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BLOW-UP CRITERIA OF SMOOTH SOLUTIONS TO A 3D
MODEL OF ELECTRO-KINETIC FLUIDS IN A BOUNDED
DOMAIN

MIAOCHAO CHEN, QILIN LIU

ABSTRACT. We prove that a smooth solution of a 3D model for electro-kinetic
fluids in a bounded domain breaks down blows up at the same time as certain
norm of vorticity. This norm is weaker than bmo-norm.

1. INTRODUCTION

Let © C R? be a bounded, simply connected domain with smooth boundary 9,
and v is the unit outward normal vector to d€2. We consider the following model
of electro-hydrodynamics in © x (0, 00) [1I 2]:

ou+ (u-Vu+ Vr = ApVe, (1.1)
divu = 0, (1.2)
on+u-Vn=V-(Vn—-nVe), (1.3)
Op+u-Vp=V-(Vp+pVg), (1.4)
—A¢p=p—n, / ¢dr =0, (1.5)

Q

B on _9dp 04 _
u-v =0, %—61/—8”—0 on 99 x (0,00), (1.6)
(u,n,p)(2,0) = (uo, no, po)(x), x€QCR. (1.7)

The unknowns u, w, ¢, n and p denote the velocity, pressure, electric potential,
anion concentration and cation concentration, respectively.

Equations (L.3)—-(L.5) are known as the electro-chemical equations [3] or semi-
conductor equations [4], Bl [6], and electro-rheological systems [2] [7] when formally
setting u = 0.

Equations and are the Euler equations with the Lorentz force (n —
p)Vé = ApVe. Ogawa-Taniuchi [§] proved that a smooth solution breaks down if
a certain norm of vorticity blows up at the same time. Here this norm is weaker
than bmo-norm. Zhang and Yin [9] proved the global well-posedness of problem
— when Q := R2.

Before presenting our results, we introduce some function spaces, and notation.
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Let n, ¢;, j = 0,£1,£2,43,... be the Littlewood-Paley dyadic decomposition
of unity that satisfies

ne CR(BO,1), 6 C(B0,2)\ BO,))

0;(€) = ¢(277¢), (&) + Z 9;(6) =1

for all ¢ € R3, where B(z,r) denotes the ball centered at z of radius r. We first
recall the space of Besov type introduced by Vishik [10].

Definition 1.1 ([I0]). Let ©(«)(> 1) be a nondecreasing function on [1,00). Vg =
{f e |fllve < oo} with the norm

)Vl + 30550 (85 )Y Nl

L = su ,
Ifllve = _sup o

3 Lyens

where f and f denote the Fourier and inverse Fourier transforms.
We note that
1fllve < CllfllBs. . < Clifllomo < Cllfllz=, if O(N) > N.
Now let us introduce the space of bmo type used in [§].

Definition 1.2. Let 3(r) be a positive function on (0, 1] and Q C R3 be a domain
with 0Q € C*.
(1) bmog(R?) is defined as the set of functions f in Li _(R3) such that

loc
1 _
1 lomoses) = sup / F) = Fowndy
s S mers |B(@,1)|B() (@)
1
+ sup ——— |f(y)|dy < oo,

vers |B(z, 1) B(z,1)

where fp 1= \T%ﬂ I fy)dy.
(2) On Q C R3 we define bmog as restrictions of the above space bmog(R?):

bmos () := {fla; f € bmog(R?)},
where f|q is the restriction of f on . The norm of this space is defined by
”f”bmo;f(Q) := inf {Hf”bmoMR‘”’)?f € meB(RS) with f: f in Q}

In particular if 8(r) = 1, we write bmog(R?) = bmo(R?) and bmog(Q) = bmo().
Obviously, bmo C bmog if 8 > 1.

Definition 1.3. Let ©(a)(> 1) be a nondecreasing function on [1, c0).
Yo(Q) = {f € L'(Q) : [Ifllvo(e) < oo},

where T
o— Lp .
[ fllve (o) : BT
Mo () :={f € L'(Q) : [|flmo(e) < o0},
where

1 3
f Q) 1= Sup —— sup (7“73+5 / f(y dy)
|| ||MO( ) p>1 @(p) 0<r<1,z€R3 B(z,r)NQ | )|
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We note that these spaces have the following relations.

I fllme@) < Cllifllve < Cllflomo)- (1.8)

Let
O(log(e + 1))

Blr) = log(e + 1)

In this article we use the following assumptions:

(H1) ©(w) is a positive and nondecreasing function on [1, c0) satisfying

T da
/ 6(0) =00, O(a)>a. (1.9)

(H2) For all s > 1 there exists C(s) such that
O(sa) < C(s)O(a) for all a > 1.

(H3) B(r) is a non-increasing function on (0, 1].

