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MULTI-PEAK SOLUTIONS FOR A PLANAR ROBIN
NONLINEAR ELLIPTIC PROBLEM WITH LARGE EXPONENT

YIBIN ZHANG, LEI SHI

Abstract. We consider the elliptic equation ∆u+up = 0 in a bounded smooth
domain Ω in R2 subject to the Robin boundary condition ∂u

∂ν
+ λb(x)u = 0.

Here ν denotes the unit outward normal vector on ∂Ω, b(x) is a smooth positive
function defined on ∂Ω, 0 < λ < +∞, and p is a large exponent. For any

fixed λ large we find topological conditions on Ω which ensure the existence

of a positive solution with exactly m peaks separated by a uniform positive
distance from the boundary and each from other as p → +∞ and λ → +∞.

In particular, for a nonsimply connected domain such solution exists for any

m ≥ 1.

1. Introduction

In this article we consider the boundary-value problem

∆u+ up = 0 in Ω,
u > 0 in Ω,

∂u

∂ν
+ λb(x)u = 0 on ∂Ω,

(1.1)

where Ω is a bounded smooth domain in R2, ν denotes the unit outward normal
vector on ∂Ω, b(x) is a smooth positive function defined on ∂Ω, 0 < λ < +∞, and
p is a large exponent.

The boundary condition in problem (1.1) is called Robin boundary condition.
Such an Robin boundary condition is particularly interesting in various branches
of biological models (see [8, 15]).

When λ = 0, from integration by parts it is trivial to observe that (1.1) has
no solution. On the other hand, if 0 < λ ≤ +∞, it is easy to prove via standard
variational methods that (1.1) always has a least energy solution. Moreover, in the
case λ = +∞, problem (1.1) is reduced to the problem

∆u+ up = 0 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(1.2)
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Ren and Wei [16, 17] showed that the least energy solution up of (1.2) develops one
interior peak, namely up approaches zero except one interior point where it has an
L∞-norm bounded and bounded away from zero, uniformly in p as p→ +∞. More
precisely, the authors prove that, up to a subsequence, both p|∇up|2 and pup+1

p

behave as a Dirac mass near a critical point of the Robin function H∞(x, x), where
H∞ is the regular part of Green’s function G∞ of the Dirichlet Laplacian in Ω,
i.e. H∞(x, y) = G∞(x, y) + 1

2π log |x − y|. Successively, in [1, 9] the authors give
a further description of the asymptotic behavior of up, as p→ +∞, by identifying
a limit profile problem of Liouville-type ∆u + eu = 0 in R2,

∫
R2 e

u < +∞, and
showing that ‖up‖∞ →

√
e as p→ +∞. Furthermore, Esposito, Musso and Pistoia

[11] prove that if Ω is not simply connected, (1.2) can have many other positive
solutions which, as p tends to infinity, concentrate at m different points of Ω, i.e.

pup+1
p ⇀ 8πe

m∑
i=1

δξi weakly in the sense of measure in Ω, (1.3)

where points ξ = (ξ1, . . . , ξm) ∈ Ωm corresponds to a critical point of the function

ϕ∞m
(
ξ1, . . . , ξm

)
=

m∑
j=1

H∞(ξj , ξj) +
∑
j 6=k

G∞(ξj , ξk). (1.4)

In contrast, Grossi and Takahashi [12] prove that when Ω is convex, problem (1.2)
has no multi-peak solutions satisfying (1.3). Thus the assumption on the domain
in [11] is sharp for the construction of multiple concentrating solutions of (1.2).

The purpose of our research is to give the construction of multi-peak solutions
to the so called Robin problem (1.1) with sufficiently large p and λ, and to point
out that in general the set of multi-peak solutions of this problem exhibits a richer
structure than the problem with Dirichlet boundary condition, which we will finish
in this paper and in [18]. In this paper we prove that if Ω is not simple connected,
then given any m ≥ 1, for p and λ large enough problem (1.1) has a positive
solution up,λ concentrating at exactly m points that stay uniformly separated from
the boundary and from each other as p → +∞ and λ → +∞. In particular, we
recover existence results already known in [11] when λ = +∞ and p is large enough.

