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ON THE HIGH-ORDER TOPOLOGICAL ASYMPTOTIC
EXPANSION FOR SHAPE FUNCTIONS

MAATOUG HASSINE, KHALIFA KHELIFI

Abstract. This article concerns the topological sensitivity analysis for the

Laplace operator with respect to the presence of a Dirichlet geometry pertur-

bation. Two main results are presented in this work. In the first result we
discuss the influence of the considered geometry perturbation on the Laplace

solution. In the second result we study the high-order topological derivatives.

We derive a high-order topological asymptotic expansion for a large class of
shape functions.

1. Introduction

The topological sensitivity analysis consists in studying the variation of a shape
functional with respect to the presence of a small geometry perturbation at an
arbitrary point of the domain; see [1, 7, 9, 15, 16, 17, 19, 21, 24]. To present
the basic idea, we consider an open and bounded domain Ω ⊂ R3 and a shape
function j(Ω) = J(uΩ) to be minimized, where uΩ is the solution to a given partial
differential equation defined in Ω. For ε > 0, let Ωz,ε = Ω \ ωz,ε be the perturbed
domain obtained by removing a small part ωz,ε = z+εω from the domain Ω, where
z ∈ Ω and ω ⊂ R3 is a given fixed and bounded domain containing the origin. The
topological sensitivity analysis leads to an asymptotic expansion of the function j
in the form

j(Ωz,ε) = j(Ω) + f(ε)δj(z) + o(f(ε)),

where f(ε) is a scalar positive function approaching zero as ε approaches zero. The
function δj is called the topological gradient. It gives us the best locations in Ω
of the geometry perturbations for which the shape function j decrease most, i.e.
the topological gradient δj is as negative as possible. In fact, if δj(z) < 0, we have
j(Ωz,ε) < j(Ω) for small ε.

The topological gradient δj has been used as a descent direction to solve various
problems; fluid flow optimal shape design [1, 2, 6], structural mechanics [14, 15],
geometry inverse problems [5, 7, 20], image processing [8], and many other appli-
cations.

The majority of the optimization algorithms dealing with the topological deriv-
ative are based on the first-order asymptotic expansion. This provides interesting
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optimization results in some particular configurations like the case when the un-
known domain is small and not close to the boundary ∂Ω, one can consult detection
of small cavities in Stokes flow in BenAbda et al [7].

Classically, the topological gradient δj described by the leading term of the
first-order asymptotic expansion, dealing only with infinitesimal geometry pertur-
bations. However, for practical applications, we need to detect domains of finite
size. Therefore, as a natural extension of the topological derivative concept we
consider high-order terms in the asymptotic expansion. In this context, Novotny et
al. [11, 12, 10] was derived a second-order topological asymptotic for the Laplace
operator. The obtained results are limited to the two dimensional case.

In this work, we consider the three dimensional case and we derive a high-
order topological asymptotic expansion for the Laplace operator with respect to
the presence of Dirichlet geometric perturbations. The proposed approach is based
on two main steps.

In the first one, we derive a high-order asymptotic expansion for the solution of
the perturbed Laplace equation with respect to ε. This question has been investi-
gated by Ammari and Kang [3] in the inhomogeneities case where the perturbed
solution is computed in the entire domain Ω using continuity condition on the
boundary ∂ωz,ε. In this work, we deal with more singular geometric perturbation.
The solution of the perturbed Laplace equation is computed in Ωz,ε = Ω\ωz,ε with
Dirichlet condition on ∂ωz,ε. As we will show in Section 3, this type of perturba-
tions leads to an asymptotic behavior with respect to ε different from that obtained
in [3].

In the second step, we derive a high-order topological asymptotic expansion for
the Laplace operator. More precisely, we derive an asymptotic expansion of a given
shape functional j in the form

j(Ωz,ε) = j(Ω) +
N∑

k=1

fk(ε)δkj(z) + o(fN (ε)),

where,

• fk, 1 ≤ k ≤ N are positive scalar functions satisfying fk+1(ε) = o(fk(ε))
and limε→0 fk(ε) = 0.
• δkj denotes the k-th topological derivative of the shape function j.

The topological asymptotic expansion has been derived for various operators
and has been applied for many applications; one can see [16] for the Laplace equa-
tion, [17, 19] for the Stokes system, [15, 19] for the elasticity problem, [23, 24] for
the Helmhotz equation, etc. In all theses works, the optimization algorithms are
based on the first-order topological derivative which is only valid for small geometry
perturbation size. The use of higher-order terms in the topological asymptotic ex-
pansion of the shape function may certainly be decisive in improving the topological
optimization algorithms without restrictions on the perturbations sizes. The high-
order topological derivative are essential when the first-order topological derivative
δj vanishes at some critical points inside Ω.

