The next lemma states some useful embedding relations in Lorentz spaces, see

[19].

Lemma 2.2. Let Ω be a bounded measurable subset of Rn. Then the following
holds:

(1) If 0 < q1, q2 ≤ ∞ and p < η < γ <∞, then Lγ,q1(Ω) ⊂ Lη,q2(Ω);
(2) If 0 < q1 < q2 ≤ ∞ and p < γ < ∞, then Lγ,q1(Ω) ⊂ Lγ,q2(Ω) ⊂

Lγ,∞(Ω) ⊂ Lγ−ε(Ω) for any ε > 0 such that γ − ε > p.

One of the main tools in our approach is the Hardy-Littlewood maximal function,
which allows us to control the local behavior of a function. For a function g ∈
L1

loc(Rn), the Hardy-Littlewood maximal function of g is defined by

Mg(x) = sup
r>0
−
∫
Br(x)

|g(y)|dy.

Further, for a function defined on a bounded domain U ⊂ Rn, we can define the
Hardy-Littlewood maximal function locally by

MUg :=M(gχU ),

where χ is the standard characteristic function on U . We recall two basic properties
of the Hardy-LIttlewood maximal function as follows:

|{x ∈ Rn :Mg(x) ≥ µ}| ≤ C(n)
µ
‖g‖L1(Rn), for ∀t > 0,
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‖Mg‖Lp(Rn) ≤ C(n, p)‖g‖Lp(Rn), for 1 < p ≤ ∞.
Recently, this boundedness in Lp has been extended to Lorentz space by Mengesha
and Phuc as follows; see [19, Lemma 3.11].

Lemma 2.3. For any 1 < γ < ∞, 0 < q ≤ ∞, there exists a constant C =
C(n, γ, q) such that

‖Mg‖Lγ,q(Rn) ≤ C‖g‖Lγ,q(Rn)

for all g ∈ Lγ,q(Rn).

We will apply the following lemma to prove our global regularity estimates.
This modified covering lemma accommodates the special needs for the conditions
of (δ,R)-vanishing and quasiconvex domains; see [7, Lemma 2.5].

Lemma 2.4. Assume E and F are measurable sets, E ⊂ F ⊂ Ω with Ω(δ, σ, 1)-
quasiconvex, and that there exists an ε > 0 such that

(i) |E| < ε|B1|, and
(ii) for every x ∈ B1, and all r ∈ (0, 1],

|E ∩Br(x)| ≥ ε|Br(x)| implies Br(x) ∩ Ω ⊂ F.
Then |E| ≤ ( 5

σ )nε|F |.
We also need the following elementary characterization of functions in Lorentz

spaces, see [2, Lemma 4.1] or [19, Lemma 3.12].

Lemma 2.5. Let g be a nonnegative measurable function in a bounded domain
U ⊂ Rn. Let θ > 0 and λ > 1 be constants. Then for any 0 < γ, q <∞, we have

g ∈ Lγ,q(U)⇔ S :=
∑
k≥1

λtk|{x ∈ U : g(x) > θλk}|q/γ < +∞,

and moreover
C−1S ≤ ‖g‖tLγ,q(U) ≤ C(|U |q/γ + S) (2.2)

with constant C = C(θ, λ, q) > 0. Analogously, for 0 < γ <∞ and q =∞ we have

C−1T ≤ ‖g‖Lγ,∞(U) ≤ C(|U |1/γ + T ), (2.3)

where T is the quantity

T := sup
k≥1

λk|{x ∈ U : |g(x)| > θλk}|1/γ .

3. Proof of the main result

In this section, we are devoted to the proof of our main result based on the global
estimate in Lorentz spaces for problem (1.1) with b(x, ξ) satisfying the assumptions
(H1) and (H2), see Theorem 3.2 below. To that end, we first introduce the following
lemma; cf. [7, Lemma 4.5].

