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MULTI-PEAK SOLUTIONS FOR A PLANAR ROBIN
NONLINEAR ELLIPTIC PROBLEM WITH LARGE EXPONENT

YIBIN ZHANG, LEI SHI

ABSTRACT. We consider the elliptic equation Au+uP = 0 in a bounded smooth

domain Q in R? subject to the Robin boundary condition % + Ab(z)u = 0.

Here v denotes the unit outward normal vector on 92, b(x) is a smooth positive
function defined on 92, 0 < A < +o0, and p is a large exponent. For any
fixed A large we find topological conditions on €2 which ensure the existence
of a positive solution with exactly m peaks separated by a uniform positive
distance from the boundary and each from other as p — 400 and A — +o0.
In particular, for a nonsimply connected domain such solution exists for any
m > 1.

1. INTRODUCTION

In this article we consider the boundary-value problem
Au+u? =0 in Q,
u>0 in (,

(1.1)
Ou ~0 on o0
£y + Ab(z)u=0 on 09,
where € is a bounded smooth domain in R?, v denotes the unit outward normal
vector on 952, b(x) is a smooth positive function defined on 99, 0 < A < 400, and
p is a large exponent.

The boundary condition in problem is called Robin boundary condition.
Such an Robin boundary condition is particularly interesting in various branches
of biological models (see [8] [15]).

When A = 0, from integration by parts it is trivial to observe that has
no solution. On the other hand, if 0 < A < 400, it is easy to prove via standard
variational methods that (|1.1)) always has a least energy solution. Moreover, in the
case A = 400, problem s reduced to the problem

Au+u? =0 in Q,
u>0 inQ, (1.2)
u=0 on Jf.
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Ren and Wei [16] [17] showed that the least energy solution u, of develops one
interior peak, namely u, approaches zero except one interior point where it has an
L*°-norm bounded and bounded away from zero, uniformly in p as p — +o0o. More
precisely, the authors prove that, up to a subsequence, both p|Vu,|? and pug"’l
behave as a Dirac mass near a critical point of the Robin function H(x, ), where
H, is the regular part of Green’s function G, of the Dirichlet Laplacian in €2,
i.e. Hoo(z,y) = Goo(z,y) + 3= log|z — y|. Successively, in [I, 9] the authors give
a further description of the asymptotic behavior of u,, as p — 400, by identifying
a limit profile problem of Liouville-type Au 4 e* = 0 in R?, [;,e" < 400, and
showing that ||up|| — v/€ as p — +00. Furthermore, Esposito, Musso and Pistoia
[I1] prove that if © is not simply connected, can have many other positive
solutions which, as p tends to infinity, concentrate at m different points of €2, i.e.

pugJrl — 8me Z 8¢, weakly in the sense of measure in (2, (1.3)
i=1
where points £ = (&1,...,&mn) € Q™ corresponds to a critical point of the function
O (61 €m) =D Hoo(8,6) + D Gool&h, &) (1.4)
=1 i#k

In contrast, Grossi and Takahashi [I2] prove that when 2 is convex, problem
has no multi-peak solutions satisfying . Thus the assumption on the domain
in [I1] is sharp for the construction of multiple concentrating solutions of .

The purpose of our research is to give the construction of multi-peak solutions
to the so called Robin problem with sufficiently large p and A, and to point
out that in general the set of multi-peak solutions of this problem exhibits a richer
structure than the problem with Dirichlet boundary condition, which we will finish
in this paper and in [I§]. In this paper we prove that if Q is not simple connected,
then given any m > 1, for p and A large enough problem has a positive
solution wu,  concentrating at exactly m points that stay uniformly separated from
the boundary and from each other as p — 400 and A — +o0. In particular, we
recover existence results already known in [IT] when A = 400 and p is large enough.

To state our results, we need to introduce some notation. Let Gx(z,y) be the
Green’s function satisfying

—AGa(z,y) = 6y(x) = €Q,

%(x,y) + Ab(2)Ga(z,y) =0 z € 09, (1.5)

19}%
then its regular part can be decomposed as
1 1
H = — —log——. 1.
)\(xvy) G)\(xvy) o 0og |3§‘—y‘ ( 6)
Furthermore, let
om (E1ve Em) :ZHA(gjvfj)+ZGA(fjvfk)~ (1.7)

j=1 J#k

Our main result reads as follows.

Theorem 1.1. Assume that Q0 is not simply connected. Then given any m > 1,
there exist p,, > 0 and A\,, > 0 such that for any p > p,, and A > A, problem
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(1.1) has a solution u, x with m concentration points &1 p a, - ., &m.px Separated at

a uniform positive distance from the boundary and each other as p — +oo and

A — +o00. More precisely,
= 1

1 1
up () = — | log +8mHx(z,&jp0) | +O(=),
» ; H?/(p 1) [ (02 + |z — & pal?)? P P

where the parameters v, §; and u; satisfy
2 _1 1
YEPTITT, G =g, p=eit 5 <y <G
for some C >0, and &, x = (§1pn,- -+ &mpr) € Q™ satisfies

lim Vgo,)fn (gl,p)\a e vEm,pJ\) =0,

p——+00, A——+0co
and
dist(&,p,0, 0) = 22, & pn — Ekpr

for any € > 0 small. In particular, as p — +00 and A — +o0,

>2 Vik=1,...,m; j#k,

m
puzt\l — 8me Z O¢; . — 0 weakly in the sense of measure in Q,
Jj=1

upx — 0 uniformly in @\ UT2, B (&5p.0),

sup  upx — Ve.
B (&5,p,7)

The rest of this article is devoted to the proof of Theorem[I.1] Our proof relies on
a Lyapunov-Schmidt process as in [7, [10, 1T}, [I4], but we now have to confront some
difficulties that are brought by the presence of Robin boundary condition, which
can be successfully overcome by making use of some versions of the maximum
principle with Robin boundary condition. This is the delicate ingredient during
we construct multi-peak solutions of problem through performing the finite-
dimensional reduction and using the notion of a nontrivial critical level.

