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EXISTENCE OF SOLUTIONS FOR SECOND-ORDER
DIFFERENTIAL EQUATIONS

WITH DISCONTINUOUS RIGHT-HAND SIDE

ALEXANDER M. KAMACHKIN, DMITRIY K. POTAPOV, VICTORIA V. YEVSTAFYEVA

Abstract. We consider an ordinary differential equation of second order with

constant coefficients and a discontinuous right-hand side. First we use the

point mapping method defining first return functions, then we use the phase-
plane method. We establish both the existence and non-existence of periodic

solutions (including stable ones) and oscillatory solutions depending on the

coefficients of the equation. By the variational method, we prove the existence
of nonzero semiregular solutions for a boundary-value problem.

1. Introduction and statement of the problem

Studies of differential equations with discontinuous right-hand sides go back a
long way [1, 4]. Recently, investigation of such equations is also given much at-
tention (see, e.g. [11, 12, 13, 19]). These equations generate interest in theoretical
researches and also in many applications. In a number of applied problems, mathe-
matical models are reduced to ODE of second order with discontinuous right-hand
sides [9]. These are mathematical models for dynamic systems describing determi-
nate system behaviour of various physical nature. Despite the seeming simplicity
of the differential equation, such models are difficult to study fully and in detail,
since they are the essentially nonlinear models with a nonanalytical function. It
should be noted that linearization of such systems leads to mathematical models
describing nonobservable processes in real physical objects. It is known that es-
sential nonlinearity arises as a result of mathematical description of such physical
effects as Coulomb friction or ideal relay. Also, such equations describe nonlinear
oscillations [2]. Examination of periodic solutions for these equations is of certain
interest. Nowadays, there are a number of open questions in this direction.

We consider the differential equation of second order with the discontinuous
right-hand side

ẍ+Aẋ+Bx = C sgn(x). (1.1)
Here x = x(t) is the sought-for function; A, B, and C are real constants (C 6=0).
The sign function describes, for example, an ideal relay, and thus equation (1.1)
does a non-smooth oscillator. In recent years the ODEs of second order with dis-
continuous right parts have been studied in [3, 5, 6, 7, 10, 14, 15, 18] Jacquemard
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and Teixeira [5] investigate equation (1.1) for the case when A = B = 0. The case
A = 0, B = C = 1 is considered by Samoilenko and Nizhnik [18]. An applied
problem with a parameter µ = −C > 0 to be the vorticity for equation (1.1) when
A = B = 0 with zero boundary conditions is discussed in [17]. A boundary value
problem to ODE of second order with superlinear convex nonlinearity is given in
[20]. Remark that equation (1.1) in the most general form is studied in [7, 10]. This
work continues researches mentioned above. In the paper we consider two cases:
A 6= 0, B = 0 and A = 0, B ∈ R. Unlike [10], we investigate the case when A > 0
additionally and define the function f(x) = sgnx as follows:

sgnx =


−1 if x < 0,
0 if x = 0,
1 if x > 0.

2. Solution of the problem: case B = 0

Let A 6= 0 and B = 0. Then the motion equations of system (1.1) have the form

ẍ+Aẋ = −C for x < 0, ẍ+Aẋ = C for x > 0. (2.1)

Put y = ẋ. Note that y 6= 0, since C 6= 0. Therefore the equations of phase
trajectories are the following:

dy

dx
= −A− C

y
for x < 0,

dy

dx
= −A+

C

y
for x > 0.

Whence it follows that

y − y0 −
C

A
ln
−C −Ay
−C −Ay0

= −A(x− x0) for x < 0,

y − y0 +
C

A
ln
−C +Ay

−C +Ay0
= −A(x− x0) for x > 0,

(2.2)

where x0, y0 are the initial coordinates, and x, y are the current coordinates of the
phase trajectories.

The phase trajectories are symmetric with respect to the origin of coordinates
and have the following properties:

(1) if A > 0, C > 0, then at any (x0, y0) the image point goes into infinity;
(2) if A < 0, C > 0, then at any (x0, y0) the image point goes into infinity;
(3) if A > 0, C < 0, then there may exist closed phase trajectories (periodic

solution curves);
(4) if A < 0, C < 0, then the image point tends to the point (0, 0) from

any point that belongs to the sufficiently small neighborhood of (0, 0), and
additional research is needed.

Let us study the cases (3) and (4) using the point mapping method. Symmetry
of the system allows us to carry out point transformations on a half of the phase
plane.

