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LOGARITHMICALLY IMPROVED REGULARITY CRITERIA
FOR SUPERCRITICAL QUASI-GEOSTROPHIC EQUATIONS IN

ORLICZ-MORREY SPACES

SADEK GALA, MARIA ALESSANDRA RAGUSA

Abstract. This article provides a regularity criterion for the surface quasi-

geostrophic equation with supercritical dissipation. This criterion is in terms

of the norm of the solution in a Orlicz-Morrey space. The result shows that,
if a weak solutions θ satisfies

Z T

0

‖∇θ(·, s)‖
α
α−r

M2/r
L2 logP L

1 + ln(e+ ‖∇⊥θ(·, s)‖L2/r )
ds <∞,

for some 0 < r < α and 0 < α < 1, then θ is regular at t = T . In view of the

embedding L2/r ⊂ Mp
2/r ⊂ M2/r

L2 logP L
with 2 < p < 2/r and P > 1, our

result extends the results due to Xiang [29] and Jia-Dong [15].

1. Introduction

The surface quasi-geostrophic equation is
∂tθ + u · ∇θ + Λαθ = 0,

θ(x, 0) = θ0(x),
(1.1)

where θ = θ(x, t) is a scalar real-valued function of (x, t) ∈ R2×R+ and u = (u1, u2)
is the associated incompressible velocity field of the fluid with ∇ · u = 0, and
determined from θ by

u := (−∂2Λ−1θ, ∂1Λ−1θ) = R⊥θ = (−R2θ,R1θ),

where Λ = (−∆)1/2 is the Zygmund operator and Ri, i = 1, 2 are the Riesz trans-
forms.

The surface quasi-geostrophic equation with subcritical (1 < α ≤ 2) or critical
dissipation (α = 1) have been shown to possess global classical solutions whenever
the initial data is sufficiently smooth. However, the global regularity problem re-
mains open for the supercritical case (0 < α < 1). Various regularity (or blow-up)
criteria have been produced to shed light on this difficult global regularity problem
(see e.g. [1, 2, 4, 5, 7, 8, 16, 17, 28, 30] and the references therein). The difficulties
in understanding this problem are similar to those in solving the three-dimensional
Navier-Stokes equations.
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For the study of the regularity criterion to (1.1) for the critical and supercritical
case, Constantin, Majda and Tabak [6] obtained the following conditions

lim sup
t↗T

‖θ(t)‖Hm <∞ if and only if
∫ T

0

‖∇⊥θ(·, t)‖L∞dt <∞, (1.2)

with m ≥ 3 and ∇⊥ = (−∂x2 , ∂x1). Later on, Chae [2] (see also [3]) generalizes (1.2)
to obtain the regularity criterion of the supercritical quasi-geostrophic equation
(1.1) under the assumption∫ T

0

‖∇⊥θ(·, t)‖rLpdt <∞ with
2
p

+
α

r
≤ α and

2
α
< p <∞.

Recently, Xiang [29] improved the Chae’s result and obtained another logarith-
mically improved regularity criterion in terms of the Lebesgue space subject to the
assumption∫ T

0

‖∇θ(·, t)‖rLp
1 + ln(e+ ‖∇θ(·, t)‖L∞)

dt <∞ with
2
p

+
α

r
≤ α and

2
α
< p <∞. (1.3)

Very recently, Jia and Dong [15] improves the above regularity criterion (1.3)
from Lebesgue space framework to Morrey-Campanato space framework. More
precisely, they show the regularity of weak solution when the temperature function
θ satisfies the growth condition∫ T

0

‖∇θ(·, t)‖rMp
q

1 + ln(e+ ‖∇θ(·, t)‖Lp)
dt <∞ with

2
p

+
α

r
= α and

2
α
< p <∞. (1.4)

The regularity criterion presented in this article states that, if a weak solution
of (1.1) satisfies

∫ T

0

‖∇θ(·, s)‖
α
α−r

M2/r
L2 logP L

1 + ln(e+ ‖∇⊥θ(·, s)‖L2/r )
ds <∞ with 0 < r < α,

for some 0 < r < α and 0 < α < 1, then θ is actually regular in H2 on [0, T ],
where M2/r

L2 logP L
denotes the Orlicz-Morrey space. Since the embedding relation

L2/r ⊂M2/r

L2 logP L
with P > 1 holds, our regularity criterion can be understood as

an extension of the regularity results of Xiang [29] and Jia-Dong [15]. Main tools
used in this paper are a weighted norm inequality for the Riesz potential and the
Gagliardo-Nirenberg inequality.