This article is organized as follows. In Section 2 we exactly describe the ansatz
for the solution of problem and estimate the error. Then we rewrite problem
in terms of a linearized operator for which a solvability theory, subject to
suitable orthogonality conditions, is performed through solving a linearized problem
in Section 3. In Section 4 we solve an auxiliary nonlinear problem. In Section 5 we
reduce to a finite system, as we will see in Section 5. In the last section, we
use the notion of a nontrivial critical level to give the proof of Theorem [I.1

2. A FIRST APPROXIMATION OF THE SOLUTION

In this section we provide an ansatz for solutions of problem . A key ingre-
dient to describe an approximate solution of problem is given by the standard
bubble:

862

(NPT §>0, £eR% (2.1)

Use(x) =log
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It is well known (see [4]) that those are all the solutions of the Liouville-type
equation
Au+e* =0 inR?,

(2.2)
"< )
/]R2 e “+00

Let us introduce the configuration space in which the concentration points belong
to

08 = {f: (517'-'a§’m) € delSt(gjﬁaQ) Z 257 |§] _é.k:‘ 2 2€a
Gk =1, ms £ kY,

where € > 0 is a sufficiently small but fixed number. Furthermore, we set, for each
j=1...,m,

(2.3)

» 1
V= p”jp%, 0j = pip, p= e TP, ol <p; <C, (2.4)
for some C > 0, where the choice of 11; will be determined later. Define now
1 1 r—E&; 1 r—&;
Ui(z) = ———— |Us. ¢.(x) + —w L)+ Sw L. 2.5
i (@) Wﬁ/(z)l)[ 5.6 (%) » 1( 5, ) e 2( 5 )} (2.5)

Here, wi and ws are radial solutions of
8 8

Aw; + w; = i in RQ, 2.6
TSP TEaRER 20
for ¢ = 1,2, respectively, with
1 1. . 1 1 1
fi= §U12,07 fo=wiUp— gUf,o - 5“’% - gUio + §W1U12,0a (2.7)
having asymptotic properties
1
wi(y) = Cilogly| + O() as |yl — +oo,
[yl (2.8)
i ! for all y € R '
Vw;(y) = C; + O( ) or a € R7,
W =Ce T O\rpe /
for i = 1,2, where
< 21

in particular,

2log8 —10 |y -1
lyl> +1 ly[* +1

1
—|—1Og s

1
wily) = 5UTo(y) + 6log(ly* +1) +

1
X { —flog28+210g2(|y|2+1)+4/
2 Jyl?

—Sbmmbwa+U}

and
Ci =12 —4log8 (2.11)
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(see [3, I1]). Our final ansatz for a solution of (1.1)) is

Ue(x) =Y [Uj(x) + Hj(2)], (2.12)
j=1
where Hj is a correction term defined as the solution of
—AHj =0 in Q,
OH, aU; (2.13)
T—F)\b( ) :_ﬁ_/\b( )UjOIl 8(2

Lemma 2.1. For any set of points £ = (§1,...,&m) € Ok,

1 Cy Oy
m[( ~ D 1) ST )~ los(8uie?)

TH (2.14)
+ (g + g) log(pjp) + O(= )}

in C(Q) and in CE.(Q) as p and X go to 400, where Hy is the regular part of

Green’s function defined in (|1.6).
Proof. First, on the boundary, by (2.1) and (2.8) we have

Hj(z) =

0H;

ayj + \b(z)H;

B 1 Cy  CoNf(z—¢&) v(z) 1

- 77#5/(’)_1) {( et pig) [ |Jf—j€j|2 ~ Ab(z) log | —fjd

+0) [ 1og812%) — (4 4 2 bog(s)] + O(20) ).

The regular part of Green’s function with Robin boundary condition H)(z,§;)
satisfies

—AH,\(:E §]) =0 1in Q,

OH (2, 1 1
J J
(2.15)
So, if we set
~ - C C
Hj(o) = 0 H ) = (1 4 ) 8T, 6)

— log(83p°%) + (% + %) log(ujp)},
then ij (z) satisfies
—AH; =0 inQ,
OH,
v

From the maximum principle with Robin boundary condition (see [0, Lemma 2.6]),
we deduce

4 A\b(a)H _O();)) on 9.

~ . ~ p
mﬁaX|Hj(J;)’ —|—m§ax ’ dlst(x,aﬂ)VHj(x)’ < —H H, + )\H HLOC(BQ) O(;)
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By the interior estimate of derivative of harmonic function, we derive estimate

in C(Q) and in CZ (). O

From Lemma away from the points &;, namely |z — &;| > ¢ for any j =
1,...,m, one has

1 C C p
Ug(x):zm{(lff 2)87TG>\( ,gj)+0(f)] (2.16)
=1 Y p p
While for |z — ;| < ¢ with some j, if we write z = &; + J;y, then, by (2.4), (2.5),

(2.14) and (2.16) we deduce

Ue()
1 1 1 Ci O

= p+U + —wi(y) + Swa(y) + (1 — == — == 8w H\ (&, &

iy {p V10w + Jr )+ Jgea) + (1= 3 = 2587 616)

C1 Oy
_ log(SM?) + (7 + ) log(k;p) + O(ply|) + O(= )}
C’1 Co
"’Z = 1)[( P 2)87TG>\(§]a€k)+O(p|y|)+O( )}
We now choose the parameters 1;: we assume they are defined by the relation
2/(p—1)
Ci1 Oy Wi
log(815) = (1 T TPQ) [SWH/\(fjvfj) + kz ;/( SWG,\(@’&@)}

(ﬁ + Q) log (e 4p/4).