For every case we shall define the first return functions F (x, y) = 0 and F (x, |y|) =
0 as functions of mapping of points on the half-line x > 0, y = 0 into the points on
the half-line x = 0, y > 0 accordingly, and then of points on the half-line x > 0,
y = 0 into the points on the half-line x = 0, y = −|y| < 0 in virtue of (2.2).
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The first return function F (x, y) = 0 is defined by the expression

y +
C

A
ln
(
1− A

C
y
)

= −Ax. (2.3)

By the definition F (x, y) = 0, we have

dy

dx
= −A+

C

y

d2y

dx2
= −C

y2

dy

dx
.

(2.4)

Mapping of the point set {x > 0, y = 0} into the set {x = 0, y > 0} is realized
by (2.3) in the direction opposite to the movement along the phase curves. In
addition, the function y = y(x) increases with the growth of x monotonously. Thus,
dy
dx = A− C

y , contrary to (2.4). If A > 0, C < 0, then dy
dx > 0 and d2y

dx2 = C
y2

dy
dx < 0.

This means that the function y = y(x) is a monotonously increasing and concave
function, y(0) = 0. If A < 0, C < 0, then y = y(x) approaches the line y = C/A
from below asymptotically as x→ +∞, y(0) = 0. The function y(x) is an increasing
and concave function, since dy

dx = A− C
y > 0 when y < C

A , d2y
dx2 = C

y2
dy
dx < 0.

For the cases above the first return function F (x, |y|) = 0 is defined by the
expression

|y| − C

A
ln
(
1 +

A

C
|y|
)

= Ax. (2.5)

In this connection,

d|y|
dx

= A+
C

|y|
,

d2|y|
dx2

= − C

|y|2
d|y|
dx

. (2.6)

Mapping of the point set {x > 0, y = 0} into the set {x = 0, y < 0} is realized by
(2.5) in the direction coinciding with the movement along the phase curves. At the
same time the function y(x) decreases monotonously and y(x) < 0. The function
|y|(x) increases monotonously, |y|(x) > 0, and the sign of derivatives (2.6) changes
to the opposite one. If A < 0, C < 0, then the function |y|(x) tends to +∞ as
x → +∞ and is concave, |y|(0) = 0. If A > 0, C < 0, then the concave function
|y|(x) approaches the line |y| = −C/A asymptotically as x → +∞, |y|(0) = 0.
Next, let us consider the mutual arrangement of the functions F (x, y) = 0 and
F (x, |y|) = 0 for each of the two cases.

If A < 0, C < 0, then the curves y(x) and |y|(x) are crossed on the plane
(x, (y, |y|)). This means that there is a point x = x∗ such that y(x∗) = |y|(x∗), i.e.
F (x∗, y(x∗)) = F (x∗, |y|(x∗)) = 0, and also the inequality |y|(x) < y(x) holds at
x ∈ (0, x∗), and the inequality |y|(x) > y(x) is fair for x > x∗. A closed periodic
trajectory being unstable corresponds to the point x = x∗ on the phase plane. In
this case, the closed periodic trajectory bounds the domain of the phase plane from
any point of which the phase trajectory tends to the point (0, 0). If the initial point
lies in the contradomain, then the phase trajectory leaves on infinity. Therefore
system (2.1) has an unstable periodic solution when A < 0, C < 0.

If A > 0, C < 0, then the graphs y(x) and |y|(x) are crossed on the plane
(x, (y, |y|)), i.e. there is also a point x = x∗ such that F (x∗, y(x∗)) = F (x∗, |y|(x∗)) =
0. In addition, if x ∈ (0, x∗) then |y|(x) > y(x), and if x > x∗ then |y|(x) < y(x). A
closed periodic trajectory being stable corresponds to the point x = x∗ on the phase
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plane. Hence, if A > 0, C < 0, then system (2.1) has a stable periodic solution to
which phase trajectories tend at any initial points.

We establish the following theorem.

Theorem 2.1. For system (2.1) the following statements hold:
(1) if A 6= 0 and C > 0, then (2.1) has no oscillatory solutions at any initial points
except (0, 0), the image point leaves on infinity, (0, 0) is the unstable equilibrium
point;
(2) if A < 0 and C < 0, then on the phase plane there exists a unique unstable
periodic trajectory, which is a separatrix, separating the domain of attraction of
the point (0, 0) from the domain in which the image point leaves on infinity at any
initial point;
(3) if A > 0 and C < 0, then on the phase plane there exists a unique periodic
trajectory, which is stable in the large except (0, 0), the point (0, 0) is the unstable
equilibrium point.

