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CONVERGENCE OF ITERATIVE METHODS FOR ELLIPTIC
EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

MIFODIJUS SAPAGOVAS, OLGA ŠTIKONIENĖ,

REGIMANTAS ČIUPAILA, ŽIVILĖ JOKŠIENĖ

Abstract. In this article, we consider the convergence of iterative method for
the system of difference equations, approximating the elliptic two-dimensional

equations with variable coefficients and integral boundary conditions. We
investigate how convergence of iterative method depends on the structure of

spectrum for difference operator with nonlocal conditions. The main goal of

the paper is to analyze the influence of the monotonicity of the coefficient in the
differential equation to extension (or reduction) of the region of convergence.

1. Introduction

Various phenomena of modern natural science can be described most conve-
niently in terms of differential equations with nonlocal boundary conditions. The
theoretical investigation of nonlocal boundary value problems as well as numerical
methods has been an important research area in various branches of mathematics.
Some examples and details of application of such models can be found in mono-
graphs [5, 23, 41] and in many papers (see [7, 18, 22, 29, 43, 46] and references
therein).

The first papers on the numerical methods for the elliptic equations with nonlocal
conditions were published a few decades ago [10, 13, 29, 33]. Convergence of the
finite difference method was one of the main issues considered. The newest results
on various aspects of finite difference method could be found in [1, 2, 4, 24, 32, 47]
(see also references given therein).

Other numerical methods, different from finite difference methods, are presented
in [21, 25, 28, 48]. Iterative methods for the system of difference equations approxi-
mating the elliptic equations with nonlocal conditions are insufficiently investigated.
The first results having no posterior elaboration were obtained in papers [10, 30].
In [31, 38, 39, 44] the dependence of the convergence of the iterative methods on
the structure of spectrum of the difference operators with nonlocal conditions was
investigated. Presently, the eigenvalue problem for differential and difference oper-
ators with nonlocal conditions is one of the actively researched problems in the field
of differential equations and numerical analysis. The structure of spectrum of such
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operators is relatively complicated even for simple eigenvalue problem [37]. Fur-
thermore, this structure strongly depends on the change of parameters or functions
in the nonlocal conditions [8, 26, 35, 42] (see also references given therein). More
exhaustive list of references may be found in the review paper [43]. The eigenvalue
problem for the differential and difference operator with the nonlocal conditions is
related not only to the convergence of iterative methods, but also to the stability of
the difference schemes for parabolic and hyperbolic equations [11, 15, 16, 17, 18].

In [12, 14, 20] the eigenvalue problem is investigated in connection with the
existence, uniqueness and multiplicity of the solutions of the problems with nonlocal
conditions.

In the case of nonlocal conditions, the eigenvalue problems usually are considered
for the differential problems with the constant coefficients. When the coefficients
in the differential equation are variable, it becomes more difficult to investigate the
structure of spectrum of the operator. Some specific results in the case of vari-
able coefficients are obtained in [3, 9, 34, 48]. Some other methods of theoretical
investigation or numerical analysis, different from spectral analysis, for various dif-
ferential equations with variable coefficients and nonlocal conditions, are presented
in [1, 2, 19, 21, 24, 25, 27, 28] etc.

In the case of nonlocal boundary conditions the matrix of the system of difference
equations is usually non-symmetric (one of the exceptions – periodical boundary
conditions). However, often it is possible to investigate when the difference operator
has only positive eigenvalues. This allows to determine the region of convergence
for iterative methods.

Iterative methods for some linear and nonlinear elliptic equations with nonlocal
conditions were investigated in [6, 40, 48].

Our objectives in this paper are to investigate some characteristic properties
of the difference operator with nonlocal conditions (when the coefficients in the
differential equation are variable) and to determine the convergence of iterative
methods using these properties. Our goal is to investigate, how the monotonicity
of the coefficient of the differential equation influences the expansion or reduction
of the region of convergence. The paper is organized as follows. In Section 2, the
differential and difference problems are formulated. The characteristic properties
of the difference operator with nonlocal conditions are considered in Section 3. In
Section 4, the main results are proposed. We determine, how the monotonicity
of the coefficient of the differential equation shifts spectrum of the operator and
influences the convergence of the iterative method. Numerical results are presented
in Section 5.