The present work can be considered as a generalization of the topological gradient
notion. The obtained results are valid for a large class of shape functions. The
mathematic analysis is general and can be easily adapted to other partial differential
equations.
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This article is organized as follows. The formulation of the problem is presented
in Section 2. In Section 3, we discuss the influence of the geometry perturbation on
the Laplace equation solution. We derive an asymptotic expansion for the perturbed
solution with respect to ε. The Section 4 is devoted to the high-order topological
derivatives. A high-order topological asymptotic expansion is derived for a large
class of shape functions. Two particular examples of shape functions are considered
in Section 5. Some concluding remarks are presented in Section 6.

2. Formulation of the problem

Let Ω be a bounded domain of R3 with smooth boundary ∂Ω. We consider the
case in which Ω contains a small geometry perturbation ωz,ε that is centered at
z ∈ Ω and has the form ωz,ε = z + εω, where ω ⊂ R3 is a given fixed and bounded
regular domain containing the origin.

Consider now a shape function

j(Ω \ ωz,ε) = Jε(uε),

where Jε is defined on H1(Ω\ωz,ε) and uε is the solution to Laplace problem in the
perturbed domain Ωz,ε = Ω \ ωz,ε with homogeneous Dirichlet condition on ∂ωz,ε

−∆uε = 0 in Ωz,ε,

∇uε · n = Φn on Γn,

uε = Φd on Γd,

uε = 0 on ∂ωz,ε,

(2.1)

where Φn ∈ H−1/2(Γn) and Φd ∈ H1/2(Γd) are two given data, with Γn and Γd are
two parts of the boundary ∂Ω satisfying ∂Ω = Γn ∪ Γd and Γd ∩ Γn = ∅.

Note that for ε = 0, we have Ω0 = Ω and u0 is the solution to
−∆u0 = 0 in Ω,
∇u0 · n = Φn on Γn,

u0 = Φd on Γd.

(2.2)

Using the weak formulation of (2.1), one can deduce that uε is the unique solution
to the variational problem find uε ∈ H1(Ωz,ε) such that

aε(uε, w) = lε(w), ∀w ∈ Vε,

uε = Φd on Γd
(2.3)

where the function space Vε, the bilinear form aε, and the linear form lε are defined
by:

Vε =
{
u ∈ H1(Ωz,ε); u = 0 on Γd ∪ ∂ωz,ε

}
,

aε(v, w) =
∫

Ωz,ε

∇v · ∇w dx, ∀v, w ∈ Vε,

lε(w) =
∫

Γn

Φnwds, ∀w ∈ Vε.

In the absence of any perturbation (i.e. ε = 0), the weak formulation of problem
(2.2) consists in finding u0 ∈ H1(Ω) such that

a0(u0, w) = l0(w), ∀w ∈ V0

u0 = Φd on Γd.



4 M. HASSINE, K. KHELIFI EJDE-2016/110

As we have mentioned in the introduction, the aim of this work is to derive a high-
order topological asymptotic expansion for the shape function j with respect to the
presence of the geometry perturbation ωz,ε in the domain Ω. It consists in studying
the variation j(Ωz,ε)−j(Ω) with respect to ε and establishing an asymptotic formula
of the form

j(Ωz,ε)− j(Ω) =
N∑

k=1

fk(ε)δkj(z) + o(fN (ε)).

To derive the expected formula, we will proceed in two steps. Firstly, we will give
a topological sensitivity analysis for the Laplace operator in Section 3. It consists
in studying the asymptotic behavior of the solution uε with respect to ε. Secondly,
we will study the variation of a shape function j with respect to the presence of a
geometry perturbation ωz,ε in Ω. The general case, which is valid for a large class
of shape functions, will be discussed in Section 4. In Section 5, we will present the
asymptotic formulas for two shape functionals examples.

3. Sensitivity analysis for the Laplace operator

In this section, we give a sensitivity analysis for the Laplace operator with respect
to the presence of a geometry perturbation ωz,ε in the domain Ω. More precisely, we
derive an asymptotic expansion for the solution uε with respect to ε. Our procedure
is based on the successive approximations of the variation uε − u0. We start our
analysis by the following estimate.