Thus, by the explicit expression of the constant C7, we observe that for p
large, the parameters p; satisfies

;= e~ 3 e2mHA(E;:65)+2m Xy Ga(&5:68) [1 + O(l)] (2.17)
p
From this choice of the parameters u;, we deduce that for |z — ;| = §;|y| <e,
1 1 1 o
Uee) = —57r—ry [P+ Uro(w) + 1 (9) + —5ua(a) + OGolyl) + 0(2)]. (2.18)
VI p p p

Remark 2.2. Let us remark that Ug is a positive, uniformly bounded function.
Observe that for |y| < e/d;,

1 1 1 1
p+Uioly) + S (y) + ];wz(y) > dlog - + log(8115) + 0(5)-

Then it is easily checked that choosing ¢ > 0 smaller if necessary, Us > 0 in
B(&j,¢), and Supp(e, ) Ue = Ve as p and A go to +o0o. Moreover, by the maximum

principle, we see that Gx(z,&;) > 0 in Q and thus by (2.16] -, Ue is a positive,
uniformly bounded function in €. In conclusion, 0 < Ug < 2/e in Q.

Let us define
Sp(u) = Au+u’, where uy = max{u,0}, (2.19)
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and introduce the functional
A
/ Vil = [ [ et wem@. @)

whose nontrivial critical points are solutions of (|1.1)). Obviously, by the maximum
principle, problem (1.1)) is equivalent to

Sp(u) =0, up #0 inQ, % + A(z)u=0 on . (2.21)
v

We will seek solutions of (1.1)) in the form w = Ug + ¢, where ¢ will represent a
higher order correction. Observe that

Sp(Ue + ¢) = L(¢) + Re + N(¢) =0, (2.22)

where
L(¢) = Ap+ Weop with W, =pUl™", (2.23)
Re = AU+ UL, N(¢) = (Ue + ¢)}. — UL —pUl™"¢. (2.24)

In terms of ¢, problem (|1.1)) becomes

L(¢) = ~[Re + N(¢)] inQ,

2.25
99 4 Xo(x)6 =0 on 9. (2:25)

ov
For any set of point £ = (&1, ... ,{m) € O, and h € L*>®(Q), define
5j -1

Lemma 2.3. Let ¢ > 0 be ﬁxed, There exist C > 0, Dg > 0, pg > 0 and A\g > 0
such that

| Rell« < C/p*, (2.27)

x) <Dy e (2.28)
for any set of point £ = (&1,...,&m) € Og, any p > po and A > X\g. Furthermore,

Welo) = s 1+ 3 = G = 30200+ 0 (L)) oo

for any |z — §;| < 5\/67-, where y = %(m—fj),

Since the proof of the above lemma is similar to those of [II, Prop. 2.1 and
Lemma 3.1], we omit it.

3. LINEAR AND NONLINEAR PROBLEMS

In this section, we shall study first bounded invertibility of the operator L defined

in (2.23). Set

yl? -1 Yi .
PR zi(ly) =4 i=1,2. (3.1)

Z = )
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It is well known [2] that any bounded solution to

8
(1+Jyl?)?
is a linear combination of z;, i = 0,1,2. Let us consider the linear problem: given

h € C(Q) and the set of points & = (&1,...,&m) € O., we find a function ¢ and
scalars ¢;j, 1 = 1,2, j =1,...,m, such that

A+ ¢=0 inR? (3.2)

2 m
L(¢> :A¢+W€¢:h+ZZC”€U{sJ£JZU in Q7

i=1 j=1
? +Ab(z)p =0 on 9Q, (3.3)
/ eV Zip=0 fori=1,2;j=1,...,m.
Q
Here, for i =0,1,2 and j = 1,...,m, we denote
le—&;12 =67 ...
J Farw ifi =1,2.

Proposition 3.1. Let € > 0 be fized. There exist po > 0, A\g > 0 and C > 0 such
that for any h € C(Q), any the set of points £ = (£1,...,&m) € O, any p > po and
A > Ao, there is a unique solution ¢, scalars c;j, 1 = 1,2, j =1,...,m, to problem

, which satisfies
[lloe < Cpllh]. (3.5)
Proof. The proof of this result will be divided into six steps.
Step 1: The operator L satisfies the maximum principle in Q= Q\UT, B(§;, R6;)
for R large, independent on p and A. Specifically, if ¢ satisfies
L) =AY+ Wep <0 in ©,

Y >0 on UjL; 0B(;, Ré;) and %+Ab(w)¢20 on 012,

then ¢ > 0 in Q. To prove this, it suffices to construct a positive function Z on Q
such that
L(Z)=AZ+W:Z <0 inq,
07
Z >0 on UL, 0B({;, Ré;) and M +X(z)Z >0 on Q.