2. Statement of the problem

We consider two-dimensional elliptic equation with nonlocal integral conditions(
p(x)ux

)
x

+
(
q(y)uy

)
y

= f(x, y), (x, y) ∈ D = {0 < x, y < 1}, (2.1)

u(0, y) = γ1

∫ 1

0

u(x, y)dx+ ϕ1(y), y ∈ (0, 1), (2.2)

u(1, y) = γ2

∫ 1

0

u(x, y)dx+ ϕ2(y), y ∈ (0, 1), (2.3)

u(x, 0) = ϕ3(x), u(x, 1) = ϕ4(x), x ∈ [0, 1], (2.4)
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where p(x) > 0, q(y) > 0.
The problem is solved by using finite difference method. In the domain of the

differential problem, we introduce the grids

ωhx = {x0 = 0, x1, . . . , xN = 1}, h = xi − xi−1 = 1/N,

ωhy = {y0 = 0, y1, . . . , yN = 1}, h = yj − yj−1 = 1/N,

ωhx = {x1, . . . , xN−1}, ωhy = {y1, . . . , yN−1}

ωh1/2,x = {x1/2, x3/2, . . . , xN−1/2}, ωh1/2,y = {y1/2, y3/2, . . . , yN−1/2}.

In the closed domain D we use the grids ωh = ωhx × ωhy , ωh = ωhx × ωhy If ω is one
of these grids, then the space F(ω) of grid functions can be defined on it.

Let Uij approximate u(xi, yj), where xi = ih and yj = jh. We introduce the
following grid operators:

∂x̄, ∂x, ∂ȳ, ∂y : F(ωh)→ F(ωh),

∂x̄Uij :=
Uij − Ui−1,j

hx
, ∂xUij :=

Ui+1,j − Uij
hx

,

∂ȳUij :=
Uij − Ui,j−1

hy
, ∂yUij :=

Ui,j+1 − Uij
hy

.

The functions p, q, f , ϕ1, ϕ2, ϕ3 and ϕ4 of the differential problem are approximated
by grid functions pi (on the grid ωh1/2,x), qj (on the grid ωh1/2,y), fij ( on the grid
ωh), (ϕ1)j , (ϕ2)j (on the grid ωhy ), (ϕ3)i and (ϕ4)i (on the grid ωhx).

The system of finite difference equations corresponding to the differential prob-
lem is as follows:

∂x(pi−1/2∂x̄Uij) + ∂y(qj−1/2∂ȳUij) = fij , (xi, yj) ∈ ωh, (2.5)

U0j = γ1h
(U0j + UNj

2
+
N−1∑
i=1

Uij

)
+ (ϕ1)j , yj ∈ ωhy , (2.6)

UNj = γ2h
(U0j + UNj

2
+
N−1∑
i=1

Uij

)
+ (ϕ2)j , yj ∈ ωhy , (2.7)

Ui0 = (ϕ3)i, UiN = (ϕ4)i, xi ∈ ωhx. (2.8)

This system of difference equations has (N + 1)(N − 1) equations and unknowns
Uij , i = 0, N, j = 1, N − 1.

The system (2.5)–(2.8) can be rewritten in the matrix form. We express the
values U0j and UNj from (2.6) and (2.7) via the remaining unknowns

U0j =
γ1h

D

N−1∑
i=1

Uij + (ϕ̃1)j , j = 1, N − 1, (2.9)

UNj =
γ2h

D

N−1∑
i=1

Uij + (ϕ̃2)j , j = 1, N − 1, (2.10)

where

(ϕ̃1)j =
1
D

(
(ϕ1)j +

(γ1(ϕ2)j − γ2(ϕ1)j)h
2

)
,

(ϕ̃2)j =
1
D

(
(ϕ2)j +

(γ2(ϕ1)j − γ1(ϕ2)j)h
2

)
,
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D = 1− (γ1 + γ2)h
2

.

The condition D 6= 0 is necessary and sufficient for representing U0j and UNj in
the form (2.9), (2.10). In the case D < 0 the structure of spectrum of difference
operator with nonlocal condition can be qualitatively different from the structure
of spectrum of differential one [36]. So we only consider D > 0. If γ1 + γ2 > 0, the
step of the grid should be small enough,

h <
2

γ1 + γ2
.