Lemma 3.1. Let ωz,ε = z + εω be a topological perturbation inside the domain Ω.
If ωz,ε ⊂ Ω is not close to the boundary ∂Ω, then the variation uε − u0 admits the
estimate

uε(x)− u0(x) = W0((x− z)/ε) + O(ε) in Ωz,ε,

where the function x 7→W0((x−z)/ε) is the unique solution to the Laplace exterior
problem

−∆W0 = 0 in R3 \ ω,
W0 → 0 at ∞

W0 = −u0(z) on ∂ω.

(3.1)

Proof. The existence of the function W0 is most easily established using a single
layer potential [13]

W0(y) =
∫

∂ω

G(y − t) q0(t)ds(t), ∀y ∈ R3 \ ω,

where G is the fundamental solution of the Laplace equation in R3,

G(y) =
1

4π‖y‖
.

The function q0 ∈ H−1/2(∂ω) is the solution to the boundary integral equation∫
∂ω

G(y − t) q0(t)ds(t) = −u0(z),∀y ∈ ∂ω.

Posing R0,ε(x) = uε(x)− u0(x)−W0((x− z)/ε). One can easily remark that R0,ε

is solution to the system

−∆R0,ε = 0 in Ωz,ε,
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∇R0,ε · n = −∇W0((x− z)/ε) · n on Γn,

R0,ε = −W0((x− z)/ε) on Γd,

R0,ε = −(u0 − u0(z)) on ∂ωz,ε.

Since the perturbation ωz,ε is not close to the boundary ∂Ω, the function x 7→
W0((x−z)/ε) is regular in the neighborhood of Γd and Γn. It satisfies the following
asymptotic behavior: for all x ∈ Ωz,ε,

W0((x− z)/ε) = ε

∫
∂ω

G(x− z − ε t) q0(t)ds(t)

= εG(x− z)
∫

∂ω

q0(t)ds(t) +O(ε).

Similarly, the smoothness of u0 near z leads to u(x) − u0(z) = O(ε) on ∂ωz,ε. By
elliptic variational inequality, one can deduce the estimate

R0,ε = O(ε) in Ωz,ε.

Consequently, the solution uε of the Laplace equation in the perturbed domain
admits the following asymptotic expansion

uε(x) = u0(x) +W0((x− z)/ε) +O(ε) in Ωz,ε.

�

This result was proved in [1, Proposition 3.1] for the Stokes system. It has been
used to describe the variation of the velocity field with respect to the presence of a
small obstacle.

We are now ready to present the main result of this section. We will derive a
high-order asymptotic expansion of uε with respect to ε. The obtained result is
described by the following theorem.

Theorem 3.2. Let ωz,ε = z + εω be a topological perturbation inside the domain
Ω. If ωz,ε ⊂ Ω is not close to the boundary ∂Ω, then the Laplace equation solution
uε in the perturbed domain Ωz,ε admits the following asymptotic expansion

uε(x) =
N∑

k=0

εk[Uk(x) +Wk((x− z)/ε))] +O(εN+1) in Ωz,ε,

where

• Uk, 0 ≤ k ≤ N are smooth functions defined in Ω, obtained as the solutions
to a sequence of interior Laplace problems.

• Wk, 0 ≤ k ≤ N are smooth functions defined in R3 \ ω, obtained as the
solutions to a sequence of exterior Laplace problems.

Proof. The sequences of functions (Uk)0≤k≤N and (Wk)0≤k≤N are constructed us-
ing an iterative process with U0 = u0 and W0 is the solution to (3.1). As we will
show later, for all 1 ≤ k ≤ N :
• The term Uk will be defined as the solution of the Laplace equation in Ω with

boundaries conditions depending on the function x 7→Wl((x− z)/ε), 0 ≤ l ≤ k−1.
• The term Wk, will be defined as the solution of the Laplace equation in R3 \ω

with a boundary condition depending on the functions Ul, 0 ≤ l ≤ k.
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Using a single layer potential [13], the functions Wk, 0 ≤ k ≤ N can be written
on the following general form

Wk(y) =
∫

∂ω

G(y − t) qk(t)ds(t), ∀y ∈ R3 \ ω,

where qk is the solution to a boundary integral equation defined on ∂ω.
To present our construction process, we start our analysis by studying the vari-

ation of the function x 7→ Wk((x− z)/ε) with respect to ε. For each x ∈ R3 \ ωz,ε

we have

Wk((x− z)/ε) =
∫

∂ω

G((x− z)/ε− t) qk(t)ds(t)

= ε

∫
∂ω

G((x− z)− ε t) qk(t)ds(t).