Indeed, let
. (a(z &)
Z(x) = ( 2), 0.
(z) Z 20 5; a >
j=1
First, observe that, if |z — ;| > Rd; for R > 1, then Z(x) > 0. On the other hand,

since Z(z) < m,

Ui U 852 i 852
We(z)Z(x) < DoZ ZGU‘SJ"EJ'(I)SDOZ( )Z| _§|4—mDOZ‘ £|4’
J

j=1
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where Dy is the constant in Lemma [2:3] Further, by the definition of zo,
802 (a®|z — &1 — 07)
(@~ G 157
8a2(52 m 852
(a®z —¢&; \2 +52)2 -7 Z < a?|z — &

a2

Ms

—AZ(z) =

<.
Il

(A2
Wl =
NgE

provided R > v/3/a. Thus, if a is taken small and fixed, but independent of p and
A, and R is chosen sufficiently large depending on this a, then we have that

852
L(Z):AZ—}—WgZS( 5 2+mD0)Z| —t <0

Moreover,

9 —_ CG
|$Z(x)‘ S;a%—gjw _O(a253) on 54,

Z(z) > % on 90U (UL, 9B(&;, RY))),

which, together with m, imply that on 09,

0Z 1 —p/2

o+ e )z>o( . Sp)—l-i)\b(x)ZO(e p/2) 4 )\;gg%b( 2)>0  (3.6)
provided that p is chosen sufficiently large. The function Z(z) is what we want.

Step 2: Let R be as before. We define the “inner norm” of ¢ as
18]l = sup ¢()|

weUT B(&;,R5;)

and claim that there is a constant C' > 0 such that if L(¢) = hin Q, +)\b( Yo=g
on 02, then

1
Pl Loy < C(H¢||i + [|All« + XHQHL’*(@Q))v

for any h € C%%(Q) and g € C%*(99Q). We will establish this estimate with the
use of suitable barriers. Let M = 2 diam 2. Consider the problem

26,
—A¢p; = ——L
T e g
Yi(x) =0 on |z —¢&| =R and |z —§[=DM.

in Réj < |£C*£j| <M,

Its solution is the positive function

20;
;= — + A+ Blogl|z — &1,
! lz — &l
where
2(5 (5 1 1
A=="2_BlogM, B=2(-2-=-)——— <.
M 08 (M R)log(Ré)
Obviously,

0 1
|%¢](x)| = O(;) on Of). (3.7
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Moreover, for Ré; < |z — ;| < M,

20, M 2
(z) < V=2 iy .
Yj(r) < A+ Blog(Ré;) = i Blog — RS, =3 (3.8)

Thus, 9;(z) is uniformly bounded from above by a constant independent of p and
A. Define now

3a) = o (22(a +Z¢j @) (19l + 11l + lgllz=om ).

where Z was defined in the previous step, and Cy > 2 is chosen larger if necessary.
First of all, observe that for x € UTL,0B(&;, Rd;), by the definition of Z,

() = 2C0)| 0l Z(2) = (|6 = |o(x)],
for z € 99, by (3.6), (3.7) and the positivity of Z(z) and 1;(z),

>[04+ ) + Cod iy b(a) | (ol + el + 5 gl om)

1 . 1
> > CoA( min b)) (1191l + 1Al + Sllgll = com) ) > lg(@)]
and for z € Q\ U, B(&;, Rd;), by (2.28), (3.8) and the definition of || - || in (2.26)),
L) < ool + Al + Hgllz~om ) 3 L)(@)
j=1
= Co(ll + Nhlle + lgllzeom) D (- f|3+Wg< )5 ()
j=1
m 2mDy Us; ¢, (z)
< Co(llolls + 1]l + |g|Lm<am)]§_jl( = gJ|3+ e )
< ~Collh. Z %
' (7 + e~ &)
< @) < - IE@Iw),

provided R > 16mDy, p and A large enough. Hence, by the maximum principle in
Step 1, we obtain

|6(@)| < (x) forz € Q,

and therefore, since Z(z) < m and ¢;(z) < Z,
1
I6ll=c@) < C N8l + 11l + 5 lgll = com)-
Step 3: We prove uniform a priori estimates for solutions ¢ of the problem L(¢) = h

in Q, 22 4 \b(z)¢ = g on 99, where h € CO*(Q), g € C%*(0Q) and in addition
we prove the orthogonality conditions:

/eU5j>€jZij¢=o fori=0,1,2; j=1,...,m. (3.9)
Q
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Namely, we prove that there exists C' > 0 such that for £ = (&1,...,&n) € Ok,
h € C%*(Q) and g € C%*(99Q),

1
6@ < C (IRl + Sllgll 2= om):

for p and A sufficiently large. By contradiction, assume the existence of sequences
Prn — 400, A, — 400, points " = (&F,...,&N) € O, functions h,,, g, and asso-
ciated solutions ¢,, such that ||h,|. — 0, )\%HgnHLoo(aQ) — 0 and [|¢n]|pe (o) = 1.
Since [|¢n||z=() = 1, Step 2 shows that liminf, 4o [¢nll; > 0. Set ¢7(y) =
¢n(07y+E7) for j =1,...,m. By elliptic estimates imply that QASEL converges
uniformly over compact sets to a bounded solution $;° of equation . Further-
more, qAS;X’ is a linear combination of the functions z;, i« = 0,1, 2, defined in .
Since ||$;L|| =) < 1, by Lebesgue’s theorem, the orthogonality conditions on (E?
pass to the limit and give

8 . )
| s @y =0 fori=0.1.2

Hence, (EJ‘X’ =0 for any j = 1,...,m contradicting liminf,,, o ||@n]l; > 0.