2. Orlicz-Morrey spaces and statement of the main result

Before stating our result, let us recall some definitions and properties of the
spaces that we are going to use (see e.g. [10, 11, 12, 13, 26] and references therein).

Definition 2.1. For P ∈ R and 1 < w < v < ∞, the Orlicz-Morrey space
Mv

Lu logP L
is defined by

‖f‖vMLu logP L
:= sup

{
r2/v‖f‖B(x,r),Lu logP L : x ∈ R2, r > 0

}
, (2.1)

where ‖f‖B(x,r),Lu logP L denotes the tw logP (3 + t) average given by

‖f‖B(x,R),Lu logP L
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:= inf
{
λ > 0 :

1
|B(x,R)|

∫
B(x,R)

( |f(x)|
λ

)w
log
(

3 +
|f(x)|
λ

)P
dx ≤ 1

}
.

Our main result now reads as follows.

Theorem 2.2. Let θ be a Leray-Hopf weak solutions of (1.1) with 0 < α < 1,
namely

θ ∈ L∞(0, T ;L2(R2)) ∩ L2(0, T ; Ḣα(R2)).
and satisfies the condition

∫ T

0

‖∇θ(·, s)‖
α
α−r

M2/r
L2 logP L

1 + ln(e+ ‖∇⊥θ(·, s)‖L2/r )
ds <∞ with 0 < r < α. (2.2)

Then, the solution θ(x, t) is regular on (0, T ].

Remark 2.3. This criterion is in terms of the norm of the solution in a Orlicz-
Morrey space. It is clear that Theorem 2.2 gives a logarithmic improvement of
Xiang’s regularity criteria (1.3) (see also 1.4). As a consequence, this result extends
several previous works.

Meanwhile, the definition of classical Morrey-Campanato spaces is as follows (see
e.g. [18]):

Definition 2.4. For 1 < p ≤ q ≤ +∞, the Morrey-Campanato space is defined by

Mp
q =

{
f ∈ Lploc(R

2) : ‖f‖Mp
q

= sup
x∈R2

sup
R>0
|B|1/q−1/p‖f‖Lp(B(x,R)) <∞

}
, (2.3)

where B(x,R) denotes the closed ball in R2 with center x and radius R.

In view of (2.1) and (2.3), the definition (2.1) covers (2.3) as a special case when
P = 0. Here and below we write (log a)P =: logP a.

Recall the following crucial result established in [10, 13, 12] (see also [22, 23, 24,
25]).

Theorem 2.5. Let 0 < α < 1 and fractional integral operator Iα be defined by

Iαf(x) =
∫

R2

f(y)
|x− y|2−α

dy. (2.4)

If P > 1, then
‖g · Iαf‖L2 ≤ C ‖g‖M3/α

L2 logP L

‖f‖L2 . (2.5)

Additionally, we have the following embeddings: for P > 0 and 0 < u < ũ < v,

Lv ↪→ Lv,∞ ↪→Mv
ũ ↪→Mv

Lu logP L ↪→M
v
u (2.6)

in the sense of continuous embedding and the inclusion is proper, where Lp,∞

denotes the usual Lorentz (weak-Lp) space. For more details see [10, 13, 12]. We
shall use as well the following useful Sobolev inequality.

Lemma 2.6. Suppose that s > 1 and p ∈ [2,+∞]. Then, there is a constant C ≥ 0
such that

‖f‖Lp(R2) ≤ C‖f‖Hs(R2).

In particular,
‖f‖L2/r(R2) ≤ C‖f‖H2(R2) with 0 ≤ r ≤ 1.
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The above lemma can be proved using the well-known boundedness property
of the Riesz potential operator (see, e.g., Stein [27]). In the proof of the main
result, we employ the following Gagliardo-Nirenberg inequality having fractional
derivatives contained in [14].