Using the fact that the perturbation ωz,ε is not close to the boundary ∂Ω, one
can remark that for all t ∈ ∂ω and for all x ∈ Ωz,ε, the function ϕx−z,t : ε 7→
ϕx−z,t(ε) = εG((x− z)− ε t) is smooth with respect to ε and satisfies

ϕx−z,t(ε) =
N∑

p=1

εp

p!
ϕ

(p)
x−z,t(0) +O(εN+1),

where ϕ(p)
x−z,t(0) is the p-th derivative of ϕx−z,t at ε = 0. It depends on the p-th

derivative of the function G at the point x− z.
Consequently, the function x 7→Wk((x− z)/ε) admits the asymptotic expansion

Wk((x− z)/ε) =
N∑

p=1

εpW
(p)
k (x− z) +O(εN+1), (3.2)

where W (p)
k is the smooth function defined in R3 \ {z} by

W
(p)
k (x− z) =

1
p!

∫
∂ω

ϕ
(p)
x−z,t(0)qk(t)ds(t), ∀x ∈ R3 \ {z}. (3.3)

We are now ready to present the main steps of our construction procedure.

First order term: It is described by the function x 7→ U1(x) + W1((x − z)/ε),
x ∈ Ωz,ε which is constructed as follows:

• The term U1 depends on W0 and solves the interior problem

−∆U1 = 0 in Ω,

∇U1 · n = −∇W (1)
0 (x− z) · n on Γn,

U1 = −W (1)
0 (x− z) on Γd,

(3.4)

with W
(1)
0 is defined by (3.3) in the particular case k = 0 and p = 1. One

can easily check that

W
(1)
0 (x− z) = G(x− z)

∫
∂ω

q0(t)ds(t),

where q0 is the density associated to W0.



EJDE-2016/110 ASYMPTOTIC EXPANSION FOR SHAPE FUNCTIONS 7

• The term W1 depends on U0 and U1, and solves the following exterior
problem

−∆W1 = 0 in R3 \ ω,
W1 → 0 at ∞

W1 = −U1(z)−DU0(z)(y) on ∂ω.

(3.5)

Higher-order terms: Let us assume that we have already calculated the first k−1
terms. The k-th order term is described by the function x 7→ Uk(x)+Wk((x−z)/ε),
x ∈ Ωz,ε which is defined as follows:

• The term Uk depends on Wj , 0 ≤ j ≤ k− 1 and solves the interior problem
−∆Uk = 0 in Ω,

∇Uk · n = −
k∑

p=1

∇W (p)
k−p(x− z) · n on Γn,

Uk = −
k∑

p=1

W
(p)
k−p(x− z) on Γd,

(3.6)

with W
(p)
j is defined by (3.3).

• The term Wk depends on Uj , 0 ≤ j ≤ k and solves the exterior problem

−∆Wk = 0 in R3 \ ω,
Wk → 0 at ∞

Wk = −Uk(z)−
k∑

p=1

1
p!
DpUk−p(z)(yp) on ∂ω,

(3.7)

where DpUk−p(z) is the p-th derivative of the harmonic function Uk−p at
the point z ∈ Ω and yp = (y, . . . , y) ∈ (R3)p.

To prove the desired estimate, we introduce the function RN,ε defined in Ωz,ε by

RN,ε(x) = U0(x) +W0((x− z)/ε) + ε (U1(x) +W1((x− z)/ε)) + . . .

+ εN (UN (x) +WN ((x− z)/ε)− uε(x).

It is easy to see that RN,ε is harmonic in Ωz,ε and satisfies the following boundary
conditions:

On ∂ωz,ε:

RN,ε(x) = U0(x) +W0((x− z)/ε) +
N∑

k=1

εk[Uk(x) +Wk((x− z)/ε)]

=
N∑

k=0

εkUk(x)−
N∑

k=0

εk
[ k∑

p=0

1
p!
DpUk−p(z)(((x− z)/ε)p)

]
.

(3.8)

Using the multi-linearity of DpUk−p(z), it follows
N∑

k=1

εk
[ k∑

p=0

1
p!
DpUk−p(z)(((x− z)/ε)p)

]
=

N∑
k=0

k∑
p=0

εk−p

p!
DpUk−p(z)((x− z)p)

=
N∑

k=0

εk
N−k∑
p=0

1
p!
DpUk(z)((x− z)p).
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Then, one can deduce

RN,ε(x) =
N∑

k=0

εk
[
Uk(x)−

N−k∑
p=0

1
p!
DpUk(z)((x− z)p)

]
.