Lemma 3.1. Assume that u ∈ W 1,p
0 (Ω) is the weak solution of (1.1). Then there

is a constant N0 = N0(n, λ,Λ, p) > 1 so that for any fixed ε ∈ (0, 1), one can find
a small constant δ = δ(ε) > 0 such that if b is (δ, 48

σ )-vanishing, Ω is (δ, σ, 48
σ )-

quasiconvex, and Br(y), 0 < r ≤ 1, y ∈ Ω, satisfies

|{x ∈ Ω :M(|Du|p(x)) > Np
0 } ∩Br(y)| ≥ ε|Br(y)|,

then we have

Br(y) ∩ Ω ⊂ {x ∈ Ω :M(|Du|p)(x) > 1} ∪ {x ∈ Ω :M(|f |p)(x) > δp}.
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Theorem 3.2. Assume 1 < p ≤ γ < ∞, 0 < q ≤ ∞ and 0 < σ < 1/4. Let u ∈
W 1,p

0 (Ω) be the weak solution to the Dirichlet problem (1.1) with the vector-valued
function b(x, ξ) and f ∈ Lγ,q(Ω). Then there exists small δ = δ(σ, n, p, γ, q, λ,Λ) >
0 such that if b(x, ξ) satisfies the assumptions (H1) and (H2), and Ω is (δ, σ,R)-
quasiconvex, then Du ∈ Lγ,q(Ω) with the estimate

‖Du‖Lγ,q(Ω) ≤ C‖f‖Lγ,q(Ω), (3.1)

for some positive constant C = C(n, λ,Λ, p, γ, q, θ) (except in the case q =∞, where
it depends only on n, λ,Λ, p, γ, θ).

Proof. Let ε > 0 be given, and we take δ > 0 and N0 > 1 as in Lemma 3.1. To
that end, it suffices to show that for η = p+γ

2 there holds

‖f‖Lη(Ω) ≤ δ ⇒ ‖Du‖Lγ,q(Ω) ≤ C. (3.2)

In fact, by considering (3.2) and the normalization with

ũ =
δu

‖f‖Lγ,q(Ω) + µ
and f̃ =

δf
‖f‖Lγ,q(Ω) + µ

, µ > 0,

we derive, after letting µ → 0+, the desired result. Since p ≤ η ≤ γ, by Lemma
2.2 we see that the assumption ‖f‖Lη ≤ δ is well defined. Therefore, under this
assumption we set

E = {x ∈ Ω :M(|Du|p(x)) > Np
0 },

F = {x ∈ Ω :M(|Du|p)(x) > 1} ∪ {x ∈ Ω :M(|f |p)(x) > δp}.

Then, using the weak (1-1) estimate of Hardy-Littlewood maximal function, Lp-
estimate (1.4), Hölder inequality and smallness of f in order, we can check the first
hypothesis of Lemma 2.4 as follows:

|E| ≤ C

Np
0

∫
Ω

|Du|pdx

≤ C

Np
0

∫
Ω

|f |pdx

≤ C

Np
0

‖f‖pLη(Ω)|Ω|
1− pη

≤ Cδp|Ω|1−
p
η

≤ ε|B1|,

by choosing a small δ = δ(ε) > 0, if necessary, in order to get the last inequality.
Meanwhile, the second hypothesis of Lemma 2.4 follows directly from Lemma 3.1.
Therefore, by Lemma 2.4 we have

|{x ∈ Ω :M(|Du|p)(x) > Np
0 }|

≤ ε1|{x ∈ Ω :M(|Du|p)(x) > 1}|+ ε1|{x ∈ Ω :M(|F |p)(x) > δp}|,
(3.3)

for ε1 = (5/σ)nε. Using a simple iteration argument to (3.3), for any τ > 0 we
further have

|{x ∈ Ω :M(|Du|p)(x) > Nkp
0 }|τ

≤ εk2 |{x ∈ Ω :M(|Du|p)(x) > 1}|τ +
k∑
i=1

εi2|{x ∈ Ω :M(|F |p)(x) > δpN
(k−i)p
0 }|τ ,
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where ε2 = max{1, 2τ−1}ετ1 . Then it follows that

S :=
∞∑
k=1

Nqk
0 |{x ∈ Ω :M(|Du|p)(x) > Nkp

0 }|q/γ

≤ C
∞∑
k=1

(Nq
0 ε2)k|{x ∈ Ω :M(|Du|p)(x) > 1}|q/γ

+ C

∞∑
k=1

Nqk
0

[ k∑
i=1

εi2|{x ∈ Ω :M(|f |p)(x) > δpN
(k−i)p
0 }|q/γ

]
≤ C

∞∑
k=1

(Nq
0 ε2)k|Ω|q/γ

+ C
∞∑
i=1

(Nq
0 ε2)i

[ ∞∑
k=i

N
q(k−i)
0 |{x ∈ Ω :M(|f |p)(x) > δpN

(k−i)p
0 }|q/γ

]
≤ C

∞∑
k=1

(Nq
0 ε2)k|Ω|q/γ + C

∞∑
i=1

(Nq
0 ε2)i‖M(|f |p)(x)‖

q
p

L
γ
p
,
q
p (Ω)

≤ C
∞∑
k=1

(Nq
0 ε2)k

(
|Ω|q/γ + ‖|f |p‖

q
p

L
γ
p
,
q
p (Ω)

)
.

