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EXISTENCE OF SOLUTIONS TO THREE-POINT
BOUNDARY-VALUE PROBLEMS AT RESONANCE

PHAN DINH PHUNG, LE XUAN TRUONG

Abstract. Using Mawhin’s continuation theorem, we prove the existence of

solutions for a class of nonlinear second-order differential equations in Rn as-
sociated with a three-point boundary conditions at resonance.

1. Introduction

In solving linear partial differential equations by the method of separation of
variables, one encounters differential equations containing several parameters with
the auxiliary requirement that the solutions satisfy boundary conditions at several
points. This has led to an extensive development of multiparameter spectral theory
of linear operators (for example, Gregus et al [6]). Many examples of multipoint
boundary value problems (briefly, BVPs) can be obtained when looking for solutions
of one dimensional free-boundary problems (see Berger and Fraenkel [2]). Multi-
point BVPs can arise in other ways. For instance, the vibrations of a guy wire of
uniform cross-section and composed of N parts of different densities can be set up
as a multi-point BVP (see Moshiinsky [14]). Also, many problems in the theory
of elastic stability can be handled by the method of multi-point problems (see
Timoshenko [16]). Also nonlinear multi-point BVPs have received much attention
of many mathematicians in recent decades.

In this note, we are concerned with the existence of solutions to the three-point
BVP in Rn,

u′′(t) = f(t, u(t), u′(t)), t ∈ (0, 1),

u′(0) = θ, u(1) = Au(η),
(1.1)

where η ∈ (0, 1), θ is the zero vector in Rn, A is a square matrix of order n and
f : [0, 1]× R2n → Rn satisfies the Carathéodory conditions:

(a) f(·, u, v) is Lebesgue measurable for every (u, v) ∈ Rn × Rn,
(b) f(t, ·, ·) is continuous on Rn × Rn for almost every t ∈ [0, 1],
(c) for each compact set K ⊂ R2n, the function hK(t) = sup{|f(t, u, v)| :

(u, v) ∈ K} is Lebesgue integrable on [0, 1], where | · | is the max-norm in
Rn.
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As we will see in the next section, problem (1.1) can be rewritten in the operator
form

Lu = Nu, (1.2)

with L (resp. N) is a linear (resp. nonlinear) mapping between two Banach spaces
X and Z that will be specified later.

Under certain boundary conditions, the differential (linear) operator Lu = u′′

defined in a suitable Banach space is invertible. Such case is the so-called non-
resonant; otherwise, they are called resonant. The problem (1.1), when n = 1 and
A 6= 1, which was considered by Gupta et al [8], is non-resonant. When A = 1, the
problem becomes resonant – the situation which is usually more complex.

For several decades, the multi-point BVPs at resonance for second-order differ-
ential equations have been extensively studied; see instance [3]-[11] and references
therein. In 1992, Gupta first studied the three-point BVP at resonance [7]

u′′(t) = f(t, u(t), u′(t))− e(t), t ∈ (0, 1),

u(0) = 0, u(1) = u(η).
(1.3)

And then, Feng [3], Webb [4] and Ma [11] investigated a similar problem with some
improvement to the assumptions on the nonlinear term,

u′′(t) = f(t, u(t), u′(t)) + e(t), t ∈ (0, 1),

u′(0) = 0, u(1) = u(η).
(1.4)

The main tool in most of the above works is Mawhin continuation theorem, the
method (in coincidence degree) which is basically relied on the dimension of kerL.
Because the construction of the projection Q (and sometime P ) is often quite com-
plicated when dim kerL is large, authors have mainly discussed the case dim kerL =
1 only. When dim kerL is large, there are few results about it, even dim kerL = 2,
in which Kosmatov is a pioneer [10].