Lemma 2.7. Let 1 < p, p0, p
1 ≤ ∞, s, γ ∈ R+, 0 ≤ β ≤ 1. Then, there exists a

constant C such that
‖f‖Ḣsp ≤ C‖f‖

1−β
Lp0
‖f‖β

Ḣγ
p1
,

where
1
p
− s

2
=

1− β
p0

+ β
( 1
p1
− γ

2
)
, s ≤ βγ.

In particular,

‖f‖Ḣs ≤ C‖f‖
1− s

γ

L2 ‖f‖s/γḢγ . (2.7)

Now we are in a position to prove our regularity criterion.

Proof of Theorem 2.2. It suffices to prove that (2.2) ensures the a priori estimate∫ T

0

‖∇⊥θ(·, t)‖L∞dt <∞,

hence guaranteeing the desired regularity until T by (1.2).
For this, applying Λ2 to (1.1) and taking the L2 inner product of the resulting

equation with Λ2θ and integrating by parts, we obtain

d

dt
‖Λ2θ(·, t)‖2L2 + 2‖Λ2+α

2 θ(·, t)‖2L2

= −2
∫

R2
(u · ∇θ)Λ4θ dx

= −2
∫

R2
Λ2(u · ∇θ)Λ2θ dx

= −2
∫

R2
(Λ2u · ∇θ)Λ2θ dx− 2

∫
R2

(Λu · ∇Λθ)Λ2θ dx− 2
∫

R2
(u · ∇Λ2θ)Λ2θ dx

= −2
∫

R2
(Λ2u · ∇θ)Λ2θ dx− 2

∫
R2

(Λu · ∇Λθ)Λ2θ dx,

where we have used the following cancelation property∫
R2

(u · ∇Λ2θ)Λ2θ dx =
1
2

∫
R2
u · ∇|Λ2θ|2dx = −1

2

∫
R2

(∇ · u).|Λ2θ|2dx = 0.

Notice that Λs and ∇ commute. Hence, by Hölder inequality, first we estimate J .
By using the Schwarz inequality, the fact that Ḃr2.2 = Ḣr and the interpolation
inequality, we have

d

dt
‖Λ2θ(·, t)‖2L2 + 2‖Λ2+α

2 θ(·, t)‖2L2

= −2
∫

R2
(Λ2u · ∇θ)Ir(−∆)

r
2 Λ2θ dx− 2

∫
R2

(Λu · ∇Λθ)Ir(−∆)
r
2 Λ2θ dx

≤ 2‖R⊥Λ2θ(·, t)‖L2‖(∇θIr(−∆)
r
2 Λ2θ)(·, t)‖L2

+ 2‖∇Λθ(·, t)‖L2‖(R⊥ΛθIr(−∆)
r
2 Λ2θ)(·, t)‖L2 .
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If we invoke Theorem 2.5 and (2.7), then we have by Young inequality and the
boundedness of R⊥ in the space L2 and M2/r

L2 logP L

d

dt
‖Λ2θ(·, t)‖2L2 + 2‖Λ2+α

2 θ(·, t)‖2L2

≤ C‖Λ2θ(·, t)‖L2‖Λ2θ(·, t)‖Ḣr‖∇θ(·, t)‖
2/r
ML2 logP L

+ C‖Λ2θ(·, t)‖L2‖Λ2θ(·, t)‖Ḣr‖R
⊥Λθ(·, t)‖

≤ C‖Λ2θ(·, t)‖2−
2r
α

L2 ‖Λ2θ(·, t)‖
2r
α

Ḣ
α
2
‖∇θ(·, t)‖2/rML2 logP L

=
(
C‖Λ2θ(·, t)‖2L2‖∇θ(·, t)‖

α
α−r

M2/r
L2 logP L

)1− r
α
(
‖Λ2θ(·, t)‖2

Ḣ
α
2

)r/α
≤ 1

2
‖Λ2θ(·, t)‖2

Ḣα/2
+ C‖Λ2θ(·, t)‖2L2‖∇θ(·, t)‖

α
α−r

M2/r
L2 logP L

.