Now choosing ε sufficiently small so that Nq
0 ε2 < 1, we obtain

‖Du‖qLγ,q(Ω) = ‖|Du|p‖
q
p

L
γ
p
,
q
p (Ω)

≤ C‖M(|Du|p(x)‖
q
p

L
γ
p
,
q
p (Ω)

≤ C
(
|Ω|q/γ + ‖f‖qLγ,q(Ω)

)
≤ C.

This completes the proof. �

The main ingredient to prove Theorem 1.4 is to use Poisson’s formula to construct
a regular Dirichlet problem whose nonlinearity satisfies the assumptions (H1) and
(H2). Here, we first define a vector-valued function c(x, ξ) : Rn × Rn → Rn by

|ξ|p−1c(x, ξ) = a(x, ξ)− b(x, ξ). (3.4)

Then, from (1.3) it yields that for any sufficiently small δ > 0 there exists a positive
constant M = M(δ) such that

|ξ| ≥M ⇒ |c(x, ξ)| ≤ 2δ, (3.5)

uniformly in x ∈ Rn. For any fixed point x ∈ Rn, we consider the Poisson integral

P [c(x, ·)](ξ) :=
∫
∂BM

c(x, η)K(ξ, η)dσ(η) for ξ ∈ BM ,

where

K(ξ, η) =
M2 − |ξ|2

Mωn−1|ξ − η|n
for all ξ ∈ BM and η ∈ ∂BM

is the Poisson kernel for the ball BM ⊂ Rn with radius M , and ωn−1 is the surface
area of the unit sphere ∂B1 in Rn. Let us denote a new vector-valued function
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c̃(x, ξ) by

c̃(x, ξ) =

{
c(x, ξ), if |ξ| ≥M,

P [c(x, ·)](ξ), if |ξ| < M.
(3.6)

Then we see that c̃(x, ξ) is a vector-valued function defined in Rn × Rn. By the
maximum principle and (3.5), it follows that for any ξ ∈ Rn there holds

|c̃(x, ξ)| ≤ 2δ, (3.7)

uniformly in x ∈ Rn.
Now, by combining (3.4) with (3.6) we derive

a(x, ξ) = b(x, ξ) + |ξ|p−1c(x, ξ)

= b(x, ξ) + |ξ|p−1c̃(x, ξ) + |ξ|p−1χ{|ξ|<M}(c(x, ξ)− c̃(x, ξ)),
(3.8)

where χ{|ξ|<M} is the characteristic function on the set {ξ ∈ Rn : |ξ| < M}.
Here, we introduce a new nonlinearity ã(x, ξ), which is regular problem trans-

ferred from the asymptotically regular one. More precisley, for a given weak solution
u ∈W 1,p

0 (Ω) of the Dirichlet problem (1.1) we define ã(x, ξ) : Rn × Rn → Rn by

ã(x, ξ) := b(x, ξ) + |ξ|p−1c̃(x,Du(x)). (3.9)

The following lemma play an important role in the proof of our main Theorem
1.5.

Lemma 3.3. Let u ∈ W 1,p
0 (Ω) be a weak solution of the Dirichlet problem (1.1).

Assume that a(x, ξ) is asymptotically δ-regular with b(x, ξ) satisfying the assump-
tions (H1) and (H2). Then we have the following conclusions:

(i) If 0 < δ < min
{

λ
4(p−1) , 1

}
, then ã(x, ξ) satisfies the ellipticity and growth

conditions:

〈∂ξã(x, ξ)η, η〉 ≥ λ

2
|ξ|p−2|η|2,

|ã(x, ξ)|+ |ξ||∂ξã(x, ξ)| ≤ Λ̃|ξ|p−1,

(3.10)

for almost every x ∈ Ω and all ξ, η ∈ Rn, where Λ̃ = Λ + p.
(ii) ã(x, ξ) satisfies the (5δ,R)-vanishing condition.