There is no limitation on the step h when γ1 + γ2 ≤ 0.
Now we substitute the expressions of U0j and UNj into difference equations (2.5)

for the cases i = 1 and i = N − 1. So, restructuring (2.5)–(2.7) in such a way we
obtain new system of equations, the order of which is (N − 1)2 and the number of
the unknowns Uij , i, j = 1, N − 1 is also equal to (N − 1)2.

We write this system in a matrix form

AU = F, (2.11)

where the order of square matrix A and vector U is (N − 1)2. The unknowns U0j

and UNj can be obtained by the formulas (2.9), (2.10) after solving the system
(2.11) .

Reduction of (2.5)–(2.8) to the system (2.11) with lower order has corresponding
eigenvalue problem

∂x(pi−1/2∂x̄Uij) + ∂y(qj−1/2∂ȳUij) + λUij = 0, i, j = 1, N − 1, (2.12)

U0j = γ1h
(U0j + UNj

2
+
N−1∑
i=1

Uij

)
, j = 1, N − 1, (2.13)

UNj = γ2h
(U0j + UNj

2
+
N−1∑
i=1

Uij

)
, j = 1, N − 1, (2.14)

Ui0 = 0, UiN = 0, i = 1, N − 1, (2.15)

This eigenvalue problem with condition (2) is equivalent one to the algebraic
eigenvalue problem with the same matrix A of order (N − 1)2

AU = λU (2.16)

(for details, see [39, 38, 15]). Exactly, if from (2.13) and (2.14) we would express
U0j and UNj (formulas (2.9) and (2.10) with (ϕ̃1)j = (ϕ̃2)j = 0) and put these
expressions to (2.12) we would get (2.16) with the same matrix as A in (2.11). If
we would consider (2.5)–(2.8) as the system with the matrix of order (N+1)(N−1),
then we would receive that the eigenvalues of this problem are not the eigenvalues
of (2.12)–(2.15).

We note that when solving (2.5)–(2.8) by the iterative method there is no neces-
sity to reduce it to the form as in (2.11) with the matrix of the lower order. The
iterative methods could be presented as for (2.5)–(2.8), as well for the system (2.11).
At the same time, when investigating the convergence of the iterative methods, we
exploit spectrum of A, i.e. the structure of spectrum of (2.12)–(2.15).
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3. Spectrum of matrix A

We shall investigate some important properties of spectrum of matrix A, nec-
essary for the convergence of iterative methods. With this aim we reduce the
two-dimensional eigenvalue problem (2.12)–(2.15) to two separate one-dimensional
eigenvalue problems. To apply the method of separation of variables we seek non-
trivial separated solutions of (2.12) that satisfy the boundary conditions (2.13)–
(2.15) and have the form

Uij = ViWj , i, j = 0, N. (3.1)

Substituting such a product solution into (2.12)–(2.15) and separating the variables
we obtain two one-dimensional eigenvalues problems:

∂x(pi−1/2∂x̄Vi) + ηVi = 0, i = 1, N − 1, (3.2)

V0 = γ1〈1,V〉, VN = γ2〈1,V〉, (3.3)

where we denote

〈1,V〉 := h
(V0 + VN

2
+
N−1∑
i=1

Vi

)
and

∂y(qj−1/2∂ȳWj) + µWj = 0, j = 1, N − 1, (3.4)

W0 = WN = 0. (3.5)

The equality for eigenvalues is

λkl = ηk + µl, k, l = 1, N − 1. (3.6)

All the eigenvalues for (3.4), (3.5) with the Dirichlet conditions are positive and for
the smallest eigenvalue µ1 it is true that

min
l
µl = µ1 ≥ min q(y) · 4

h2
sin2 πh

2
. (3.7)

Let us consider some properties of the spectrum of difference eigenvalue problem
(3.2), (3.3) with nonlocal conditions. Finite difference scheme becomes unstable, if
there exists at least one negative eigenvalue. Therefore, it is important to investigate
the conditions for the appearance of negative eigenvalue. First of all we find when
η = 0 is the eigenvalue of this problem. We write the general solution of (3.2) in
the form

Vi = c1V
(1)
i + c2V

(2)
i , (3.8)

where V (1)
i and V

(2)
i are two linear-independent solutions of (3.2) with η = 0:

∂x(pi−1/2∂x̄V
(1)
i ) = 0, i = 1, N − 1,

V
(1)
0 = 0, V

(1)
N = 1

and

∂x(pi−1/2∂x̄V
(2)
i ) = 0, i = 1, N − 1,

V
(2)
0 = 1, V

(2)
N = 0.