So, we have analysed all possible ratios between A and C in (2.1) for A 6= 0,
C 6= 0. This case is completely considered.

3. Solution of the problem: case A = 0

Let A = 0 and B ∈ R. Then equation (1.1) takes the form

ẍ+Bx = C sgn(x(t)). (3.1)

For B = 0 equation (3.1) is studied in [5]. Equation (3.1) with a discontinuous
right part in more general form for B = 0 is investigated in [6]. Therefore we
shall assume further that B 6= 0. The characteristic equation of (3.1) has the form
λ2 +B = 0.

If B < 0, then we have λ1,2 = ±
√
−B. The general solution of the nonhomoge-

neous equation is of the form

x(t) = c1e
λ1t + c2e

λ2t +
C

B

(c1, c2 are arbitrary constants). If C > 0, then C/B < 0. For x > 0 the proper lines
ẋ = λ1

(
x− C

B

)
, ẋ = λ2

(
x− C

B

)
(λ1 > 0, λ2 < 0) are crossed in the point (C/B, 0)

that lies on the left half-plane, since C/B < 0. For x < 0 these lines are crossed in
the point (−C/B, 0) on the right half-plane. Superposition of phase portraits shows
that at any initial point (x0, ẋ0) 6= (0, 0) the phase trajectory leaves on infinity
without making oscillating motions. The point (0, 0) is an unstable equilibrium
point. Let now C < 0. Since C < 0, we have C/B > 0. For x > 0 the proper lines
are crossed in the point (C/B, 0) on the right half-plane. For x < 0 the proper lines
are crossed in the point (−C/B, 0) on the left half-plane. By superposition of the
phase portraits, we obtain the closed quadrangle on the plane (xOẋ)

G =
{

(x, ẋ) : −C
B
≤ x ≤ C

B
;

λ1

(
x− C

B

)
≤ ẋ ≤ λ2

(
x− C

B

)
if x ≥ 0;

λ2

(
x+

C

B

)
≤ ẋ ≤ λ1

(
x+

C

B

)
if x ≤ 0

}
.

(3.2)

The line segments ẋ = λ1(x− C
B ), ẋ = λ2(x− C

B ), ẋ = λ1(x+ C
B ), ẋ = λ2(x+ C

B ) be-
tween the points (0,−λ1C/B) and (C/B, 0), the points (0,−λ2C/B) and (C/B, 0),
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the points (−C/B, 0) and (0, λ1C/B), the points (−C/B, 0) and (0, λ2C/B) re-
spectively make the border ∂G of the set G (G = G̊ ∪ ∂G). If the initial point
(x0, ẋ0) /∈ G,

(x0, ẋ0) /∈
{

(x, ẋ) : ẋ = λ2(x− C

B
), ẋ < 0

}
,

(x0, ẋ0) /∈
{

(x, ẋ) : ẋ = λ2(x+
C

B
), ẋ > 0

}
,

then the image point goes to infinity without making oscillations. If (x0, ẋ0) /∈ G
but

(x0, ẋ0) ∈
{

(x, ẋ) : ẋ = λ2

(
x− C

B

)
, ẋ < 0

}
,

then the image point passes into the point (C/B, 0). If (x0, ẋ0) /∈ G but

(x0, ẋ0) ∈
{

(x, ẋ) : ẋ = λ2

(
x+

C

B

)
, ẋ > 0

}
,

then the image point passes into the point (−C/B, 0). If (x0, ẋ0) ∈ ∂G, then for
final time the image point passes along the segments into one of the points (C/B, 0)
or (−C/B, 0), which are unstable equilibrium points in every directions except the
lines ẋ = λ2(x− C

B ) and ẋ = λ2

(
x+ C

B

)
respectively. If (x0, ẋ0) ∈ G̊ but (x0, ẋ0) 6=

(0, 0), then the image point makes oscillations coming to ∂G asymptotically. Thus
oscillations occur in the bounded domain G̊. The point (0, 0) ∈ G̊ is an unstable
singularity.

If B > 0, then λ1,2 = ±i
√
B, and the general solution of (3.1) is the following

x(t) = c1 cos
(√
Bt
)

+ c2 sin
(√
Bt
)

+
C

B
.