Step 4: We prove that there exists a positive constant C' > 0 such that any
solution ¢ of equation L(¢) = h in £, gi’ + Ab(z)¢ = 0 on 99 and in addition the
orthogonality conditions:

/EU‘;J’{JZ,;jd):O fori=1,2j=1,...,m, (3.10)
Q

satisfies
9l L (@) < Cpl|h|«,
for h € C%%(Q). Proceeding by contradiction as in Step 3, we can suppose further
that
||¢n||L°°(Q) =1, anhnH* —0 asn— +oo. (3-11)

but we lose the condition f]R? O_H%zo(y)@?" = 0 in the limit. Hence, we have
that | o
oo Y
%= 0F = O

for some constants C;. To reach a contradiction, we have to show that C; = 0 for
any 7 =1,...,m. We will obtain it from the stronger condition on h,,.

To this end, we perform the following construction. According to [3, 1], there
exist radial solutions w and ( respectively of equations

in CP.(R?), (3.12)

8 8 8 8
Aw + w= 20(y), A+ (= in R?,
TP = Tt e W TT PR~ T P
such that
1
wly) = 5 losly] +0(| ) Cw=0() aslyl = oo,
Vuw(y) = 2 +0( ! ), VE(y) :O(;) for all y € R?
3 T4 It P T+ [yP ’
since 8f (T2+B4 dr =% and 8f+oo (2;11)3 dr =0.
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For simplicity in the rest of this article, we omit the dependence on n. For
j=1,...,m, define
8

u;(z) = w(aj (Sfj) + %(logéj)Zoj(:L’) + ?Hk(ﬁjvﬁj)C(x (Sjgj)

and denote its projection Pu; = u; + H j, where H ;j is a correction term defined as
the solution of

~AH; =0 inQ,
8ﬁj = 8Uj
B + \o(2)H; = 5 Ab(z)u; on 0.
Observe that on 01,

(s 200@)) (B + S Hr(2,)) = 0(p) + (0860 (A7) + Ha61,6)0 ().

From the maximum principle with Robin boundary condition we obtain

8 e
Puj = uj — gHA(%fj) +0(p) in C(Q),

. B (3.13)
Puj = ——2-GA(,§;) + O(p)  in Croc(E2) {6
The function Pu; solves
AP’U,J‘ + WgPUj = eUéj’sj Zoj + (Wf — 6U5j’£j)PUj + Rj n Q,
) (3.14)
—Pu; + Ab(z)Pu; =0 on 09,
ov
where N
T
Rj(x) = (P“j —uj+ ?Hx(fjvfj))eUéj"gj' (3.15)

Multiplying (3.14]) by ¢ and integrating by parts we obtain

/ 554 Zoi0 +/ (We — €Y% Puj¢ = / Pujh — / R;¢. (3.16)
Q Q Q Q
We estimate each term of (3.16). First of all, by Lebesgue’s theorem and (3.12))

we obtain ) )
8(lyl* — 1)
Us. ¢
e %58 Z . SN C NIV
/Q Rl S MEEE

From (2.15) and the maximum principle with Robin boundary condition, we deduce
that [VH)(z, ;)| = O(1) holds uniformly in €. Thus, by (2.28)), (2.29) and (3.13]),

we have
o
Q

8
- We — €Y% ) Pujp — o Gk(fk,f-)/ Wep+O(v/p
/B@j,s\/@( JPuio =3 ; " JB(enevan) v2)

8 1 1 4 ~
= — (w1 —Uyo—=U?,)=(logé;)= ;
/]3(0,5/\/57) (1+ ‘y|2)2 p( ' ) 1’0) 3( s J) O(y)¢J

8m 8 ~ 1
I G &G / I +0(-
3 kz:?éj A(é‘k gj) B(O,E/m) (1 + |y|2)2 ¢k (p)

dy = 8?71-07 (317)
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G [ 8P -1)? (

3 Jre (L+yl?)*
Lebesgue’s theorem and (3.12)) imply

8 1 -
Tz (W Uo = 500 ) 20(1)9;
/B<o,e/\/67-> (1+|y|2)2( R 170) 0(¥)9;

8(Jy[2 — 1)?
Nye AL
o e (

1
wy —Uip— §U12,0) (y) +o(1).

1
1—Uipo— §U1270),

and

/ 8 L C / 8 ly|> — 1
—_— k,' =
Bo.e/var) (L [yl? ) re (14 [yl?)? yl* +1
In a straightforward but tedious comptation, by (2.10) we obtain
Sy = b2 1,
_— —Uio— U ) dy = —8
L (= o = 508 Oy = s
Therefore
8
/ (We — eUéj'fi)Pujqb = ?WC] +o(1). (3.18)
Q
As for the right-hand side of m that by (2.26]) and (3.13)), we have

| [ Pushl < clal. Z L G + &l

log ly| + 2) / dy (3.19)
< C|h h||« —s
clnl- / sy + Ol [ G
where Qg, := é(Q — {&}). Finally, by (3.13) and (3.15)) we deduce
/ Rj¢ = O(/ eV%i¢s (Jz = &+ p)dx) = O(eiip). (3.20)
Q Q

Hence, inserting (3.17))-(3.20]) in (3.16)) and taking into account (3.11f), we conclude
that

1
%C’j =o(l) foranyj=1,...,m

Necessarily, C'; = 0 by contradiction and the claim is proved.