Let us denote

Fi := h

i∑
l=1

1
pl−0.5

, i = 1, N, F0 = 0. (3.9)
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Then we can write

V
(1)
i =

Fi
FN

, V
(2)
i =

FN − Fi
FN

, i = 0, N. (3.10)

Lemma 3.1. The number η = 0 is the eigenvalue of (3.2)–(3.3) if and only if

αγ1 + βγ2 = 1, (3.11)

where

β =
h

FN

(FN
2

+
N−1∑
i=1

Fi

)
, α = 1− β. (3.12)

Proof. We require that (3.8) satisfies nonlocal conditions (3.3) and Vi 6≡ 0. Substi-
tuting (3.8) into conditions (3.3) we obtain

−γ1〈1,V(1)〉c1 − (1− γ1〈1,V(2)〉)c2 = 0

(1− γ2〈1,V(1)〉)c1 − γ2〈1,V(2)〉c2 = 0.

For the condition Vi 6≡ 0 to hold, it is necessary and sufficient for the system
determinant to be equal zero:∣∣∣∣ −γ1〈1,V(1)〉 1− γ1〈1,V(2)〉

1− γ2〈1,V(1)〉 −γ2〈1,V(2)〉

∣∣∣∣ = 0.

This implies
γ1〈1,V(2)〉+ γ2〈1,V(1)〉 − 1 = 0. (3.13)

The desired equality (3.11) now follows immediately from the definition of 〈1,V(1)〉
and 〈1,V(2)〉. �

Theorem 3.2. If p(x) is increasing on the interval (0, 1), then 0 < α < 1/2. If
p(x) is decreasing, then 1/2 < α < 1.

Proof. Let us take p′ > 0, it means that
1
p1/2

>
1
p3/2

> · · · > 1
pi+1/2

> · · · > 1
pN−1/2

. (3.14)

According to these inequalities, the definition of Fi (3.9) and the properties of the
arithmetic mean, we obtain

Fi
i
>
FN
N
, i = 1, N − 1.

or Fi > hiFN . So,

β =
h

FN

(FN
2

+
N−1∑
i=1

Fi
)
> h

(1
2

+
N−1∑
i=1

hi
)

=
1
2
.

Since Fi < FN ,

β < h
(1

2
+ (N − 1)

)
< 1.

So, 0 < α < 1/2.
The second part of the theorem, when p′ < 0, is proved analogously, using the

properties
1

pi−1/2
<

1
pi+1/2

,
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Fi
i
<
FN
N
, i = 1, N − 1.

�

We call the line (3.11) a characteristic line of problem (3.2)–(3.3). It is remark-
able that the difference operator has a zero eigenvalue on this characteristic line.
In the system of coordinates (γ1, γ2) (3.11) is an equation of line, which crosses the
point γ1 = 1, γ2 = 1 (see line (1) in Figure 1). In the case of constant p(x) = 1,
α = β = 1/2, (3.11) simplifies to

γ1 + γ2 = 2, (3.15)

see dashed line (0) in Figure 1.

1

21

(2)(0) (1)

2

(a) increasing case: p′ > 0, p(x) = 1/(1 − 0.5x),

γ0
1 = 2.25 > 2, γ0

2 = 1.80 < 2, γ∗1 = 3.48 > γ0
1 ,

γ∗2 = 2.73 > γ0
2 ;

1

21

(2)(0)(1)

2

(b) decreasing case: p′ < 0, p(x) = 1 − 0.5x,

γ0
1 = 1.80 < 2, γ0

2 = 2.23 > 2, γ∗1 = 3.46 > γ0
1 ,

γ∗2 = 4.33 > γ0
2 .

Figure 1. Plots of the characteristic lines for different p(x): the
line (1) – η = 0 (1D case), the line (2) – λ = 0 (2D case), dashed
line - η = 0 (1D case, p(x) = 1).

From Theorem 3.2 we have the following result.

Corollary 3.3. If p(x) is increasing function, then (3.11) is placed between the
inclined line (3.15) and horizontal line γ2 = 1. If p(x) is decreasing, then (3.11) is
placed between the inclined line (3.15) and vertical line γ1 = 1.