Recently, we have studied the three-point BVPs (1.1) at resonance [15], and
generalizing some of the above results. Clearly, if the boundary condition at zero is
u(0) = θ, instead of u′(0) = θ, we also obtain the similar results with some minor
adjustment. In that paper, we showed a new technique to establish the existence
result for the boundary problem at resonance when dim kerL enabled to take value
arbitrarily – depending on the assumption

A2 = A, or

A2 = I (I stands for the indentity matrix).
(1.5)

Our goal is omit the condition (1.5). We discover that the assumption (1.5) on
A leads to the decomposition

Rn = Im(I −A)⊕ ker(I −A). (1.6)

This property is also expressed, more usefully as

PA = κ(I −A) is a projection on Im(I −A), and

I − PA is a projection on ker(I −A),
(1.7)

where

κ =

{
1 if A2 = A,

1/2 if A2 = I.
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Inspired by this, in this note, having no longer (1.5), we substitute the nice
decomposition (1.6) by the two following decompositions

Rn = Im(I −A)⊕ kerU,

Rn = ImV ⊕ ker(I −A),

where U, V are two some matrices relating to A. More precisely, we can generalize
(1.6) by the fact that

(I −A)(I −A)+ is a projection on Im(I −A), and

I − (I −A)+(I −A) is a projection on ker(I −A),

where (I − A)+ is denoted the Moore-Penrose pseudoinverse of (I − A). Part of
this idea derives from [9].

The rest of this article is organized as follows. In section 2, we provide some
results regarding Mawhin’s coincidence degree theory and several important lemmas
which are motivation for obtaining our main result. In section 3 we state and prove
the main theorem. Finally, we present an example to illustrate this result.

2. Preliminaries

We begin this section by recalling some definitions and preliminary results of
coincidence degree theory due to Mawhin [5, 12, 13]. Suppose that X and Z are
two Banach spaces.

Definition 2.1. A linear operator L : domL ⊂ X → Z is called to be a Fredholm
operator provided that

(i) kerL is finite dimensional,
(ii) ImL is closed and has finite codimension.

In addition, the (Fredholm) index of L is defined by the integer number

indL = dim kerL− codim ImL.

From Definition 2.1, it follows that if L is a Fredholm operator, then there exist
continuous projections P : X → X and Q : Z → Z such that

ImP = kerL, kerQ = ImL, X = kerL⊕ kerP, Z = ImL⊕ Im Q.

Furthermore, the restriction of L on domL ∩ kerP,LP : domL ∩ kerP → ImL,
is invertible. We denote by KP the inverse of LP and by KP,Q = KP (I − Q)
the generalized inverse of L. Moreover, if indL = 0, that is ImQ and kerL are
isomorphic, the operator JQ+KP,Q : Z → domL is isomorphic and(

JQ+KP,Q

)−1

=
(
L+ J−1P

)∣∣∣
domL

,

for every isomorphism J : ImQ → kerL. Hence, following Mawhin’s equivalent
theorem, u ∈ Ω is a solution to equation Lu = Nu if and only if it is a fixed point
of Mawhin’s operator

Φ := P + (JQ+KP,Q)N,
where Ω is an given open bounded subset of X such that domL ∩ Ω 6= ∅.

Next, to get the compactness of Φ, Mawhin introduced a concept, weaker than
compactness, to impose on N as follows.

Definition 2.2. Let L be a Fredholm operator of index zero. The operator N :
X → Z is said to be L-compact in Ω provided that
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• the map QN : Ω→ Z is continuous and QN(Ω) is bounded in Z,
• the map KP,QN : Ω→ X is completely continuous.

In addition, we say that N is L-completely continuous if it is L-compact on every
bounded set in X.

Finally, we state the fundamental theorem in coincidence degree theory, so-called
Mawhin’s continuation theorem [12]. It is the main tool to prove our result in the
next section.

Theorem 2.3. Let Ω ⊂ X be open and bounded, L be a Fredholm mapping of index
zero and N be L-compact on Ω. Assume that the following conditions are satisfied

(i) Lu 6= λNu for every (u, λ) ∈
(
(domL\ kerL) ∩ ∂Ω

)
× (0, 1);

(ii) QNu 6= 0 for every u ∈ kerL ∩ ∂Ω;
(iii) for some isomorphism J : Im Q→ kerL we have

degB
(
JQN |kerL; Ω ∩ kerL, θ

)
6= 0,

where Q : Z → Z is a projection given as above.
Then the equation Lu = Nu has at least one solution in domL ∩ Ω.