Due to Taylor’s Theorem and the fact that ‖x− z‖ = O(ε) on ∂ωz,ε, we obtain

RN,ε(x) = O(εN+1) on ∂ωz,ε.

On Γd:

RN,ε(x) =
N∑

k=0

εkWk((x− z)/ε)−
N∑

k=1

εk
[ k∑

p=1

W
(p)
k−p(x− z)

]
=

N∑
k=0

εkWk((x− z)/ε)−
N−1∑
k=0

εk
[N−k∑

p=1

εpW
(p)
k (x− z)

]
.

The last equality can be rewritten as

RN,ε(x) = εNWN ((x− z)/ε) +
N−1∑
k=0

εk
[
Wk((x− z)/ε)−

N−k∑
p=1

εpW
(p)
k (x− z)

]
.

Then, using the asymptotic expansion (3.2) we obtain

RN,ε(x) = O(εN+1) on Γd.

On Γn: using the same analysis, one can derive

∇RN,ε · n = O(εN+1) on Γn.

�

4. High-order topological asymptotic expansion

This section is focused on high-order topological derivatives. It consists in study-
ing the variation of a shape function j with respect to the topology perturbation
of the domain. The topology perturbation is described by the hole ωz,ε created at
an arbitrary point z ∈ Ω and having the form ωz,ε = z + εω. We derive a high-
order topological asymptotic expansion for a large class of shape functions. More
precisely, the obtained results are valid for all shape function j having the form

j(Ωz,ε) = Jε(uε),

with Jε is a scalar function defined on H1(Ωz,ε) and satisfying the assumptions:
(A1) The function J0 is differentiable with respect to u.
(A2) There exist real numbers δ1J(z), . . . , δNJ(z), such that for all ε > 0,

J(uε)− J0(u0) = DJ0(u0)(uε − u0) +
N∑

k=1

εkδkJ(z) + o(εN ).

In the last equality, the solution uε is extended by zero inside the domain ωz,ε. Its
extension will be denoted by uε throughout the rest of the paper.

Under the considered assumptions, the variation of the shape function j reads

j(Ωz,ε)− j(Ω) = a0(u0 − uε, v0) +
N∑

k=1

εkδkJ(z) + o(εN ),
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where v0 ∈ V0 is the solution to the adjoint problem

a0(w, v0) = −DJ0(u0)(w), ∀w ∈ V0. (4.1)

Next, we will derive an asymptotic expansion of the term a0(u0−uε, v0) which can
be written as

a0(u0 − uε, v0) =
∫

Ω

(∇u0 −∇uε) · ∇v0dx

=
∫

ωz,ε

∇u0 · ∇v0dx+
∫

Ωz,ε

(∇u0 −∇uε) · ∇v0dx.

Using Green formula, it follows that

a0(u0 − uε, v0) =
∫

ωz,ε

∇u0 · ∇v0dx+
∫

∂ωz,ε

∇(u0 − uε) · nv0ds. (4.2)

By Theorem 3.2, we have∫
∂ωz,ε

∇(u0 − uε) · nv0ds = −
N∑

k=1

εk

∫
∂ωz,ε

∇Uk(x) · n(x) v0(x)ds

−
N∑

k=0

εk

∫
∂ωz,ε

∇xWk((x− z)/ε)) · n v0ds+O(εN+1).

Consequently, the term a0(u0 − uε, v0) can be decomposed as

a0(u0 − uε, v0)

=
∫

ωz,ε

∇u0 · ∇v0dx−
N∑

k=0

εk

∫
∂ωz,ε

∇xWk((x− z)/ε)) · n v0ds

−
N∑

k=1

εk

∫
∂ωz,ε

∇Uk(x) · n(x) v0(x)ds+O(εN+1).

(4.3)

In the next section, we will derive an estimate for each term on the right-hand-side
of the equality (4.3).

4.1. Preliminary estimates. The following lemma gives an estimate for the first
term.

Lemma 4.1. The first term on the right-hand-side of the equality (4.3) admits the
asymptotic expansion∫

ωz,ε

∇u0 · ∇v0dx =
N∑

k=3

εk T 1,k−3
u0,v0

(z) +O(εN+1),

where the functions z 7→ T 1,k
u0,v0

(z), 0 ≤ k ≤ N are defined in Ω by

T 1,k
u0,v0

(z) =
k∑

p=0

1
p!(k − p)!