If the point (γ1, γ2) is on (3.11), then (3.2), (3.3) with these values has the
eigenvalue η = 0. When γ1 = γ2 = 0, all the eigenvalues are real and positive. So,
all the real eigenvalues of (3.2), (3.3) are positive, when in the plane (γ1, γ2) the
point in interest is placed below the line (3.11). One negative eigenvalue exists,
when the point is placed above (3.11).

4. Convergence of iterative methods

We will use the results of Section 3 for the investigation of convergence of iterative
methods for the system of difference equations (2.5)–(2.8), provided in matrix form
(2.11). For this particular system we use Chebyshev iterative method

Uk+1 = Uk − τk+1(AUk − F), (4.1)
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where

τk =
2

1 + tk
, tk = cos

( (2k − 1)π
2m

)
, k = 1,m.

When all eigenvalues of the matrix A are positive, the convergence of this method
is investigated in [31, 45]. To simplify the problem, we take q(y) = 1 in (2.1). Then
the least eigenvalue of (3.4), (3.5) is µ1 = 4

h2 sin2 πh
2 . For sufficiently small h,

the value of µ1 can be written approximately µ1 ≈ π2. Note that µ1 < π2 and
µ1 ≈ π2 + O(h2). Particularly, |µ1 − π2| < 0.01 for h < 0.03. According to (3.6),
λkl = 0 if and only if ηk = −µ1 ≈ −π2. Let us consider, when the eigenvalue
problem (3.2), (3.3) may have negative eigenvalue ηk = β, depending on the values
of parameters γ1, γ2. Here β < 0 is a fixed number. We use the general solution of
the equation (3.2) with

Vi(β) = c1V
(1)
i (β) + c2V

(2)
i (β),

where V
(1)
i (β) and V

(2)
i (β) are two linear-independent solutions of the equation

(3.2) with η = β < 0. Then similarly to (3.13), we obtain that β < 0 is the
eigenvalue of (3.2), (3.3) if and only if the point (γ1, γ2) is on the line

γ1〈1,V(2)(β)〉+ γ2〈1,V(1)(β)〉 = 1. (4.2)

So, locus, where (3.2), (3.3) has the eigenvalue η = −π2 is the line. Intersection
points (γ∗1 , 0) and (0, γ∗2) (see Figure 1(b)) where this line crosses the coordinate
axes are important. We also denote the points, where (3.11) crosses coordinate
axes: (γ0

1 , 0) and (0, γ0
2). Note that

γ∗1 > γ0
1 , γ∗2 > γ0

2 . (4.3)

Corollary 4.1. If one-dimensional eigenvalue problem (3.2), (3.3) has no complex
eigenvalues, then the region of the convergence of the iterative method (4.1) ac-
cording to the parameters γ1, γ2 is determined by the following condition: the point
(γ1, γ2) on the coordinate plane must be placed below the line (4.2), crossing the
points (γ∗1 , 0) and (0, γ∗2 ), where

(i) γ∗1 > 2, γ∗2 > 1, if p(x) is increasing function,
(ii) γ∗1 > 1, γ∗2 > 2, if p(x) is decreasing function.

If the condition prescribed in Corollary 4.1 is fulfilled, all eigenvalues of the
matrix A are positive. Therefore iterative method converges. The equation of the
line, crossing the points (γ∗1 , 0) and (0, γ∗2 ), can be written as follows

γ1

γ∗1
+
γ2

γ∗2
= 1. (4.4)

So the phrase ”the point (γ1, γ2) on the coordinate plane must be placed below the
line (4.2), crossing the points (γ∗1 , 0) and (0, γ∗2)” can be replaced by condition: the
inequality

γ1

γ∗1
+
γ2

γ∗2
< 1 (4.5)

is true.
As it could be seen from the numerical results provided below, the values of

the parameters γ1, γ2, depending on the concrete expression of the function p(x),
might be higher than it was indicated in Corollary 4.1 as lowest limits. Note that
as in the case p(x) ≡ 1, there is present some compensative mechanism – if one
of the parameters (γ1 or γ2) is “wrong one”, the convergence might be ensured by
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another parameter, i.e. convergence depends not on the each of parameters γ1, γ2

separately, but on the generalized parameter αγ1 + βγ2.
We emphasize the role of monotonicity of the function p(x). So, generally, γ0

1 >
γ0

2 and γ∗1 > γ∗2 if p′ > 0 and γ0
1 < γ0

2 , γ∗1 < γ∗2 if p′ < 0, what was all the time
observed in the numerical experiment with various functions p(x).