Next, to attain the solvability of problem (1.1) by using Theorem 2.3, we renew
the spaces X = C1

(
[0, 1]; Rn

)
endowed with the norm

‖u‖ = max{‖u‖∞, ‖u′‖∞},

where ‖ · ‖∞ stands for the sup-norm and Z = L1
(
[0, 1]; Rn

)
endowed with the

Lebesgue norm denoted by ‖ · ‖1. Further, we shall use the Sobolev space defined
by

X0 = {u ∈ X : u′′ ∈ Z}.
Then we define the operator L : domL ⊂ X → Z by Lu := u′′, where

domL = {u ∈ X0 : u′(0) = θ, u(1) = Au(η)}.

Because
u ∈ X0 ⇐⇒ u(t) = u(0) + u′(0)t+ I2

0+u′′(t),
where

Ik0+z(t) =
∫ t

0

(t− s)k−1z(s)ds, t > 0, for k ∈ {1, 2},

the domain of L is rewritten as

domL = {u ∈ X0 : u(t) = u(0) + I2
0+z(t) with z ∈ Z satisfies Mu(0) = φ(z)},

(2.1)
where

• M = I −A
• φ : Z → Rn is a continuous operator defined by

φ(z) = AI2
0+z(η)− I2

0+z(1), z ∈ Z. (2.2)

Also, we easily have

kerL = {u ∈ X : u(t) = c, t ∈ [0, 1], c ∈ kerM} ∼= kerM. (2.3)

Moreover, we claim that

ImL = φ−1(Im M) = {z ∈ Z : φ(z) ∈ Im M}. (2.4)
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Indeed, let z ∈ Im L, so z = Lu for some u ∈ domL. From (2.1) we haveMu(0) =
φ(Lu) = φ(z), which implies φ(z) ∈ Im M. Thus ImL ⊂ {z ∈ Z : φ(z) ∈ Im M}.

Conversely, let z ∈ Z such that φ(z) = Mξ ∈ Im M. Then it is clear to verify
that z = Lu, where u ∈ domL defined by u(t) = ξ+I2

0+z(t). This implies z ∈ ImL.

Remark 2.4. From (2.3) we show that when det(I − A) 6= 0, i.e., L−1 exists, the
problem is non-resonant. This is the classical case which has studied much by many
authors. In this paper, we are only interested in resonant cases: det(I −A) = 0.

Now we construct two continuous projections as in the framework of Mawhin’s
method, mentioned before, and then attain Fredholmness and index zero of operator
L. As the introduction section, we denote byM+ the Moore-Penrose pseudoinverse
matrix of M, meaning the matrix satisfying

(i) M+MM+ =M+,
(ii) MM+M =M,
(iii) MM+ is a (orthogonal) projection on ImM,
(iv) I −M+M is a (orthogonal) projection on kerM.

We can find more details of this concept in [1]. Next, we state and prove two
important lemmas.

Lemma 2.5. The operator L : domL ⊂ X → Z is Fredholm and has index zero.

Proof. Since φ is continuous and ImM is closed in Rn, it is clear that ImL =
φ−1(ImM) is closed in Z. Further, we have dim kerL = dim kerM ≤ n < ∞.
Hence, it remains to prove that

dim kerL− codim ImL = 0.

To do this, we formulate the continuous operator Q : Z → Z defined as, for z ∈ Z,

Qz(t) =
2

η2 − 1
(I −MM+)φ(z), t ∈ [0, 1], (2.5)

It is necessary to note that if z(t) = h ∈ Rn for all t ∈ [0, 1], then

φ(z) = A

∫ η

0

(η − s)h ds−
∫ 1

0

(1− s)h ds =
1
2

(η2A− I)h. (2.6)

Also, we achieve

(I −MM+)(η2A− I) = (η2 − 1)(I −MM+). (2.7)

This is deduced from

(I −MM+)(I −A) = (I −MM+)M = 0,

which is equivalent to

(I −MM+)A = (I −MM+)⇔ (I −MM+)η2A = η2(I −MM+)

⇔ (I −MM+)(η2A− I) = (η2 − 1)(I −MM+).