To state our results, we need to introduce some notation. Let Gλ(x, y) be the
Green’s function satisfying

−∆xGλ(x, y) = δy(x) x ∈ Ω,
∂Gλ
∂ν

(x, y) + λb(x)Gλ(x, y) = 0 x ∈ ∂Ω,
(1.5)

then its regular part can be decomposed as

Hλ(x, y) = Gλ(x, y)− 1
2π

log
1

|x− y|
. (1.6)

Furthermore, let

ϕλm
(
ξ1, . . . , ξm

)
=

m∑
j=1

Hλ(ξj , ξj) +
∑
j 6=k

Gλ(ξj , ξk). (1.7)

Our main result reads as follows.

Theorem 1.1. Assume that Ω is not simply connected. Then given any m ≥ 1,
there exist pm > 0 and λm > 0 such that for any p > pm and λ > λm, problem
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(1.1) has a solution up,λ with m concentration points ξ1,p,λ, . . . , ξm,p,λ separated at
a uniform positive distance from the boundary and each other as p → +∞ and
λ→ +∞. More precisely,

up,λ(x) =
m∑
j=1

1

γµ
2/(p−1)
j

[
log

1
(δ2
j + |x− ξj,p,λ|2)2

+ 8πHλ(x, ξj,p,λ)
]

+O(
1
p

),

where the parameters γ, δj and µj satisfy

γ = p
p
p−1 ρ

2
p−1 , δj = µjρ, ρ = e−

1
4p,

1
C
< µj < C,

for some C > 0, and ξp,λ = (ξ1,p,λ, . . . , ξm,p,λ) ∈ Ωm satisfies

lim
p→+∞, λ→+∞

∇ϕλm
(
ξ1,p,λ, . . . , ξm,p,λ

)
= 0,

and

dist(ξj,p,λ, ∂Ω) ≥ 2ε, |ξj,p,λ − ξk,p,λ| ≥ 2ε ∀j, k = 1, . . . ,m; j 6= k,

for any ε > 0 small. In particular, as p→ +∞ and λ→ +∞,

pup+1
p,λ − 8πe

m∑
j=1

δξj,p,λ ⇀ 0 weakly in the sense of measure in Ω,

up,λ → 0 uniformly in Ω \ ∪mj=1Bε(ξj,p,λ),

sup
Bε(ξj,p,λ)

up,λ →
√
e.

The rest of this article is devoted to the proof of Theorem 1.1. Our proof relies on
a Lyapunov-Schmidt process as in [7, 10, 11, 14], but we now have to confront some
difficulties that are brought by the presence of Robin boundary condition, which
can be successfully overcome by making use of some versions of the maximum
principle with Robin boundary condition. This is the delicate ingredient during
we construct multi-peak solutions of problem (1.1) through performing the finite-
dimensional reduction and using the notion of a nontrivial critical level.

This article is organized as follows. In Section 2 we exactly describe the ansatz
for the solution of problem (1.1) and estimate the error. Then we rewrite problem
(1.1) in terms of a linearized operator for which a solvability theory, subject to
suitable orthogonality conditions, is performed through solving a linearized problem
in Section 3. In Section 4 we solve an auxiliary nonlinear problem. In Section 5 we
reduce (1.1) to a finite system, as we will see in Section 5. In the last section, we
use the notion of a nontrivial critical level to give the proof of Theorem 1.1.

2. A first approximation of the solution

In this section we provide an ansatz for solutions of problem (1.1). A key ingre-
dient to describe an approximate solution of problem (1.1) is given by the standard
bubble:

Uδ,ξ(x) = log
8δ2

(δ2 + |x− ξ|2)2
, δ > 0, ξ ∈ R2. (2.1)
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It is well known (see [4]) that those are all the solutions of the Liouville-type
equation

∆u+ eu = 0 in R2,∫
R2
eu < +∞.

(2.2)

Let us introduce the configuration space in which the concentration points belong
to

Oε :=
{
ξ = (ξ1, . . . , ξm) ∈ Ωm : dist(ξj , ∂Ω) ≥ 2ε, |ξj − ξk| ≥ 2ε,

j, k = 1, . . . ,m; j 6= k
}
,

(2.3)

where ε > 0 is a sufficiently small but fixed number. Furthermore, we set, for each
j = 1, . . . ,m,

γ = p
p
p−1 ρ

2
p−1 , δj = µjρ, ρ = e−

1
4p,

1
C
< µj < C, (2.4)

for some C > 0, where the choice of µj will be determined later. Define now

Uj(x) =
1

γµ
2/(p−1)
j

[
Uδj ,ξj (x) +

1
p
ω1

(x− ξj
δj

)
+

1
p2
ω2

(x− ξj
δj

)]
. (2.5)