It is important to clarify the situation, when (3.2), (3.3) has no complex eigen-
values. When the complex eigenvalues are not present, then the line (3.11), on
which the eigenvalue η = 0 exists or the line (4.2), on which λ = 0, divides the
coordinate plane into two parts. In one of these parts, to which the coordinate
original point (γ1 = 0, γ2 = 0) belongs, all the eigenvalues are positive. In the
remaining part one negative eigenvalue exists, all the others are positive. It follows
from three statements.

First, when γ1 = 0, γ2 = 0, then all eigenvalues are real and positive; second,
η = 0 is a simple non-multiple eigenvalue, and third, eigenvalues of the matrix are
continuous function with respect to all matrix entries. All these three statements
also remain true in the presence of complex eigenvalue. The line crossing the
points (γ0

1 , 0) and (0, γ0
2) still separates regions of convergence and non-convergence

of iterative methods. Again, the region of convergence may shrink because of two
reasons. First, some eigenvalues, for which Reλkl < 0 may arise. Second, as
parameters γ1 and γ2 change, the positive eigenvalue may continuously become
negative, passing not the value λkl = 0, but the value, for which Reλkl = 0,
Imλkl 6= 0. Although, during the numerical experiment this situation was not
observed, it was successfully modeled with another type of nonlocal conditions.

5. Numerical experiments

Numerical experiments are performed to illustrate the theoretical results. We
consider examples where the exact solutions of (2.1)–(2.4) are explicitly known by
suitable choice of f(x, y). In the first part of the numerical experiments we calcu-
lated the parameters γ0

1 and γ0
2 , γ∗1 and γ∗2 characterizing the region of convergence

of the iterative method. Recall that one-dimensional eigenvalue problem (3.2), (3.3)
with γ0

1 has the eigenvalue η = 0. The two-dimensional eigenvalue problem (2.12)–
(2.15) with the value γ∗1 (when γ2 = 0) has the eigenvalue λ = 0. If γ2 = 0, γ1 > γ∗1 ,
the iterative method (4.1) diverges. We consider several choices of p(x).

Case 1.

p(x) =
1

1− ax
, p′(x) > 0.

In Table 1 the approximate values of γ0
1 and γ∗1 , which are critical for convergence

of iterative method, are presented for different values of parameter a.

Table 1. Values of γ0
1 , γ∗1 for increasing function p(x) = 1/(1 −

ax); γ2 = 0, η = 0.

a 0 0.3 0.5 0.7 0.9 0.95

γ0
1 2 2.13 2.25 2.44 2.75 2.86

γ∗1 3.42 3.44 3.48 3.57 3.76 3.84
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Case 2.
p(x) =

1
x2 − ax+ b

, p′(x) > 0.

The numerical results are provided in Table 2. In both of one-dimensional and
two-dimensional eigenvalue problems the spectrum of the problem is much more
sensitive to the change of parameters a and b comparing with Case 1.

Table 2. The values of γ0
1 , γ∗1 for increasing function p(x) =

1/(x2 − ax+ b); γ2 = 0, η = 0.

a 2.1 3 4 10

b 1.1 2.05 3.05 9.05

γ0
1 3.83 3.21 3.13 3.04

γ∗1 4.61 4.88 5.59 9.20

Case 3. p(x) = 1 + bx. Here the sign of p′(x) depends on the sign of b. The
numerical results presented in Table 3 show again that the statement in Corollary
4.1 in a quantitative sense strongly depends on the function p(x).

Table 3. The values of γ∗1 , γ∗2 for function p(x) = 1 + bx.

b 5 0.5 -0.5 -0.95

p′(x) p′(x) > 0 p′(x) > 0 p′(x) < 0 p′(x) < 0

γ∗1 3.59 3.44 3.46 3.42

γ∗2 1.95 2.96 4.33 10.78

Note that p(x) = 1, q(y) = 1 imply γ∗1 = γ∗2 ≈ 3.42. In all the cases of the
numerical experiment (Tables 1 –3), we observed, that γ∗1 > 3.42 if p′(x) > 0 and
γ∗2 > 3.42 if p′(x) < 0. However, it is not a theoretical statement, but practically
reliable.