Step 5: We establish the validity of the a priori estimate
[6]lc < CplIA]l- (3.21)
for solutions of problem (3.3 and h € C%(Q2). Step 4 gives

m 2 m
6l o) < Cp(nhu* Sl e Zill ) < Co(llbll + 32 D leisl)-

=1j=1 i=1j=1
As before, arguing by contradiction of (3.21)), we can proceed as in Step 3 and
suppose further that

2 m

Iénllo@ =1, pollhnlls =0, pnd Y e[ >8>0 asn— +oo. (3.22)
i=1 j=1
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We omit the dependence on n. It suffices to estimate the values of the constants
¢;j. For this aim, we define PZ;; as the projection of Z;; under homogeneous Robin
boundary condition, namely

APZ;; = AZyj = —e"% Z;jin Q,

PZ (3.23)
86 4 4 Ab(2)PZi; =0 on 0.

As in the proof of Lemmal[2.1] for i = 1,2 and j = 1,...,m we have the expansions:
PZij = Zij + 878;0(¢,), Ha (. &) + O(p®), PZoj = Zoj — 1+ 0(p), (3.24)

in C(Q2) and in C2 (), and
PZij = 816;0(¢,),GA(-, &) + O(p°),  PZo; = O(p?), (3.25)

in C(Q\{¢}) and in CF.(2\ {¢;}). By (-24), (3-25) and that |9(¢,), Hx(2,&;)| =
O(1) uniformly holds in 2, we can easily deduce the following “orthogonality”
relations: for each i,/ =1,2 and j,k=1,...,m,

2
o145 2, P2y = 64/ ) i+ O 3.26
/Qe j Ik ( - (1+|y‘2)4) jkY4l (,0)7 ( )

uniformly for any set of points £ = (£1,...,&n) € O, where §,; and §;; denote the
Kronecker’s symbols.

Multiplying equation by PZ;;, 1= 1,2, j = 1,...,m, and integrating by
parts we find

ZZ%/ ak‘skzlkpziﬁ/hpzij :/quspzij—/ V5% Zi¢. (3.27)
Q Q Q

1=1 k=1
By (2.28)), (2.29) and (3.26f), a direct computation shows

Degy +0(e™8 Y e + [11].)

Lk

(3.28)
1 / 32y; [
= — w1 — Ul,() *U ¢ +0
P JB0,esy/5;) 1+ |y\2)3( ! 0) ! ( )
where D = 64 [, % and ggj(y) = ¢(6;y + &;). Hence, we obtain
2 m 1
S5 lewd = O(Inll + ~l19llsc ) = o(1). (3.29)
=1 k=1 p
As in Step 4, we conclude that for each j =1,...,m,
o =
¢] Cj Iy +1 n CS)C(]RQ)’

with some constant C; € R and thus

32y ( L2 \2
71 1 o\2 (.(Jl—ULO—*U )(b
/B(o,s/\/@ (1+yl*)? S RS

32y (|y|* — 1) Loy _
— C] /R2 (1 + |y‘2)4 (w1 U170 2U170) =0.
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Therefore,

2 m
SO few] = o(2) + O([A].),

1=1 k=1 p
which is impossible because of (3.22]).
Step 6: We prove the solvability of (3.3)). To this purpose, we consider the spaces:

2 m

KEZ{ZZCUPZU:CijeRfori:1a2; j:].,...,m},
i=1 j=1

Kj:{qbeﬁ(ﬂ):/gleU‘s.i*f.fZiqu:Ofori:1,2; j=1,...,m}.

Define Il : L?(2) — K¢ by

2 m
H§¢ = Z ZcijPZij7

i=1 j=1

where the coefficients ¢;; are uniquely determined (as it follows by (3.26)) by the
system

2 m
/euak,szlk(gbfzzcijpzij) =0 foranyl=1,2k=1,...,m.
Q

i=1 j=1

Let Il = Id — Tl : L*(Q) — Kg. Moreover, the Hilbert space Kg- N H'(Q) is
endowed with the inner product

(6, ¥y = /Q vove+a [ b,

o
Problem (3.3)), expressed in a weak form, is equivalent to find ¢ € K gl N HY(Q)
such that
(¢, Yy = /Q (Wep —h)y for all o € K¢ N H' ().

With the aid of Riesz’s representation theorem, this equation gets rewritten in
Kg- N H(Q) in the operator form ¢ = K(¢) + h, where

hi= T [(~ A)la+ (5 + 26(@)lon] h,

K(6) = TE[(~ A)la + (5 4+ b)) lon] ™ (Weo)

is a linear compact operator in K gJ' N H'(Q). By the Fredholm’s alternative with
Robin boundary condition (see [5l [I3]), we obtain the unique solvability of this
problem for any h € K gJ_ provided that the homogeneous equation ¢ = K(¢) has
only the trivial solution in K g- N HY(Q), which in turn follows from the a priori
estimate in Step 5. Finally, by density we obtain the validity of also
for h € C(Q) (not only for h € C%(Q)). O

Remark 3.2. Given h € C(9), let ¢ be the solution of problem (3.3)) given by
Proposition Multiplying (3.3]) against ¢ and integrating by parts, we obtain

Jolly == [ 190P 42 [ byt = [ wee = [ ho.
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By Lemma [2.3] we obtain
ol < C (Rl + lI4lloo) -