Proof. (i) For any given 0 < δ < min
{

λ
4(p−1) , 1

}
, by (3.9) and (3.7) it follows that

|ã(x, ξ)| ≤ |b(x, ξ)|+ 2|ξ|p−1. (3.11)

Since b(x, ξ) and |ξ|p−1 are differentiable in ξ it implies

∂ξã(x, ξ) = ∂ξb(x, ξ) + c̃(x,Du(x))Dξ(|ξ|p−1)T

= ∂ξb(x, ξ) + c̃(x,Du(x))[(p− 1)|ξ|p−3ξ]T ,
(3.12)

and further using (3.7) and δ ≤ 1, we obtain

|∂ξã(x, ξ)| ≤ |∂ξb(x, ξ)|+ 2(p− 1)|ξ|p−2. (3.13)

Then, by (3.11), (3.13) and (1.2) it follows that

|ã(x, ξ)|+ |ξ||∂ξã(x, ξ)| ≤ |b(x, ξ)|+ 2|ξ|p−1 + |ξ||∂ξb(x, ξ)|+ 2(p− 1)|ξ|p−1

≤ Λ|ξ|p−1 + 2|ξ|p−1 + 2(p− 1)|ξ|p−1

= Λ̃|ξ|p−1,
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where Λ̃ = Λ + 2p. On the other hand, by (3.12), (1.2) and (3.7) we conclude that

〈∂ξã(x, ξ)η, η〉 = 〈∂ξb(x, ξ)η, η〉+ (p− 1)|ξ|p−3c̃(x,Du(x))ξT η · η
≥ λ|ξ|p−2|η|2 − 2δ(p− 1)|ξ|p−2|η|2

= (λ− 2δ(p− 1))|ξ|p−2|η|2

≥ λ

2
|ξ|p−2|η|2.

Considering 0 < δ ≤ λ
4(p−1) we notice that λ− 2δ(p− 1) ≥ λ

2 . So (i) is proved.
(ii) Let 0 < r ≤ R and y ∈ Rn. Then, for any ξ ∈ Rn and any ε > 0 it follows

from (3.9) and (3.7) that

|ã(x, ξ)− ãBr(y)(ξ)| ≤ |b(x, ξ)− bBr(y)(ξ)|+ 2ε|ξ|p−1 + 2ε|ξ|p−1

= |b(x, ξ)− bBr(y)(ξ)|+ 4ε|ξ|p−1.

So

ωã(R) := sup
0<r≤R

sup
ξ∈Rn

−
∫
Br(y)

ã(x, ξ)− ãBr(y)(ξ)
(1 + |ξ|)p−1

dx

≤ sup
0<r≤R

sup
ξ∈Rn

−
∫
Br(y)

b(x, ξ)− bBr(y)(ξ)
(1 + |ξ|)p−1

dx+ 4ε.

Since b(x, ξ) is (δ,R)-vanishing, we know that there exists R0 > 0 such that for
any 0 < R ≤ R0 we have

ωã(R) ≤ ε+ 4ε = 5ε
namely, ã(x, ξ) satisfies the (5δ,R)-vanishing only if we choose δ = ε. So (ii) is
proved. �

We are now ready to prove our main result.

Proof of Theorem 1.4. From (3.8) and (3.9), for any given 0 < δ < 1 there exists a
positive constant M = M(δ) > 1 and a vector-valued function c̃(x,Du) such that
c̃(x,Du) ≤ 2δ and

a(x,Du)

= b(x,Du) + |Du|p−1c̃(x,Du) + |Du|p−1χ{|Du|<M}(c(x,Du)− c̃(x,Du))

= ã(x,Du) + |Du|p−1χ{|Du|<M}(c(x,Du)− c̃(x,Du)),

which implies

diva(x,Du) = divã(x,Du) + div(|Du|p−1χ{|Du|<M}(c(x,Du)− c̃(x,Du))).