∫
ω

∇(p+1)u0(z)(yp) · ∇(k−p+1)v0(z)(yk−p)dy,

with yk = (y, . . . , y) ∈ (R3)k and ∇(k)w(z) denotes the k-th derivative of the func-
tion w at the point z.
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Proof. The proof of this lemma is based on the well known Taylor-Young formula.
Since u0 and v0 are sufficiently regular in ωz,ε, we have

∇u0(z + εy) = ∇u0(z) +
N−1∑
k=1

εk

k!
∇(k+1)u0(z)(yk) +O(εN )

∇v0(z + εy) = ∇v0(z) +
N−1∑
k=1

εk

k!
∇(k+1)v0(z)(yk) +O(εN ).

Using the change of variable x = z + εy, we derive∫
ωz,ε

∇u0 · ∇v0dx

= ε3

∫
ω

∇u0(z + εy) · ∇v0(z + εy)dy

= ε3

∫
ω

[N−1∑
k=0

εk

k!
∇(k+1)u0(z)(yk)

][N−1∑
k=0

εk

k!
∇(k+1)v0(z)(yk)

]
dy +O(εN+1).

Using the Cauchy product formula, we obtain the desired result∫
ωz,ε

∇u0 · ∇v0dx

=
N−3∑
k=0

εk+3
( k∑

p=0

1
p!(k − p)!

∫
ω

∇(p+1)u0(z)(yp) · ∇(k−p+1)v0(z)(yk−p)dy
)

+O(εN+1).

�

Lemma 4.2. The second term on the right-hand-side of the equality (4.3) admits
the asymptotic expansion

N∑
k=0

εk

∫
∂ωz,ε

∇xWk((x− z)/ε)) · n v0ds = −
N∑

k=1

εkT 2,k−1
W,v0

(z) +O(εN+1),

where the functions z 7→ T 2,k
W,v0

(z), 0 ≤ k ≤ N are defined in Ω by

T 2,k
W,v0

(z) = −
k∑

p=0

1
p!

∫
∂ω

∇yWk−p(y) · n(y)[∇(p)v0(z)(yp)]ds(y).

Proof. Using the change of variable x = z + εy, we obtain∫
∂ωz,ε

∇xWk((x−z)/ε))·n(x)v0(x)ds = ε

∫
∂ω

∇yWk(y)·n(y) v0(z+εy)ds(y). (4.4)

Using the fact that v0 is smooth in a neighborhood of z, one can derive

v0(z + εy) = v0(z) +
N−1∑
p=1

εp

p!
∇(p)v0(z)(yp) +O(εN )

=
N−1∑
p=0

εp

p!
∇(p)v0(z)(yp) +O(εN ).
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It leads to the asymptotic expansion of the term (4.4),∫
∂ωz,ε

∇xWk((x− z)/ε)) · n(x)v0(x)ds

=
N−1∑
p=0

εp+1

p!

∫
∂ω

∇yWk(y) · n(y)[∇(p)v0(z)(yp)]ds(y) +O(εN+1).

Consequently,
N∑

k=0

εk

∫
∂ωz,ε

∇xWk((x− z)/ε)) · n v0 ds

=
N∑

k=0

εk
N−1∑
p=0

εp+1

p!

∫
∂ω

∇yWk(y) · n(y)[∇(p)v0(z)(yp)]ds(y) +O(εN+1)

=
N∑

k=1

εk
k−1∑
p=0

1
p!

∫
∂ω

∇yWk−p−1(y) · n(y)[∇(p)v0(z)(yp)]ds(y) +O(εN+1).

�

Lemma 4.3. The third term on the right-hand-side of the equality (4.3) admits the
following expansion

N∑
k=1

εk

∫
∂ωz,ε

∇Uk(x) · n(x)v0(x)ds = −
N∑

k=3

εkT 3,k−3
U,v0

(z) +O(εN+1).

where the functions z 7→ T 3,k
U,v0

(z), 0 ≤ k ≤ N are defined in Ω by

T 3,k
U,v0

(z)

= −
k∑

p=0

p∑
q=0

1
q!(p− q)!

∫
∂ω

[∇(q+1)Uk−p+1(z)(yq)] · n(y)[∇(p−q)v0(z)(yp−q)]ds(y).