Let us solve the nonlinear auxiliary problem: for any set of points £ = (&1, ...,&m)
in O, we find a function ¢, and scalars c;;, ¢ = 1,2, j = 1,...,m, such that

2 m
AU + ) + (Ue + )" = Z ZcijeUéj’sj Zi; inQ,
i=1j=1
Us+¢>0 inQ,
99

Y + Ab(z)p =0 on 09,

/eUaj,stij¢:0 fori=1,2; j=1,...,m.
Q

(3.30)

Proposition 3.3. Let € > 0 be fized and small. There exist C > 0, pg > 0 and
Ao > 0 such that for any set of points & = (§1,...,&m) € Og, anyp > py and A > Ao,
problem (3.30) has a unique solution ¢¢, scalars c¢;;(§), i =1,2, j=1,...,m, such
that

C C C
lfclloo < =0 DD leis(© < = Nl < —. (3.31)
p i=1 j=1 p p
Furthermore, the map & — ¢¢ is a C'-function in C(Q) and H' ().
Proof. Proposition [3.I]allows us to apply the contraction mapping principle to find

a solution for problem (3.30) satisfying (3.31]). Since it is a standard procedure, we
shall not present the detailed proof, see [I1, Lemma 4.1]. O

4. VARIATIONAL REDUCTION

After problem (3.30) has been solved, we find a solution of (2.25)) and hence to
the original problem (1.1) if £ = (&1,...,&m) € O, satisfies

ci;j(§)=0 foralli=1,2; j=1,...,m. (4.1)
Equation (1.1) is the Euler-Lagrange equation of the functional Jz;\ HY(Q) - R
defined by
J’\(u)zl/ |Vu|2—i/up+1+é/ b(x)u? (4.2)
b 2 Ja p+1Jg * 2 Joa ' .
We introduce the finite-dimensional restriction Fz;\ : O — R given by
F&) = I (Ug + ¢e), (4.3)

where ¢¢ is the unique solution to problem (3.30)) given by Proposition

Proposition 4.1. The function Flf‘ : O, — R is of class C'. Moreover, for all
sufficiently large p and \, if DgFIf‘(f) =0, then & satisfies (4.1]).

Proof. The function F is of class C! since £ — ¢ is a C*-map into H*(2). Then
D¢F(€) = 0 is equivalent to

0= (DJ}) (U + ¢¢)(DeUe + Deope)

2 m 2 m
= _chij(é)/geU‘”’gf‘ ZingUs+chij(f)/QD§(eU‘”’§j Zij) e,

i=1 j=1 i=1 j=1

(4.4)
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where the seconde equality is due to [, eYi¢ Zi;¢ = 0. From the definition of U

in (2.12), we obtain

m 1 1 jz—=¢;
8(§k)lUg = Z W{a(ﬁkh |:U5j»£j (z) + Euﬂ( 5 J) +

Jj=1 J
+w§/“’—”Hj(x)} +0(1)}.

1 x—E&;
sz( 5jj)

As in the proof of Lemma by the maximum principle with Robin boundary
condition we can prove that

2/(p—1 ¢, G
Aer) [W‘j/(p VHj(2)] = 0k (1 " e

C1 C2 ) P

where 0y; denote the Kronecker’s symbol. Thus, by (2.1)), (2.4), (2.8), (3.4) and
(3.24) we have that

B 1 Cq Cs 3 1 51%
ey Ue = W{(l T Tp?)PZ”“ +0(p+ Bm)}

)8778(5k)lH>\(1‘,€j)

+0(%).

On the other hand, it can be shown that || Dg(e"%¢ Zij) ) = O(1/d;) by
computing directly. Consequently, (4.4)) can be written as, for each [ = 1,2 and
k=1,...,m,

ei(©[1+0(1)]

Us; & 7,,PZ
2/ (p—1 /6 1] Lk
/D g

1
+ Sl @10(5 + el [ 106 (5 2,)]) =0,
so that, using and ,

2 m

64cix(€) / ly|? 1 1 1

— dy + O + -+ § § cii(§)] =0,
Seyud! @7 Jra (1 [y[?)* Y (ka g p35k) P j:l‘ )

which implies ¢ (€) = 0. O

Proposition 4.2. Let € > 0 be fized. There exist pg > 0 and A\g > 0 such that for
any p > po and X > Ay,

drmp 3272 4tm
FpA(g): 5 D) @?n(ghaf’m)—i_ 2
+£ (LUlowal) +O(i)
29 Jr2 N1+ [y[?)? P
A

Cl-uniformly with respect to & = (&1,...,&m) € O, where o) (€) is defined by
D).
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Proof. According to the proof of [I1, Proposition 5.3], it suffices to establish the

expansion ([4.5) in the C%-sense. Multiplying the first equation in (3.30) by Ug + ¢¢
and integrating by parts, we obtain

/Q (Ue + )P+ = / IV (Ue + 6) > + A /a W)U+ 6

+ Z Z cij (§ / Y141 235U
=1 j=1
Since U is a bounded function, by (3.31) we obtain
1
[ Wer oyt = [ [WWerdP 42 [ b@)Ue+ e +0()
Q Q o0 p

uniformly for any set of points { = (£1,...,&n) € O.. Hence, by (2.20)-(4.3) we
obtain
1
Mgy o (L 2 2
R = (5 p+1 /|VU5| +/\/ b(x)U2)
2( / VUeVee + A / b(x)Uede ) (4.6)
0 o9

+ (/Q|V¢§|2+)\/8Qb(x)¢g>] +0(]%).