Ogawa-Taniuchi [8] proved the following blowup criterion

T
/0 () lbmon ) + 100D o et = o0, (1.10)

where w := curlu and for all € > 0 and €. := {z € Q;dist(z, Q) < €} or

T
/O [w(®llbmog (2s0) + W)l a6 (@250 + llow(t) [[ve dt = oo, (L.11)

for all 0 < € < 9 and all p € C*(R?) with p=1in 2\ Qc and p=0in R*\ Q. €
is a small positive constant depending only on €.
Since f(r) > 1, we have

1 flomos ) < I lomo()

By this inequality and (|1.8]), (1.10) implies

T
/ [w(®)|[bmo()dt = oo (1.12)
0

The aim of this article is to prove a similar result for problem (|1.1] . It is
easy to show that (| . . ) has a unique local smooth solution Wlth uo € H? and
(no,po) € H2. Thus we omit the details here. However, the global regularity is still
open, which this paper aims to study. We will prove the following result.

Theorem 1.4. Let uy € H3 , (no,po) € H?, ng,po > 0,divug =0 in Q, up-v =

8"0 = 8—‘;" on 8Q and f nodr = fQ podz. Suppose that (u n,p) is a local smooth

solutzon to . on [0,T). If T is mazimal, then and | - ) hold.

In Section 2, we will give some preliminaries. Section 3 is devoted to the proof
of Theorem [L.4l
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2. PRELIMINARIES

Lemma 2.1 ([T1]). For any u € WP with divu =0 in Q and u-v = 0 on 09,
there holds

[ullwer < Cllullze + || curlullws-1.r)

for any s > 1 and p € (1,00).

Lemma 2.2 ([12]). Let s > 1.
(1) If f,g € H*(Q) N C(Q), then

Ifalle=) < C (Ifla=@llgllLe@) + 1l @) lgllzs o) -
(2) If f € H5(Q)NCYQ) and g € H1(Q) N C(Q), then for |a] < s,
ID(f9) = FD%llr2() < C (If lzz=@llgllo= @) + 1 £ lwr @ lgllze-2()) -
Lemma 2.3 ([8]). For all € > 0, we have
IVl ()
< C (14 llullL2@) + lleurl ullpmo, ) + [l curluflag o))
O(log(e + [[ullrs ()
for all u € H3(Q) with divu =0 in Q and u-v =0 on Q.

Lemma 2.4 ([]]). There exists a constant ey depending only on § such that: For
all 0 < € < €g and for all p € C®(R3) with p =1 in Q\ Q. and p =0 in R3\ Q
there exists constant C' depending only on €, p,§) and © such that

IVl o) < C(1+ llullz2o) + | ewrlullamog . + | el ullarg o

+ llpcurl v, ) ©(1og(e + llull s )
for all u € H3(Q) with divu =0 in Q and u-v =0 on Q.

Lemma 2.5 ([I3]). Let ¢ be nonnegative function on (0,T) with fOT Y(t)dt < oo,

let ©(a) be a positive and nondecreasing for o > 1 and f+°° % = 00. Assume

that v € C([0,T)) and
0 < v(t) < v(0) + /t W(s)0(v(s))ds for all0<t<T.
0
Then supg<;<7 v(t) < co.

3. PROOF OF THEOREM [I.4]

Since the proof of ([1.11)) is similar to that of ((1.10]), we only need to prove (1.10)).
By the standard argument of continuation of local solutions, it suffices to prove that
if

T
/ lw(O)lbmog ) + lw(t) | e (2e)dt < 0o for some e > 0, (3.1)
0

then
ue€ L0, T; H*), (n,p) € L=(0,T; H*) N L*(0,T; H?). (3.2)

First, by the maximum principle, it is easy to prove that n,p > 0 in Q x (0, c0).
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Testing (1.3) by n and testing (|1.4) by p, using (1.5)), (1.2) and summing up the

resulting inequality, we easily get
1 r 1 1
5 /n2 + p?dx +/ /|Vn\2 +|Vp|? + 3= n)?(n + p)dxdt < 5 /ug + padz,
0
whence
(e, P) | Los 0,75L2) + 11, P) | L2 0,75m1) < C- (3.3)
Testing (T-3) by n*~! and testing (L) by p*~L, using (T:2), (L) and n,p > 0,
we find that
/nk + pkdx < /nlg +pk < /(no + po)"dz,
which gives
[nllzr < llno +pollre,  llplles < llno + poll -
Taking k — oo, we obtain

()| Lo 0,751y < C. (3.4)
Testing (1.1)) by u, using (L.2)-(L.5]), we infer that
1d
sii [0 Vol + [ 1867 + (n+ p)IVopds =0, (3.5)
which leads to
lull oo 0,1522) < C. (3.6)
It follows from ({3.5)), (3.4)), (3.3) and (1.5 that
Vo e L®(0,T; H' N L>) N L*(0,T; H?). (3.7)

Testing by —An, using , , , and , we have

1d 9
- A 2
5 t/|Vn| dz+/| n|“dz

= /(u -V)n - Andz + /(nAQS +Vn-V¢)Andx

= Z / uiamf)‘?ndx + /(nAd) +Vn-V¢)Andx
g

=— Z/Bjuiamajndx + /(n(n —p)+ Vn-Vo)Andz
‘Mj
< C|IVullz=[[Vnlz: + CllAn]| 12 + C|Vnl| 2| V|| < A 2

< SlAnlL: + ClIVullL= [ ValZ: + C + C|[Vall7.,

DN | =

which implies
d
- / |Vn|2dz + / |An|?dz < C + C||Vnl|72 + C||Vul| L= || VR .. (3.8)
Similarly for the p-equation, we have
d
G [1VpPdo+ [ 18pPds <C o+ CIVpIR + U~ Vol (39)

Equations (|1.3) and (|1.6) can be rewritten as
An=f:=0n+u-Vn+V-(nVe¢), inQ x (0,00)
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0

a—:j =0, on I x (0,00).