Proof. Using the change of variable x = z + εy, we obtain∫
∂ωz,ε

∇Uk(x) ·n(x)v0(x)ds = ε2

∫
∂ω

∇Uk(z+ εy) ·n(z+ εy)v0(z+ εy)ds(y). (4.5)

From the fact that v0 is smooth in a neighborhood of z, one can derive

v0(z + εy) = v0(z) +
N−1∑
p=1

εp

p!
∇(p)v0(z)(yp) +O(εN )

=
N−1∑
p=0

εp

p!
∇(p)v0(z)(yp) +O(εN ).

Similarly, Uk is smooth in a neighborhood of z, it can be estimated as

∇Uk(z + εy) =
N−1∑
q=0

εq

q!
∇(q+1)Uk(z)(yq) +O(εN ).

Then, it follows that∫
∂ωz,ε

∇Uk(x) · n(x)v0(x)ds
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= ε2

∫
∂ω

[
N−1∑
q=0

εq

q!
∇(q+1)Uk(z)(yq)] · n(y)

[N−1∑
p=0

εp

p!
∇(p)v0(z)(yp)

]
ds(y) +O(εN+1).

Using the Cauchy product formula, one can check the following asymptotic expan-
sion of the term (4.5),∫

∂ωz,ε

∇Uk(x) · n(x)v0(x)ds

=
N−2∑
p=0

εp+2

p∑
q=0

1
q!(p− q)!

×
∫

∂ω

[∇(q+1)Uk(z)(yq)] · n(y)[∇(p−q)v0(z)(yp−q)]ds(y) +O(εN+1).

Consequently,
N∑

k=1

εk

∫
∂ωz,ε

∇Uk(x) · n(x) v0(x)ds

=
N∑

k=1

N−2∑
p=0

εk+p+2

p∑
q=0

1
q!(p− q)!

×
∫

∂ω

[∇(q+1)Uk(z)(yq)] · n(y)[∇(p−q)v0(z)(yp−q)]ds(y) +O(εN+1)

=
N∑

k=3

εk
k−3∑
p=0

p∑
q=0

1
q!(p− q)!

×
∫

∂ω

[∇(q+1)Uk−p−2(z)(yq)] · n(y)[∇p−qv0(z)(y(p−q))]ds(y) +O(εN+1).

�

4.2. Asymptotic expansion. We are now ready to present the main results of
this section. Based on the previous estimates, we derive a high-order topological
asymptotic expansion for all shape function satisfying the assumptions (A1) and
(A2).

Theorem 4.4. Let ωz,ε = z + εω be a small topological perturbation in Ω and j a
shape function of the form j(Ωz,ε) = Jε(uε). If Jε satisfies the assumptions (A1)
and (A2), then j admits the asymptotic expansion

j(Ωz,ε)− j(Ω) =
N∑

k=1

εkδkj(z) + o(εN ),

where δkj is the k-th topological derivative defined in Ω by

δkj(z) =

{
T 2,k−1

W,v0
(z) + δkJ(z) if k = 1, 2

T 1,k−3
u0,v0

(z) + T 2,k−1
W,v0

(z) + T 3,k−3
U,v0

(z) + δkJ(z) if 3 ≤ k ≤ N.

Proof. Using the fact that j satisfies assumptions (A1) and (A2), we have

Jε(uε)− J0(u0) = DJ0(u0)(uε − u0) +
N∑

k=1

εkδkJ(z) + o(εN ).
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Using (4.1), we derive

DJ0(u0)(uε − u0) = a0(u0 − uε, v0),

Using the decomposition (4.3) and according to Lemmas 4.1, 4.2 and 4.3, we derive

DJ0(u0)(uε − u0) =
N∑

k=3

εkT 1,k−3
u0,v0

(z) +
N∑

k=1

εkT 2,k−1
W,v0

(z)

+
N∑

k=3

εkT 3,k−3
U,v0

(z) +O(εN+1).

By combining the above equalities we obtain the desired result. �

5. Shape function examples

We now discuss the assumptions (A1) and (A2). We present two examples
of shape functions satisfying the considered assumptions and we calculate their
variations δ1J , δ2J , . . . , and δNJ .

5.1. First example. We consider the linear function

Jε(u) =
∫

Ωz,ε

g udx, ∀u ∈ H1(Ωz,ε), (5.1)

with g ∈ H1(Ω) is a given function.

Proposition 5.1. The function Jε satisfies the assumptions (A1) and (A2) with

DJ0(w) =
∫

Ω

gwdx, ∀w ∈ V0, and for any 1 ≤ k ≤ N, δkJ(z) = 0 in Ω.