We expand the term [o, [VUe|* + X [, UZ: in view of (2.18) we deduce

/|VU5|2+>\ b(x)ng/Q(—AUg)Ug

- Uit - A (28) - L a8
]z; ’Y'uj /(5.7'75) [ 52 5]' ) p2512, ( 6j )}
+0(p?)

- 2, 4/(p—1) g — —Aw — —Aw
JZH 203/ (0,16, {(1+ W22 p 1() 2 2(1/)}

< [+ Vao(w) + en0) + Z5al) + Olplyl) + O(2) ]+ O(s?)

m

1 8 1
=% e B+ [ (mptio - 21) +0G)

=1 7K

8mmp 327 - m 8 1
= _— logu*—l—f/ (7U1,0—Aw1)+0 —
2 2 ; T2 Joe \(1 4 |y[?)2 <p3)

v Y
since u; Pt=1-2 log i + O( > ). Recalling the expansion (2.17)) of u;, then we
obtain
Stmp 64w 24mm
[vue e [ vz =5 - S + 2
Q a0 v v v (4.7)

m 8 1
#38 [. (rpaptio - 29) < 0Gs)
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On the other hand, by (3.31)), we have

2(/QVU§V¢5+)\/891)($)U5¢5) + (/Q\qug\erA/aQ b(x)qb?)

] (4.8)

=0(—=5).

()
Consequently, inserting (4.7))-(4.8) in (4.6), we obtain (4.5]). O

5. PROOF OF THEOREM [L.1]

Definition 5.1. Let D be an open set compactly contained in 2" with smooth
boundary. We recall that ¢f° links in D at critical level C relative to B and By
if B and By are closed subsets of D with B connected and By C B such that the
following conditions hold: let us set I" to be the class of all maps ® € C(B, D) with
the property that there exists a function ¥ € C([0, 1] x B, D) such that

U(0,-) =Idg, U(1,)=® W(t)|p, =Idp, foralltel0,1].

‘We assume

sup @7 (y) < C = inf sup o2 (0(y)), (5.1)
yEBo eel’ yeB

and for all y € 0D such that ¢3¢ (y) = C, there exists a vector 7, tangent to 9D at
y such that

Ve () -7y # 0. (5.2)
Under these conditions a critical point § € D of 22 with ¢22(7) = C exists, as a
standard deformation argument involving the negative gradient flow of ¢2° shows.
It is easy to check that the above conditions hold if
Inf oii(y) < nf iv(z), or sup P () > Sup Pm (@),
namely the case of (possibly degenerate) local minimum or maximum points of ©2°.
We call C a nontrivial critical level of ¢7? in D.

Proof of Theorem[I1]. Since € is not simply connected, from the proof of |7, The-
orem 1] it follows that given any m > 1, ¢5° has a nontrivial critical level C in
some open set D, compactly contained in 2. Let us consider the set D, the as-
sociated critical value C and & € D. According to Proposition the function
up x = Ue + ¢¢ where Ug is defined in and ¢¢ is the unique solution to prob-
lem given by Proposition is a solution to problem if we adjust & so
that it is a critical point of F,\(¢) defined by (4.3). This is equivalent to finding a
critical point of
2

~ drmp  4dmm m 8
FME) = — L [prey - T FTm T —————Ujo— A .
2O =g (B0 T3 - T8 s L (e~ 89
On the other hand, from Proposition for £ = (&1,...,&m) € DN O, we have
F (&) = ¢0.(9) + 0(1)0,1(9), (5.3)
where ©, \ and V¢0,  are uniformly bounded in the considered region as p and A

go to 4o0.
We claim that

o (&) = 32 (&) + O(1/)\)  uniformly in C*(O,) as A — +oc. (5.4)
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From the definitions of ¢, and ¢ it suffices to establish that for any set of points

E=(&,...,&m) € O,
Hy(2,&;) = Hoo(, &) + O(1/2)
in C(Q) and in C}_(Q) as A — +oo. Indeed, if we set h(z) = Hy(2,&;) — Hoo(, &),
then by ,
—Ah=0 in{,

oh 0G
W + Xbo(z)h = fW(:c,fj) on Of).

Furthermore, by the maximum principle with Robin boundary condition and the
definition of O in (2.3]), we deduce

: C,0G
max |h(z)| + max | dist(z, 0Q)Vh(z)| < XHW(%@)HL”(E)SZ =O0(1/A).

)

According to Definition we have that if M > C, then assumptions ,
still hold for the function min{M, pS°(&)} as well as for min{M, pS°(&) +
0(1)©, 1 (&) + O(1/X\)}. By (5.3)-(5.4) it follows that the function min{}M, ﬁ;‘(f)}
satisfies for all p and A large assumptions , in D and therefore has a
critical value Cp, x» < M which is close to C in this region. If £, » € D is a critical

point at this level for ﬁlf‘ (€), then since

FN&n) = 05 (&pn) + 0(1)Opa(Epn) + O(1/A) < Cpa < M, (5.5)

we have that there exists ¢ > 0 such that [ , x — & pa| > 2e, dist(& p x, 0Q) > 2e.
This implies C''-closeness of F;(E) and @p° at this level, hence V32 (&, 1) — 0

and thus V) (§,0) — 0 as p — 400 and A — +oo. The function u, \(z) =
Ue, » (%) +e, , () is therefore a solution with the qualitative properties as predicted
in Theorem [L.T] O
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