The last equality is obtained trivially. Then, from (2.6)–(2.7), we have

Q(Qz) =
2

η2 − 1
(I −MM+)φ(Qz) =

1
η2 − 1

(I −MM+)(η2A− I)Qz

= (I −MM+)Qz =
2

η2 − 1
(I −MM+)2φ(z)
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=
2

η2 − 1
(I −MM+)φ(z) = Qz,

and

z ∈ kerQ⇔ φ(z) ∈ ker(I −MM+)

⇔ φ(z) ∈ Im(MM+)

⇔ φ(z) ∈ ImM.

⇔ z ∈ Im L.

This means Q is a projection with kerQ = Im L. In addition, the continuity of Q is
obvious. Thus, we have the decomposition Z = ImL⊕ ImQ. Then L is Fredholm
due to Q has finite rank. Next, we check that indL = 0.

First, we claim that
ImQ = ker(MM+). (2.8)

Truly, the inclusion Im Q ⊂ ker(MM+) is clear since MM+ is a projection.
Inversely, let α ∈ ker(MM+), we have

Qα =
2

η2 − 1
(I −MM+)φ(α)

=
1

η2 − 1
(I −MM+)(η2A− I)α

= (I −MM+)α = α.

Thus α ∈ ImQ. It follows from (2.8) that

dim ImQ = dim ker(MM+) = n− dim Im (MM+)
= n− dim ImM = dim kerM = dim kerL.

The proof is complete. �

Remark 2.6. (i) The identity (2.7) is crucial to make the construction of Q quite
simple.

(ii) The Fredholm index zero of L is deduced from the claim (2.8). This equality
holds because the fact that the mapping φ is surjective. In more general contexts,
lacking the surjective property of φ, the inclusion Im Q ⊂ ker(MM+) will not
happen. Then L has positive index, and Mawhin theory will be no longer powerful.

Now, to establish the generalized inverse of L, we define the operator P : X → X
by

Pu(t) = (I −M+M)u(0), ∀t ∈ [0, 1]. (2.9)

Lemma 2.7. The following assertions hold:
(i) The mapping P defined by (2.9) is a continuous projection satisfying

ImP = kerL, X = kerL⊕ kerP.

(ii) The linear operator KP : ImL→ domL ∩ kerP can be defined by

KP z(t) =M+φ(z) + I2
0+z(t), t ∈ [0, 1], (2.10)

Moreover, KP satisfies

KP = L−1
P and ‖KP z‖ ≤ C‖z‖1,

where C = 1+‖M+M‖∗(1+η‖A‖∗) (‖·‖∗ is the maximum absolute column
sum norm of matrices).
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Proof. (i) It is useful to keep in mind that I −M+M is a projection on kerM. It
follows that P is a continuous projection. Furthermore, Im P = kerL. Indeed, we
have

u(t) ∈ kerL⇔ u(t) ≡ α ∈ kerM = Im(I −M+M)

⇔ α = (I −M+M)β, β ∈ Rn

⇔ α = Pβ, β ∈ Rn

⇔ u(t) ≡ α ∈ ImP.

This also implies the decomposition X = kerL⊕ kerP .
(ii) Let z ∈ ImL, this deduces that φ(z) = Mα, α ∈ Rn. It follows from (2.9)

and (2.10) that

PKP z(t) = (I −M+M)M+φ(z) = (I −M+M)M+Mα = θ, ∀t ∈ [0, 1],

M(KP z(0)) =M(M+φ(z)) =MM+Mα =Mα = φ(z).

Thus KP z ∈ kerP ∩ domL, i.e., it is well defined. On the other hand, if u ∈
domL ∩ kerP then u(t) = u(0) + I2

0+Lu(t), in which

Mu(0) = φ(Lu),

u(0) = (M+M)u(0).