Consequently, by absorbing the diffusion term into the left hand side, we obtain

d

dt
‖Λ2θ(·, t)‖2L2 + ‖Λα

2 +2θ(·, t)‖2L2

≤ C‖∇θ(·, t)‖
α
α−r

M2/r
L2 logP L

‖Λ2θ(·, t)‖2L2

≤ C
‖∇θ(·, t)‖

α
α−r

M2/r
L2 logP L

1 + ln(e+ ‖∇⊥θ(·, t)‖L2/r )
[1 + ln(e+ ‖∇⊥θ(·, t)‖

L
2
r

)]‖Λ2θ(·, t)‖2L2

≤ C
‖∇θ(·, t)‖

α
α−r

M2/r
L2 logP L

1 + ln(e+ ‖∇⊥θ(·, t)‖L2/r )
[1 + ln(e+ ‖Λ2θ(·, t)‖L2)]‖Λ2θ(·, t)‖2L2 ,

where we have used the Sobolev embedding (see Lemma 2.6)

‖∇⊥θ(·, t)‖L2/r ≤ C‖Λ2θ(·, t)‖L2 for 0 < r < 1.

It follows that

d

dt
ln(e+ ‖Λ2θ(·, t)‖2L2) ≤ C

‖∇θ(·, t)‖
α
α−r

M2/r
L2 logP L

1 + ln(e+ ‖∇⊥θ(·, t)‖L2/r )
[1 + ln(e+ ‖Λ2θ(·, t)‖2L2)]

and thus by Gronwall’s inequality,

ln(e+ ‖Λ2θ(·, t)‖2L2)

≤ ln(e+ ‖Λ2θ0(·, t)‖2L2) exp
(
C

∫ T

0

‖∇θ(·, t)‖
α
α−r

M2/r
L2 logP L

1 + ln(e+ ‖∇⊥θ(·, t)‖L2/r )
dt
)
.

This gives the uniform boundedness of ‖Λ2θ(·, t)‖2L2 in the time interval [0, T ].
Recall that

d

dt
‖Λ2θ(·, t)‖2L2 + ‖Λα

2 +2θ(·, t)‖2L2

≤ C
‖∇θ(·, t)‖

α
α−r

M2/r
L2 logP L

1 + ln(e+ ‖∇⊥θ(·, t)‖L2/r )
[1 + ln(e+ ‖Λ2θ(·, t)‖L2)]‖Λ2θ(·, t)‖2L2 .

(2.8)
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Integrating (2.8) over [0, T ], we have

‖Λ2θ(·, t)‖2L2 +
∫ T

0

‖Λα
2 +2θ(·, t)‖2L2dt

≤ C
∫ T

0

‖∇θ(·, t)‖
α
α−r

M2/r
L2 logP L

1 + ln(e+ ‖∇⊥θ(·, t)‖L2/r )
dt

sup
0≤t≤T

{
[1 + ln(e+ ‖Λ2θ(·, t)‖L2)]‖Λ2θ(·, t)‖2L2

}
+ ‖Λ2θ0‖2L2 ,

which implies ∫ T

0

‖Λα
2 +2θ(·, t)‖2L2dt <∞.

On the other hand, by the Gagliardo-Nirenberg inequality in R2, it follows that

‖∇⊥θ‖L∞ ≤ C‖θ‖
α
α+4

L2 ‖∇⊥θ‖
4

α+4

Ḣ1+α2

≤ C‖θ‖
α
α+4

L2 ‖Λ
α
2 +2θ‖

4
α+4

L2 .

Noting that ‖θ‖L2 ≤ ‖θ0‖L2 , implies∫ T

0

‖∇⊥θ(·, t)‖L∞dt ≤ C
∫ T

0

‖θ(·, t)‖
α
α+4

L2 ‖Λ
α
2 +2θ(·, t)‖

4
α+4

L2 dt

≤ C‖θ0‖
α
α+4

L2

∫ T

0

‖Λα
2 +2θ(·, t)‖

4
α+4

L2 dt

≤ C‖θ0‖
α
α+4

L2 T
α+2
α+4 (

∫ T

0

‖Λα
2 +2θ(·, t)‖2L2dt)

2
α+4 <∞.

By the blow-up criterion (2.2) of smooth solutions to (1.1), we complete the proof.
�
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