If C > 0, then C/B > 0. By virtue of (3.1), for x > 0 there is a circle with the
center in the point (C/B, 0), which is tangent to the axis Oẋ at the point (0, 0).
Next we give the equation of this circle

B2
(
x− C

B

)2 +Bẋ2 = C2 if x ≥ 0. (3.3)

Let G1 be interior of the disk bounded by the circle (3.3). By analogy, for x < 0
there is a circle with the center in the point (−C/B, 0) that is tangent to the axis
Oẋ at the point (0, 0), i.e.

B2
(
x+

C

B

)2 +Bẋ2 = C2 if x ≤ 0. (3.4)

Let G2 be interior of the disk bounded by the circle (3.4). Hence if the initial point
is (x0, ẋ0) /∈ G1 ∪G2, then the image point goes around the point (0, 0) along the
symmetric periodic trajectory. If (x0, ẋ0) ∈ ∂G1∪∂G2, i.e. the initial point belongs
to one of the circles (3.3) or (3.4), then for the final time the image point passes
into the point (0, 0), which is the unstable equilibrium point. If (x0, ẋ0) ∈ G1, then
the image point makes a round of the point (C/B, 0) along the periodic circular
trajectory. If (x0, ẋ0) ∈ G2, then the image point makes a round of the point
(−C/B, 0) along the periodic circular trajectory. Let next C < 0, then C/B < 0.
For x > 0 the center of the circle (3.3) is in the point (C/B, 0), i.e. on the left
half-plane of the plane (xOẋ). For x < 0 the center of the circle (3.4) is transferred
to the point (−C/B, 0) on the right half-plane. Therefore these centers become
virtual for x > 0 and for x < 0, and at any initial point (x0, ẋ0) 6= (0, 0) the image
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point makes a round of the point (0, 0) along the symmetric periodic trajectory.
The point (0, 0) is an isolated singularity. Therefore the following theorem holds.

Theorem 3.1. For equation (3.1) the following statements hold:
(1) if B < 0 and C > 0, then (3.1) has no oscillatory solutions at any initial points
except (0, 0), the image point goes into infinity, (0, 0) is an unstable equilibrium
point;
(2) if B < 0 and C < 0, then on the phase plane there exists the bounded set G
defined by (3.2), where λ1 =

√
−B, λ2 = −

√
−B, and such that

(a) if the initial point (x0, ẋ0) /∈ G, (x0, ẋ0) /∈
{

(x, ẋ) : ẋ = λ2

(
x− C

B

)
, ẋ < 0

}
and (x0, ẋ0) /∈

{
(x, ẋ) : ẋ = λ2

(
x+ C

B

)
, ẋ > 0

}
, then the image point goes

into infinity without making oscillations;
(b) if (x0, ẋ0) /∈ G but (x0, ẋ0) ∈

{
(x, ẋ) : ẋ = λ2

(
x− C

B

)
, ẋ < 0

}
, then the

image point passes into the point (C/B, 0); if (x0, ẋ0) /∈ G but (x0, ẋ0) ∈{
(x, ẋ) : ẋ = λ2

(
x+ C

B

)
, ẋ > 0

}
, then the image point passes into the point

(−C/B, 0);
(c) if (x0, ẋ0) ∈ ∂G, then for the final time the image point passes into the

points (C/B, 0) or (−C/B, 0) (if ẋ0 > 0, then into (C/B, 0), and if ẋ0 < 0,
then into (−C/B, 0)), which are the unstable equilibrium points in every
directions except the lines ẋ = λ2

(
x− C

B

)
and ẋ = λ2

(
x+ C

B

)
respectively;

(d) if (x0, ẋ0) ∈ G̊ but (x0, ẋ0) 6= (0, 0), then the image point makes oscillations
coming to ∂G asymptotically;

(e) the point (0, 0) ∈ G̊ is an unstable singularity;
(3) if B > 0 and C > 0, then on the phase plane there exists a separatrix defined
by (3.3), (3.4) with the following properties:

(a) if the initial point (x0, ẋ0) belongs to the contradomain bounded by this sepa-
ratrix, then the image point goes around the point (0, 0) along the symmetric
periodic trajectory;

(b) if the point (x0, ẋ0) belongs to the separatrix, then the image point passes
into the point (0, 0) for the final time; (0, 0) is the unstable equilibrium
point;

(c) if (x0, ẋ0) is an inner point of the domain bounded by the separatrix, then
along the periodic circular trajectory the image point goes around the point
(C/B, 0) for x0 > 0 or the point (−C/B, 0) for x0 < 0; (C/B, 0) and
(−C/B, 0) are isolated singularities;

(4) if B > 0 and C < 0, then at any initial points except (0, 0) the image point goes
around the point (0, 0) along the symmetric periodic trajectory; (0, 0) is an isolated
singularity.