Hence

KPLPu(t) =M+φ(Lu) + I2
0+Lu(t)

=M+Mu(0) + I2
0+Lu(t)

= u(0) + I2
0+Lu(t)

= u(t).

So, KP = L−1
P since LKP z(t) = z(t), t ∈ [0, 1], for all z ∈ ImL. Finally, from the

expression of KP we have

(KP z)′(t) = I1
0+z(t), t ∈ [0, 1]. (2.11)

Combining (2.2), (2.10) and (2.11) we have
• ‖KP z‖∞ ≤ ‖M+‖∗|φ(z)|+ ‖z‖1,
• |φ(z)| ≤ (1 + η‖A‖∗)‖z‖1,
• ‖(KP z)′‖∞ ≤ ‖z‖1.

These show that ‖KP z‖ ≤ C‖z‖1. The lemma is proved. �

Lemma 2.8. The operator N : X → Z is defined by

Nu(t) = f(t, u(t), u′(t)), a.e. t ∈ [0, 1]

is L-completely continuous.

Proof. Let Ω be a bounded set in X. Put R = sup{‖u‖ : u ∈ Ω}. From the
hypotheses of the function f there exists a function mR ∈ Z such that, for all
u ∈ Ω, we have

|Nu(t)| = |f(t, u(t), u′(t))| ≤ mR(t), a.e. t ∈ [0, 1], (2.12)

It follows from (2.2), (2.12) and the identity

QNu(t) =
2

η2 − 1
(I −MM+)φ(Nu) (2.13)
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that QN(Ω) is bounded and QN is continuous by using the Lebesgue’s dominated
convergence theorem. Now we shall prove that KP,QN is completely continuous.
First we note that, for every u ∈ Ω, we have

KP,QNu(t) = KP (IdZ −Q)Nu(t)

= KP (Nu−QNu)(t)

= KP

[
Nu− 2

η2 − 1
(I −MM+)φ(Nu)

]
(t)

= I2
0+Nu(t)− t2

2(η2 − 1)
(η2A− I)(I −MM+)φ(Nu)

+M+φ(Nu)− 1
(η2 − 1)

M+(η2A− I)(I −MM+)φ(Nu),

(2.14)
and

(KP,QNu)′(t) = I1
0+Nu(t)− t

(η2 − 1)
(η2A− I)(I −MM+)φ(Nu). (2.15)

Further, it follows from (2.12) and the definition of φ that

|φ(Nu)| ≤ (1 + η‖A‖∗)‖Nu‖1 ≤ (1 + η‖A‖∗)‖mR‖1. (2.16)

Combining (2.12) and (2.14)–(2.16) we can find two positive constants C1, C2 such
that

|KP,QNu(t)| ≤ C1‖mR‖1, |(KP,QNu)′(t)| ≤ C2‖mR‖1, (2.17)
for all t ∈ [0, 1] and for all u ∈ Ω. This shows that

‖KP,QNu‖ ≤ max{C1, C2}‖mR‖1,
that is, KP,QN(Ω) is uniformly bounded in X. On the other hand, for t1, t2 ∈ [0, 1]
with t1 < t2, we have

|KP,QNu(t2)−KP,QNu(t1)|

≤
∫ t2

t1

ds

∫ s

0

|Nu(τ)|dτ + |(t2 − t1)
t2

2(η2 − 1)
(η2A− I)(I −MM+)φ(Nu)|

≤ C3‖mR‖1|t2 − t1|,
and

|(KP,QNu)′(t2)− (KP,QNu)′(t1)| ≤
∫ t2

t1

mR(s)ds+ C4‖mR‖1|t2 − t1|,

which prove that the family KP,QN(Ω) is equicontinuous in X. By Arzelà- Ascoli
theorem KP,QN(Ω) is a relatively compact subset in X. Finally, it is easy to see
that KP,QN is continuous. Therefore the operator N is L-completely continuous.
The proof of the theorem is complete. �

3. Main results

In this section we begin the search for appropriate open, bounded subset Ω for the
application of the Mawhin continuation theorem 2.3 in proving the existence of the
solutions of problem (1.1). For this purpose, it is essential to impose the standard
hypotheses upon f to obtain a prior estimate for possible solutions of perturbation
problems. Of course, this assumptions are somewhat technical but improving them
is one of most difficult issues in applying topological degree methods to nonlinear
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functional analysis. By this reason, we always assume that the following three
conditions hold.