Here, ω1 and ω2 are radial solutions of

∆ωi +
8

(1 + |y|2)2
ωi =

8
(1 + |y|2)2

fi(y) in R2, (2.6)

for i = 1, 2, respectively, with

f1 =
1
2
U2

1,0, f2 = ω1U1,0 −
1
3
U3

1,0 −
1
2
ω2

1 −
1
8
U4

1,0 +
1
2
ω1U

2
1,0, (2.7)

having asymptotic properties

ωi(y) = Ci log |y|+O
( 1
|y|
)

as |y| → +∞,

∇ωi(y) = Ci
y

1 + |y|2
+O

( 1
1 + |y|2

)
for all y ∈ R2,

(2.8)

for i = 1, 2, where

Ci = 8
∫ ∞

0

t
t2 − 1

(t2 + 1)3
fi(t)dt, (2.9)

in particular,

ω1(y) =
1
2
U2

1,0(y) + 6 log(|y|2 + 1) +
2 log 8− 10
|y|2 + 1

+
|y|2 − 1
|y|2 + 1

×
{
− 1

2
log2 8 + 2 log2(|y|2 + 1) + 4

∫ ∞
|y|2

ds

s+ 1
log

s+ 1
s

− 8 log |y| log(|y|2 + 1)
}
,

(2.10)

and
C1 = 12− 4 log 8 (2.11)
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(see [3, 11]). Our final ansatz for a solution of (1.1) is

Uξ(x) =
m∑
j=1

[
Uj(x) +Hj(x)

]
, (2.12)

where Hj is a correction term defined as the solution of

−∆Hj = 0 in Ω,
∂Hj

∂ν
+ λb(x)Hj = −∂Uj

∂ν
− λb(x)Ujon ∂Ω.

(2.13)

Lemma 2.1. For any set of points ξ = (ξ1, . . . , ξm) ∈ Oε,

Hj(x) =
1

γµ
2/(p−1)
j

[(
1− C1

4p
− C2

4p2

)
8πHλ(x, ξj)− log(8µ2

jρ
2)

+
(C1

p
+
C2

p2

)
log(µjρ) +O

(ρ
p

)] (2.14)

in C(Ω) and in C2
loc(Ω) as p and λ go to +∞, where Hλ is the regular part of

Green’s function defined in (1.6).

Proof. First, on the boundary, by (2.1) and (2.8) we have

∂Hj

∂ν
+ λb(x)Hj

= − 1

γµ
2/(p−1)
j

{(
− 4 +

C1

p
+
C2

p2

)[ (x− ξj) · ν(x)
|x− ξj |2

− λb(x) log
1

|x− ξj |

]
+ λb(x)

[
log(8µ2

jρ
2)−

(C1

p
+
C2

p2

)
log(µjρ)

]
+O

(λρ
p

)}
.

The regular part of Green’s function with Robin boundary condition Hλ(x, ξj)
satisfies

−∆Hλ(x, ξj) = 0 in Ω,

∂Hλ(x, ξj)
∂ν

+ λb(x)Hλ(x, ξj) =
1

2π
(x− ξj) · ν(x)
|x− ξj |2

− 1
2π
λb(x) log

1
|x− ξj |

on ∂Ω.

(2.15)
So, if we set

H̃j(x) = γµ
2/(p−1)
j Hj(x)−

[(
1− C1

4p
− C2

4p2

)
8πHλ(x, ξj)

− log(8µ2
jρ

2) +
(C1

p
+
C2

p2

)
log(µjρ)

]
,

then H̃j(x) satisfies

−∆H̃j = 0 in Ω,

∂H̃j

∂ν
+ λb(x)H̃j = O

(λρ
p

)
on ∂Ω.

From the maximum principle with Robin boundary condition (see [6, Lemma 2.6]),
we deduce

max
Ω

∣∣H̃j(x)
∣∣+ max

Ω

∣∣dist(x, ∂Ω)∇H̃j(x)
∣∣ ≤ C

λ

∥∥∂H̃j

∂ν
+ λH̃j

∥∥
L∞(∂Ω)

= O
(ρ
p

)
.
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By the interior estimate of derivative of harmonic function, we derive estimate
(2.14) in C(Ω) and in C2

loc(Ω). �

From Lemma 2.1, away from the points ξj , namely |x − ξj | ≥ ε for any j =
1, . . . ,m, one has

Uξ(x) =
m∑
j=1

1

γµ
2/(p−1)
j

[(
1− C1

4p
− C2

4p2

)
8πGλ(x, ξj) +O

(ρ
p

)]
. (2.16)