The solution of the eigenvalue problem is influenced not only by the monotonicity
of the function p(x), but also by its absolute value. In Table 4 we provided the
values of γ∗1 , γ∗2 , when

p(x) =
c

1 + 5x
,

where c varies. Function p(x) is decreasing for c > 0. However, the values γ0
1 ,

γ0
2 , i.e. the preconditions for the existence of zero eigenvalue for one-dimensional

problem does not depend on c. This could be observed from the expression (3.12)
for β. With any value of c > 0, γ0

1 ≈ 1.615, γ0
2 ≈ 2.625.

In the second part of numerical experiments the problem (2.5)–(2.8) was solved
using the iterative method (4.2). As it was mentioned before, the convergence
depends on one generalized parameter

γ̃ =
γ1

γ∗1
+
γ2

γ∗2
. (5.1)

When γ̃ > 1, the iterative method diverges due to existence of negative eigenvalue
of A. The role of the condition γ̃ < 1 is quite obvious in the case of only one
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Table 4. The values of γ∗1 , γ∗2 for decreasing function p(x) =
c/(1 + 5x), p′(x) < 0.

c 0.05 0.5 1 5 20

γ∗1 14.90 5.30 3.94 2.26 1.79

γ∗2 31.41 10.57 7.50 3.88 2.96

nonlocal condition, i.e. γ1 = 0 or γ2 = 0. This situation is typical for many
practical problems [5, 46, 23].

Table 5. The convergence of iterative method for different func-
tions p(x).

γ1 γ2 p(x) = 1 p(x) = 1/(1− 0.5x) p(x) = 1− 0.5x

p′(x) > 0 p′(x) < 0

3 0 conv. conv. (γ1 < γ∗1 ≈ 3.48)

0 3 conv. div. (γ2 > γ∗2 ≈ 2.73)

0 4 div. conv. (γ2 < γ∗2 ≈ 4.43)

4 0 div. div. (γ1 > γ∗1 ≈ 3.43)

Table 6. The convergence of iterative method, depending of con-
dition γ̃ < 1, for different functions p(x).

γ1 γ2 p(x) = 1 p(x) = 1/(1− 0.5x) p(x) = 1− 0.5x

p′(x) > 0 p′(x) < 0

2 2 div. div. (γ̃ ≈ 1.31 > 1) div. (γ̃ ≈ 1.03 > 1)

-2 -2 conv. conv. (γ̃ ≈ −1.31 < 1) conv. (γ̃ ≈ −1.03 < 1)

In Table 5 the convergence of the iterative method is presented. These results
fully correspond to the theoretical investigations (see also Figure 1). Table 6 is
composed in analogous way. Tables 7 and 8 complement the results of numerical
experiment, presented in Tables 5 and 6. In these tables the errors of the solution

εh = max
i,j
|unij − u∗ij |

are provided, where unij is the approximate solution of the system of difference
equations, and u∗ij is the exact solution of the differential problem in the point
(xi, yj). We should admit, that all functions and coefficients in the differential
equation (2.1) and boundary conditions (2.2)–(2.4) were choose so that u(x, y) =
1+exp(x+y) would be the solution of problem (2.1)–(2.4). It is follows from Table
7, that an error depends very little on the function p(x) and it starts to grow [Table
8], when the point (γ1, γ2) comes closer to the line (4.4). In this case the least
positive eigenvalues tends to the zero.
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Table 7. The values of error εh for different functions p(x).

γ1 γ2 h p(x) = 1 p(x) = 1/(1− 0.5x) p(x) = 1− 0.5x

3 0 2−5 0.00762 0.00795 0.00733

3 0 2−6 0.00189 0.00197 0.00182

3 0 2−7 0.00047 0.00049 0.00045

Table 8. The values of error εh for γ1 = γ2, when γ̃ → 1, p(x) =
1− 0.5x.

γ1 : 1.8 1.9 1.93 1.94

h γ̃ : 0.94 0.99 1.00 1.01

2−5 0.00795 0.0347 0.438 div.

2−6 0.00197 0.0080 0.053 div.

2−7 0.00049 0.0020 0.012 div.
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