(A1) There exist the positive functions a, b, c ∈ Z with (‖I−M+M‖∗+C)(‖a‖1+
‖b‖1) < 1 such that

|f(t, u, v)| ≤ a(t)|u|+ b(t)|v|+ c(t), (3.1)

for all t ∈ [0, 1] and u, v ∈ Rn; where C is the constant given in Lemma 2.7;
(A2) There exists a positive constant Λ1 such that for each u ∈ domL, if |u(t)| >

Λ1, for all t ∈ [0, 1], then∫ 1

η

ds

∫ s

0

f(τ, u(τ), u′(τ))dτ /∈ ImM; (3.2)

(A3) There exists a positive constant Λ2 and an isomorphism J : ImQ → kerL
such that for every α ∈ kerM with |α| > Λ2, then either

〈α, JQN(α)〉 ≤ 0 or 〈α, JQN(α)〉 ≥ 0, (3.3)

where 〈·, ·〉 stand for the scalar product in Rn.

Lemma 3.1. Let Ω1 = {u ∈ domL \ kerL : Lu = λNu, λ ∈ (0, 1]}. Then Ω1 is
bounded in X.

Proof. Let u ∈ Ω1. Assume that Lu = λNu for 0 < λ ≤ 1. Then it is clear that
Nu ∈ ImL = kerQ, which also implies φ(Nu) ∈ ImM by the characterization of
ImL. On the other hand, we have∫ 1

η

ds

∫ s

0

f(τ, u(τ), u′(τ))dτ = −φ(Nu)−M
∫ η

0

ds

∫ s

0

f(τ, u(τ), u′(τ))dτ.

Hence we deduce that ∫ 1

η

ds

∫ s

0

f(τ, u(τ), u′(τ))dτ ∈ ImM.

By using the contraposition of assumption (A2), there exists t0 ∈ [0, 1] such that
|u(t0)| ≤ Λ1. Then

|u(t)| =
∣∣u(t0) +

∫ t

t0

u′(s)ds
∣∣ ≤ Λ1 + ‖u′‖∞,

|u′(t)| ≤
∫ t

0

|u′′(s)|ds ≤ ‖u′′‖1 ≤ ‖Nu‖1,
(3.4)

uniformly on [0, 1]. These imply that

‖Pu‖ = |(I −M+M)u(0)| ≤ ‖I −M+M‖∗(Λ1 + ‖Nu‖1). (3.5)

On the other hand, we note that (IdX − P )u ∈ domL ∩ kerP because P is the
projection on X. Then

‖(IdX − P )u‖ = ‖KPL(IdX − P )u‖ ≤ ‖KPLu‖ ≤ C‖Nu‖1, (3.6)

where the constant C is defined as in Lemma 2.7 and IdX is the identity operator
on X. Using (3.5), (3.6) we obtain

‖u‖ = ‖Pu+ (IdX − P )u‖ ≤ ‖Pu‖+ ‖(IdX − P )u‖
≤ Λ1‖I −M+M‖∗ + (‖I −M+M‖∗ + C)‖Nu‖1.

(3.7)
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By (A1) and the definition of N we have

‖Nu‖1 ≤
∫ 1

0

|f(s, u(s), u′(s))|ds

≤ ‖a‖1‖u‖∞ + ‖b‖1‖u′‖∞ + ‖c‖1
≤ (‖a‖1 + ‖b‖1)‖u‖+ ‖c‖1.

(3.8)

Combining (3.7) and (3.8) we obtain

‖Nu‖1 ≤
Λ1‖I −M+M‖∗(‖a‖1 + ‖b‖1) + ‖c‖1
1− (‖I −M+M‖∗ + C)(‖a‖1 + ‖b‖1)

.