While for |x − ξj | ≤ ε with some j, if we write x = ξj + δjy, then, by (2.4), (2.5),
(2.14) and (2.16) we deduce

Uξ(x)

=
1

γµ
2/(p−1)
j

{
p+ U1,0(y) +

1
p
ω1(y) +

1
p2
ω2(y) +

(
1− C1

4p
− C2

4p2

)
8πHλ(ξj , ξj)

− log(8µ4
j ) +

(C1

p
+
C2

p2

)
log(µjρ) +O

(
ρ|y|

)
+O

(ρ
p

)}
+
∑
k 6=j

1

γµ
2/(p−1)
k

[(
1− C1

4p
− C2

4p2

)
8πGλ(ξj , ξk) +O

(
ρ|y|

)
+O

(ρ
p

)]
.

We now choose the parameters µj : we assume they are defined by the relation

log(8µ4
j ) =

(
1− C1

4p
− C2

4p2

)[
8πHλ(ξj , ξj) +

∑
k 6=j

µ
2/(p−1)
j

µ
2/(p−1)
k

8πGλ(ξj , ξk)
]

+
(C1

p
+
C2

p2

)
log
(
µje
−4p/4

)
.

Thus, by the explicit expression (2.11) of the constant C1, we observe that for p
large, the parameters µj satisfies

µj = e−
3
4 e2πHλ(ξj ,ξj)+2π

P
k 6=j Gλ(ξj ,ξk)

[
1 +O

(1
p

)]
. (2.17)

From this choice of the parameters µj , we deduce that for |x− ξj | = δj |y| ≤ ε,

Uξ(x) =
1

γµ
2/(p−1)
j

[
p+ U1,0(y) +

1
p
ω1(y) +

1
p2
ω2(y) +O(ρ|y|) +O

(ρ
p

)]
. (2.18)

Remark 2.2. Let us remark that Uξ is a positive, uniformly bounded function.
Observe that for |y| ≤ ε/δj ,

p+ U1,0(y) +
1
p
ω1(y) +

1
p2
ω2(y) ≥ 4 log

1
ε

+ log(8µ4
j ) +O

(1
p

)
.

Then it is easily checked that choosing ε > 0 smaller if necessary, Uξ > 0 in
B(ξj , ε), and supB(ξj ,ε) Uξ →

√
e as p and λ go to +∞. Moreover, by the maximum

principle, we see that Gλ(x, ξj) > 0 in Ω and thus by (2.16), Uξ is a positive,
uniformly bounded function in Ω. In conclusion, 0 < Uξ ≤ 2

√
e in Ω.

Let us define

Sp(u) = ∆u+ up+, where u+ = max{u, 0}, (2.19)
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and introduce the functional

Jλp (u) =
1
2

∫
Ω

|∇u|2 − 1
p+ 1

∫
Ω

up+1
+ +

λ

2

∫
∂Ω

b(x)u2, u ∈ H1(Ω), (2.20)

whose nontrivial critical points are solutions of (1.1). Obviously, by the maximum
principle, problem (1.1) is equivalent to

Sp(u) = 0, u+ 6≡ 0 in Ω,
∂u

∂ν
+ λb(x)u = 0 on ∂Ω. (2.21)

We will seek solutions of (1.1) in the form u = Uξ + φ, where φ will represent a
higher order correction. Observe that

Sp(Uξ + φ) = L(φ) +Rξ +N(φ) = 0, (2.22)

where

L(φ) = ∆φ+Wξφ with Wξ = pUp−1
ξ , (2.23)

Rξ = ∆Uξ + Upξ , N(φ) = (Uξ + φ)p+ − U
p
ξ − pU

p−1
ξ φ. (2.24)

In terms of φ, problem (1.1) becomes

L(φ) = −
[
Rξ +N(φ)

]
in Ω,

∂φ

∂ν
+ λb(x)φ = 0 on ∂Ω.