By the classical regularity theory of elliptic equation, using (3.6)), (3.4)) and (3.7)),
we deduce that

[nllezs < ClIfll e
< Cllognl[gr + Cllu- Vallgr + OV - (nVE) |
< Cloinllar + Cllull2[[Vallzee + Cllul[zs[[AnllLs
+ ClIVul L=Vl L2 + CllnAdl| L2 + C[[Vn - V| L2

+ Cllall~ VAl s + CIVnll <[ 920l12 + CIVSlsollAnlzs
< Cl|On|lgr + Cl[Vn|[e= + Cllull s || An| s
+ C|[VullL=[[Vn|lz + C + C||Vn|| L2
+ CIV(n = p)|lz + CllAn| Ls.
Now we use the following Gagliardo-Nirenberg inequalities:
IVnllz= < Cllnll2 Inl 773, (3.11)
1Vnllzs < Cllnlli 2 nll3s, (3.12)
ullFe < CllullZsllull ms. (3.13)

It follows from (3.10]), (3.11), (3.12), (3.13)), (3.6), (3.4) and the Young inequality
that

[nlles < Cllowm|ar + C + Clluflas + Cl|[Vul L= Va2

3.14
+ O nllzs + CI . (314

Similarly to the p- equation, we have
Ipllas < Cllowplla + C + Cllullgs + ClVulL=[[Vpll> (3.15)

+C[VnllLz + ClVpl| 2.
Applying the curl to (L)), using (1.2), we obtain

Ow +u-Vw =w - Vu + curl(ApV ). (3.16)
Applying A to , testing by Aw, using , we find that

%% / |Aw|?dz = — /(A(u - Vw) — uVAw)Awdx
+ / A(w - Vu) - Awdz + / Acurl(A¢Ve) - Awdz

(3.17)
< (|A(u- Vo) = uVAW| 2 + |A(w - Vu)| 2

1A curl(AgVe)| ) | Aw] 12
= (Il -+ IQ =+ Ig)HAw||L2.
Using and Lemma I; and I can be bounded as follows.
Il = Z ||A81(uzw) — uiaiAwHLz

< ClIVull= [Awllzz + Cllwllz< [ VPul L2
< C[[Vul[pe [|ull s,
I < Cllwllp= [[ullzs + CllVull= @] z2 < ClVul e~ [lull s
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Noting that
AG-Vo =3 0;(0;60:6) - Za 0;0)°,

4,J

using Lemma [2.2] and (3.7)), we have
I3 < C|[Vo|lL=|Vlas < OVl < Clldllgs < Clin —pllas.
Inserting the above estimates into (3.17)), we obtain

th/WAdex<<XHVump4wan+un Pl Awl. (3.18)

Testing ([L.1) by d;u, using , -, - ) and (| -7 we infer that
10cull2 < |AGVP| L2 + [lu- Vul| 2
< IVoll=l|Agl> + llull Lo [ Vul s
< O+ Ollul 72 ul g el 2"l 37
< C+Clul}s.
Here we have used the Gagliardo-Nirenberg inequality
IVullZa < Cllullz2|ull s
Applying 0; to , we see that
I+ u-Von — Adn = —0wu - Vn — V - 9(nVe).

Testing the above equation by d;n, using (T2), (L6), (4), B-7), (3-I9) and (I3),

we derive

;;lt/(am d:c+/|V8tn| dz

— /(&gu -V)n - Ondzx + /8t(nv¢) - Vondx

= /Btu -nVomdr + /@(nw) - Ogndzx

< (InllzellOullz + (V@I Loe 100 2 + 0]l L= [ VOBl L2) [V O] 12
< C([|0eu]| 2 + (10| 2 + [10:(n = p)[[2) [V L2

1
< Z||IVomn||2e + C + Cllul|3s + C|0n||22 + C||0¢pl|3 2,

whence

%/|8tn|2d:r + / (Vo |*de < C + C|lul|%s + C|0:(n, p)||2e. (3.20)
Similarly, for the p-equation, we have

jt /(atp dr + / |Voip|2dx < C + C|lul|3s + C||0c(n, p)||2e. (3.21)
Combining (3.8), (3.9), (3.14), (3.15), (3.18), (3.20) and (3.21)), using (3.6)), Lemma

Lemma [2.3| and Lemma [2.5] we conclude that . holds. This completes the
proof.
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