Then the associated shape function

j(Ωz,ε) =
∫

Ωz,ε

g uεdx

admits the high-order asymptotic expansion

j(Ωz,ε)− j(Ω) =
N∑

k=1

εkδkj(z) + o(εN ),

where δkj is the k-th topological derivative of j defined in Ω by

δkj(z) =

{
T 2,k−1

W,v0
(z) if k = 1, 2

T 1,k−3
u0,v0

(z) + T 2,k−1
W,v0

(z) + T 3,k−3
U,v0

(z) if 3 ≤ k ≤ N.
(5.2)

Proof. The function J0 is differentiable and we have

DJ0(w) =
∫

Ω

gw dx, ∀w ∈ V0.

The variation of j is given by

j(Ωz,ε)− j(Ω) =
∫

Ωz,ε

guε dx−
∫

Ω

gu0 dx = DJ0(u0)(uε − u0).

Hence the function Jε satisfies the assumptions (A1) and (A2) with

DJ0(w) =
∫

Ω

gw dx ∀w ∈ V0,
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δkJ(z) = 0 for each 1 ≤ k ≤ N and all z ∈ Ω.

The asymptotic expansion of j follows immediately from Theorem 4.4. �

5.2. Second example. We consider the semi-norm function associated to the H1

Sobolev space

Jε(u) =
∫

Ωz,ε

|∇u−∇Ud|2dx, ∀u ∈ H1(Ωz,ε) (5.3)

with Ud ∈ H1(Ω) is a given desired (objective) state, smooth in a neighborhood of
z.

Proposition 5.2. The function Jε satisfies the assumptions (A1) and (A2) with

DJ0(w) = 2
∫

Ω

∇(u0 − Ud) · ∇wdx, ∀w ∈ V0,

where

δkJ(z) =

{
T 2,k−1

W,u0
(z) if k = 1, 2

T 2,k−1
W,u0

(z) + T 1,k−3
u0,u0

(z) + T 1,k−3
Ud,Ud

(z) + T 3,k−3
U,u0

(z) if 3 ≤ k ≤ N.

Proof. The function J0 is differentiable and we have

DJ0(u0)(w) = 2
∫

Ω

[∇u0 −∇Ud] · ∇wdx,

and

j(Ωz,ε)− j(Ω) =
∫

Ωz,ε

|∇uε −∇Ud|2dx−
∫

Ω

|∇u0 −∇Ud|2dx

= DJ0(u0)(uε − u0) +
∫

ωz,ε

|∇u0|2dx

−
∫

ωz,ε

|∇Ud|2dx+
∫

Ωz,ε

|∇u0 −∇uε|2dx.

Thanks to the regularity of u0 and Ud in ωz,ε, one obtains∫
ωz,ε

|∇u0|2dx =
N∑

k=3

εkT 1,k−3
u0,u0

(z) +O(εN+1),

∫
ωz,ε

|∇Ud|2dx =
N∑

k=3

εkT 1,k−3
Ud,Ud

(z) +O(εN+1).

By the Green formula, it follows that∫
Ωz,ε

|∇u0 −∇uε|2dx = −
∫

∂ωz,ε

∇(u0 − uε) · nu0ds.

Applying the technique developed in Section 4, one can derive∫
Ωz,ε

|∇u0 −∇uε|2dx =
N∑

k=1

εkT 2,k−1
W,u0

(z) +
N∑

k=3

εkT 3,k−3
U,u0

(z) +O(εN+1).

By combining the above equalities we obtain the desired result. �
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Concluding remarks. Two main results are presented in this paper.
The first result is devoted to a high-order asymptotic expansion for the Laplace

equation solution with respect to the presence of a Dirichlet geometry perturbation.
This question has been investigated by Ammari and Kang [3] in the inhomogeneities
case. Here, we extend this result for a more singular case described by a Dirichlet
perturbation.

The second result deals with the high-order topological derivatives. A high-order
topological asymptotic expansion is derived for a large class of shape functions. The
use of higher-order terms in the topological asymptotic expansion of the shape func-
tion may certainly be decisive in improving the topological optimization algorithms
without restrictions on the perturbations sizes. The high-order topological deriv-
ative are essential when the first-order topological derivative δj vanishes at some
critical points inside Ω.

The present work can be considered as a generalization of the topological gradient
notion. The mathematic analysis is general and can be easily adapted to other
partial differential equations.
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