The last inequality combined with (3.4) allows us to deduce that

sup
u∈Ω1

‖u‖ = sup
u∈Ω1

max{‖u‖∞, ‖u′‖∞} < +∞.

Therefore Ω1 is bounded in X. The lemma is proved. �

Lemma 3.2. The set Ω2 = {u ∈ kerL : Nu ∈ ImL} is a bounded subset in X.

Proof. Let u ∈ Ω2. Assume that u(t) = c for all t ∈ [0, 1], where c ∈ kerM. Since
Nu ∈ ImL we have φ(Nu) ∈ ImM. By the same arguments as in the proof of
Lemma 3.1 we can point out that there exists t0 ∈ [0, 1] such that |u(t0)| ≤ Λ1.
Therefore

‖u‖ = ‖u‖∞ = |u(t0)| = |c| ≤ Λ1.

So Ω2 is bounded in X. The lemma is proved. �

Lemma 3.3. The sets

Ω−3 = {u ∈ kerL : −λu+ (1− λ)JQNu = θ, λ ∈ [0, 1]},
Ω+

3 = {u ∈ kerL : λu+ (1− λ)JQNu = θ, λ ∈ [0, 1]}

are bounded in X provided that the first and the second part of (3.3) is satisfied,
respectively.

Proof. We consider two cases:
Case 1: 〈α, JQNα〉 ≤ 0. Let u ∈ Ω−3 . Then there exists α ∈ kerM such that
u(t) = α,∀t ∈ [0, 1], and

(1− λ)JQNα = λα. (3.9)

If λ = 0 then it follows from (3.9) that Nα ∈ ker JQ = kerQ = ImL; that is,
u ∈ Ω2. Lemma 3.2 deduce that ‖u‖ ≤ Λ1. On the other hand, suppose in contrast
that |α| > Λ2, then using (A3) we get a contradiction

0 < λ|α|2 = (1− λ)〈α, JQNα〉 ≤ 0, ∀λ ∈ (0, 1].

Thus ‖u‖ = |α| ≤ Λ2. Therefore we can conclude that Ω−3 is bounded in X.
Case 2: 〈α, JQNα〉 ≥ 0. In this case, by using the same arguments as in above
we are able to prove that Ω+

3 is also bounded in X. �

Theorem 3.4. Let (A1)–(A3) hold. Then problem (1.1) has at least one solution
in X.
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Proof. We shall prove that all the conditions of Theorem 2.3 are satisfied, where Ω
be open and bounded such that

⋃3
i=1 Ωi ⊂ Ω, with

Ω3 =

{
Ω−3 , if the first inequality of (3.3) is satisfied,
Ω+

3 , if the second inequality of (3.3) is satisfied.

It is clear that the conditions (i) and (ii) of Theorem 2.3 are fulfilled by using
Lemma 3.1 and Lemma 3.2. So it remains to verify that the third condition holds.
For this purpose we are going to employ invariant homotopy property of Brouwer
degree. So we define a continuous homotopy as follows

H(u, λ) = ±λu+ (1− λ)JQNu,

where J : ImQ→ kerL is the isomorphism in hypothesis (A3). By Lemma 3.3 we
have H(u, λ) 6= θ for all (u, λ) ∈ (kerL ∩ ∂Ω)× [0, 1]. Hence

deg(JQN |kerL; Ω ∩ kerL, θ) = deg(H(·, 0),Ω ∩ kerL, θ)

= deg(H(·, 1),Ω ∩ kerL, θ)

= deg(±Id,Ω ∩ kerL, θ)
= ±1 6= 0.

Thus, Theorem 3.4 is proved. �

To complete this paper, we introduce an example dealing with the solvability of a
second-order system of differential equations associated with three-point boundary
conditions by applying above our result.