Thus from (1.1) and the above equality, we see that u ∈W 1,p
0 (Ω) is a weak solution

of
div ã(x,Du) = div(|f |p−2f)− div(|Du|p−1χ{|Du|<M}(c(x,Du)− c̃(x,Du)))

= div(|f |p−2f + |Du|p−1χ{|Du|<M}(c̃(x,Du)− c(x,Du)))

= div(|g|p−2g),
(3.14)

where

g =
|f |p−2f + |Du|p−1χ{|Du|<M}(c̃(x,Du)− c(x,Du))

||f |p−2f + |Du|p−1χ{|Du|<M}(c̃(x,Du)− c(x,Du))|
p−2
p−1
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if ∣∣|f |p−2f + |Du|p−1χ{|Du|<M}(c̃(x,Du)− c(x,Du))
∣∣ 6= 0,

while g = 0 if∣∣|f |p−2f + |Du|p−1χ{|Du|<M}(c̃(x,Du)− c(x,Du))
∣∣ = 0.

Then it is clear that |g|p−1 belongs to Lγ,q locally in Ω with

‖g‖Lγ,q(Ω) = q

∫ ∞
0

(µγ |{z ∈ Ω : |g(z)| > µ}|)q/γ dµ
µ
.

Let
h = |f |p−2f + |Du|p−1χ{|Du|<M}(c̃(x,Du)− c(x,Du)), (3.15)

this yields
|g| = |h|

1
p−1 ⇒ |g|p−1 = |h|. (3.16)

Then we obtain

µp−1 < |g(z)|p−1 = |h(z)| ≤ |f(z)|p−1 + 4|Du|p−1χ{|Du|<M},

and

|{z ∈ Ω : |g(z)| > µ}|

≤ |{z ∈ Ω : |f(z)| > µ

2
1
p−1
}|+ |{z ∈ Ω : 4|Du(z)|p−1χ{|Du|<M} >

µ

2
1
p−1
}|.

Therefore,

‖g‖Lγ,q(Ω) ≤ q
∫ ∞

0

(
µγ |{z ∈ Ω : |f(z)| > µ

2
1
p−1
}|
)q/γ dµ

µ

+ q

∫ ∞
0

(
µγ |{z ∈ Ω : 2|Du(z)|p−1χ{|Du|<M} >

µ

2
1
p−1
}|
)q/γ dµ

µ

= 2
q
p−1 q

∫ ∞
0

(
µγ |{z ∈ Ω : |f(z)| > µ}|

)q/γ dµ
µ

+ 2
q
p−1 q

∫ ∞
0

(
µγ |{z ∈ Ω : 4|Du(z)|p−1χ{|Du|<M} > µ}|

)q/γ dµ
µ
.

Note that

|{z ∈ Ω : 4|Du(z)|p−1χ{|Du|<M} > µ}| ≤ |{z ∈ Ω : 4Mp−1 > µ}|,
it follows that

‖g‖Lγ,q(Ω)

≤ 2
q
p−1 ‖f‖Lγ,q(Ω) + 2

q
p−1 q

∫ ∞
0

(
µγ |{z ∈ Ω : 4Mp−1 > µ}|

)q/γ dµ
µ

≤ 2
q
p−1 ‖f‖Lγ,q(Ω) + 2

q
p−1 q

∫ 4Mp−1

0

(
µγ |{z ∈ Ω : 4Mp−1 > µ}|

)q/γ dµ
µ

+ 2
q
p−1 q

∫ ∞
4Mp−1

(
µγ |{z ∈ Ω : 4Mp−1 > µ}|

)q/γ dµ
µ

= 2
q
p−1 ‖f‖Lγ,q(Ω) + 2

q
p−1 q

∫ 4Mp−1

0

(µγ |Ω|)q/γ dµ
µ

+ 0

= 2
q
p−1 ‖f‖Lγ,q(Ω) + 2

q
p−1 q|Ω|q/γ

∫ 4Mp−1

0

µq−1dµ
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= 2
q
p−1 ‖f‖Lγ,q(Ω) + 2

q
p−1 |Ω|q/γ(4Mp−1)q

≤ C(‖f‖Lγ,q(Ω) + 1), (3.17)

where C = C(n, δ, p, γ, q, θ, |Ω|) is a positive constant.
Recalling Lemma 3.3 and using (3.14) and (3.17), we employ Theorem 3.2 with

b(x, ξ) replaced by ã(x, ξ) and f replaced by g, respectively, which completes the
proof. �
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