So, we have considered all possible ratios between B and C in (3.1) when B 6= 0,
C 6= 0. This case is completely studied.

Next let t ∈ [a, b]. In addition, we complement equation (3.1) with the boundary
condition

x(a) = x(b) = 0. (3.5)
Let the space X = H1

◦ ([a, b]). We assign the functional Jc on X defined by Jc(x) =
J1(x) + CJ2(x) to the boundary value problem (3.1), (3.5). Here

J1(x) =
1
2

∫ b

a

(x′(t))2dt− 1
2
B

∫ b

a

x2(t)dt, J2(x) =
∫ b

a

dt

∫ x(t)

0

sgn(s)ds.
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In forthcoming consideration, we shall use the following definitions.
A strong solution to problem (3.1), (3.5) is a function x ∈ W 2

q ([a, b]) satisfying
equation (3.1) for almost all t ∈ [a, b] and the boundary conditions (3.5).

A semiregular solution to problem (3.1), (3.5) is a strong solution x such that
x(t) is a point of continuity of the function sgn(·) for almost all t ∈ [a, b].

An upward jump discontinuity of a function f : R → R is a point x ∈ R such
that f(x−) < f(x+), where f(x±) = lims→x± f(s).

The notion of semiregular solutions for the equations with discontinuous nonlin-
earities was first introduced in [8].

For any C problem (3.1), (3.5) has a strong trivial solution x(t) ≡ 0, which
is not semiregular, since x = 0 is a point of discontinuity of sgn(x). Therefore
searching nonzero semiregular solutions to problem (3.1), (3.5) is of interest. By
the variational method, we have proven the following theorem on the existence of
nonzero semiregular solutions to problem (3.1), (3.5) when B ≤ 0 and some C < 0.

Theorem 3.2. Let the coefficient B be nonpositive in (3.1). Then there exists a
negative number C0 such that infy∈X Jc(y) < 0 for each C < C0, there exists an
xc ∈ X such that Jc(xc) = infy∈X Jc(y), and every xc satisfying this condition is
a nonzero semiregular solution to problem (3.1), (3.5).

Proof. Problem (3.1), (3.5) is a special case of the boundary value problem inves-
tigated in [14]. For this reason, the proof of Theorem 3.2 reduces to verifying the
conditions in [14, Theorem].

Since B ≤ 0, we have J1(x) ≥ 1
2 ||x||

2 for all x ∈ X. This means that condition (1)
in [14, Theorem] (there exists a positive constant γ such that J1(x) ≥ γ||x||2 for all
x ∈ X) is fair when the constant γ = 1/2 > 0.

For almost all t ∈ [a, b], the function sgn(·) has only upward jump discontinuity
x = 0 (since −1 = sgn(0−) < sgn(0+) = 1), sgn(0) = 0, and | sgn(x)| ≤ 1 for all
x ∈ R, 1 ∈ Lq([a, b]), q > 1. Therefore [14, condition (2) in Theorem] is satisfied.

As in [16], one can show that there exists an x0 ∈ X such that J2(x0) > 0. Thus
[14, condition (3) in Theorem] holds.

In summary, all the conditions in [14, Theorem] for problem (3.1), (3.5) are
fulfilled. This implies that there exists a C0 < 0 such that for all C < C0 prob-
lem (3.1), (3.5) has a nonzero semiregular solution xc ∈ X for which Jc(xc) =
infy∈X Jc(y) < 0. The proof is complete. �

4. Conclusion

We have considered equations (1.1), (2.1), and (3.1) as mathematical models
of real physical processes. Consequently, this is quite justified to study not only
transient but also transient-free processes described by these equations. We have
investigated all possible combinations of the parameters A and C when B = 0 as
well as combinations of the parameters B and C when A = 0. Despite the seeming
simplicity of considered equations, the dynamics of the systems is quite difficult.
Moreover, we have obtained a splitting of the parameter space on the domains of
the qualitatively various dynamic behavior. The splitting of the phase plane on the
phase trajectories is put in correspondence with each such domain, which allows
to choose initial or boundary conditions for obtaining demanded dynamics of the
processes. These results can be used for modelling and studying dynamics of the
systems with discontinuous nonlinearities.
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