Example 3.5. Consider the solvability of the boundary-value problem

x′′(t) = f1(t, x(t), y(t), x′(t), y′(t)), t ∈ (0, 1),

y′′(t) = f2(t, x(t), y(t), x′(t), y′(t)), t ∈ (0, 1),

x′(0) = y′(0) = 0,

x(1) = 4x(1/2)− 7y(1/2),

y(1) = 3x(1/2)− 6y(1/2),

(3.10)

where the functions fi : [0, 1]× R4 → R (i = 1, 2) are

f1(t, x1, x2, y1, y2) =
t3 + 3
360

(x1 + x2) +
t5

30
ln(1 +

√
y2

1 + y2
2) +

t3 + 3
36

, (3.11)

f2(t, x1, x2, y1, y2) =
t3 + 3
360

(|x1|+ |x2|) +
t5

20

√
y2

1 + y2
2 +

t3 + 3
18

, (3.12)

for all t ∈ [0, 1] and (x1, x2), (y1, y2) ∈ R2.

Next we prove that (3.10) has at least one solution by using Theorem 3.4. For
this we put

η = 1/2, A =
[
4 −7
3 −6

]
,

and the function f : [0, 1]× R2 × R2 → R2 is defined by

f(t, u, v) = (f1(t, u, v), f2(t, u, v)), (3.13)

for all t ∈ [0, 1] and u = (x1, x2), v = (y1, y2) ∈ R2. Then problem (3.10) has one
solution if and only if (1.1) (with η,A and f defined as above) has one solution.
Therefore, we need show that the conditions of Theorem 3.4 hold.
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First, from (3.11)–(3.13), the function f satisfies the Carathéodory condition.
Next we check conditions (A1)–(A3). It follows from (3.11), (3.12) and (3.13) that

|f(t, u, v)| ≤ a(t)|u|+ b(t)|v|+ c(t),

for all t ∈ [0, 1] and u, v ∈ R2, where

a(t) =
t3 + 3
180

, b(t) =
t5

10
, c(t) =

t3 + 3
18

are the positive integrable functions on [0, 1]. By some simple computation, we get

M =
[
−3 7
−3 7

]
, M+ =

[
−3/116 −3/116
7/116 7/116

]
and

(‖I −M+M‖∗ + C)(‖a‖1 + ‖b‖1) = 0.39092 < 1.
Hence (A1) is satisfied. In order to check (A2) we note that

f1(t, u(t), u′(t)) < f2(t, u(t), u′(t)),

for all u ∈ C1([0, 1]; R2) and all t ∈ [0, 1]. This implies that∫ 1

η

ds

∫ s

0

f(t, u(t), u′(t))dt /∈ Im M

because ImM = 〈(1, 1)〉 = {(q, q) : q ∈ R}. It means that (A2) holds. Finally, we
choose a suitable isomorphism J : ImQ = 〈(0, 1)〉 → kerL ∼= 〈(7, 3)〉 defined by the
following non-degenerate matrix

J ≡
[
1 7
0 3

]
.

Thus, from (2.5)-(2.6), we have

JQ(z) =
[
28/3 −28/3

4 −4

]
φ(z),

for all z ∈ L1([0, 1]; R2), where

φ(z) = A

∫ 1/2

0

ds

∫ s

0

z(τ)dτ −
∫ 1

0

ds

∫ s

0

z(τ)dτ.

Let α = (7a, 3a) ∈ kerM = 〈(7, 3)〉, we have

(Nα)(t) = (f1(t, α, 0), f2(t, α, 0)) =
t3 + 3

36
(a+ 1, |a|+ 2),

and

φ(Nα) =
( −7

5760
a− 1687

23040
|a| − 189

1280
,

241
7680

a− 1219
11520

|a| − 3161
23040

)
.

So we obtain

JQ(Nα) =
( 5257

17280
|a| − 5257

17280
a− 1687

17280
,

751
5760

|a| − 751
5760

a− 241
5760

)
.

Therefore,

〈α, JQNα〉 = − 29
8640

(751a2 − 751a|a|+ 241a) < 0,

for all real number a such that |a| > 241
1502 . That means (A3) is verified. Thanks to

Theorem 3.4, the problem (3.10) has at least one solution.
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