(2.25)

For any set of point ξ = (ξ1, . . . , ξm) ∈ Oε and h ∈ L∞(Ω), define

‖h‖∗ = sup
x∈Ω

∣∣∣( m∑
j=1

δj
(δ2
j + |x− ξj |2)3/2

)−1

h(x)
∣∣∣. (2.26)

Lemma 2.3. Let ε > 0 be fixed. There exist C > 0, D0 > 0, p0 > 0 and λ0 > 0
such that

‖Rξ‖∗ ≤ C/p4, (2.27)

Wξ(x) ≤ D0

m∑
j=1

eUδj,ξj (x), (2.28)

for any set of point ξ = (ξ1, . . . , ξm) ∈ Oε, any p ≥ p0 and λ ≥ λ0. Furthermore,

Wξ(x) =
8

δ2
j (1 + |y|2)2

[
1 +

1
p

(
ω1 − U1,0 −

1
2
U2

1,0

)
(y) +O

( log4(|y|+ 2)
p2

)]
, (2.29)

for any |x− ξj | ≤ ε
√
δj, where y = 1

δj
(x− ξj).

Since the proof of the above lemma is similar to those of [11, Prop. 2.1 and
Lemma 3.1], we omit it.

3. Linear and nonlinear problems

In this section, we shall study first bounded invertibility of the operator L defined
in (2.23). Set

z0(y) =
|y|2 − 1
|y|2 + 1

, zi(y) = 4
yi

|y|2 + 1
, i = 1, 2. (3.1)
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It is well known [2] that any bounded solution to

∆φ+
8

(1 + |y|2)2
φ = 0 in R2 (3.2)

is a linear combination of zi, i = 0, 1, 2. Let us consider the linear problem: given
h ∈ C(Ω) and the set of points ξ = (ξ1, . . . , ξm) ∈ Oε, we find a function φ and
scalars cij , i = 1, 2, j = 1, . . . ,m, such that

L(φ) = ∆φ+Wξφ = h+
2∑
i=1

m∑
j=1

cije
Uδj,ξjZij in Ω,

∂φ

∂ν
+ λb(x)φ = 0 on ∂Ω,∫

Ω

eUδj,ξjZijφ = 0 for i = 1, 2; j = 1, . . . ,m.

(3.3)

Here, for i = 0, 1, 2 and j = 1, . . . ,m, we denote

Zij(x) := zi

(x− ξj
δj

)
=


|x−ξj |2−δ2j
|x−ξj |2+δ2j

if i = 0,
4δj(x−ξj)i
|x−ξj |2+δ2j

if i = 1, 2.
(3.4)

Proposition 3.1. Let ε > 0 be fixed. There exist p0 > 0, λ0 > 0 and C > 0 such
that for any h ∈ C(Ω), any the set of points ξ = (ξ1, . . . , ξm) ∈ Oε, any p > p0 and
λ > λ0, there is a unique solution φ, scalars cij, i = 1, 2, j = 1, . . . ,m, to problem
(3.3), which satisfies

‖φ‖∞ ≤ Cp‖h‖∗. (3.5)

Proof. The proof of this result will be divided into six steps.

Step 1: The operator L satisfies the maximum principle in Ω̃ := Ω\∪mj=1B(ξj , Rδj)
for R large, independent on p and λ. Specifically, if ψ satisfies

L(ψ) = ∆ψ +Wξψ ≤ 0 in Ω̃,

ψ ≥ 0 on ∪mj=1 ∂B(ξj , Rδj) and
∂ψ

∂ν
+ λb(x)ψ ≥ 0 on ∂Ω,

then ψ ≥ 0 in Ω̃. To prove this, it suffices to construct a positive function Z on Ω̃
such that

L(Z) = ∆Z +WξZ < 0 in Ω̃,

Z > 0 on ∪mj=1 ∂B(ξj , Rδj) and
∂Z

∂ν
+ λb(x)Z > 0 on ∂Ω.

Indeed, let

Z(x) =
m∑
j=1

z0

(a(x− ξj)
δj

)
, a > 0.

First, observe that, if |x− ξj | ≥ Rδj for R > 1
a , then Z(x) > 0. On the other hand,

since Z(x) ≤ m,

Wξ(x)Z(x) ≤ D0Z(x)
m∑
j=1

eUδj,ξj (x) ≤ D0Z(x)
m∑
j=1

8δ2
j

|x− ξj |4
≤ mD0

m∑
j=1

8δ2
j

|x− ξj |4
,
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where D0 is the constant in Lemma 2.3. Further, by the definition of z0,

−∆Z(x) =
m∑
j=1

a2
8δ2
j (a2|x− ξj |2 − δ2

j )
(a2|x− ξj |2 + δ2

j )3

≥ 1
3

m∑
j=1

8a2δ2
j

(a2|x− ξj |2 + δ2
j )2
≥ 4

27

m∑
j=1

8δ2
j

a2|x− ξj |4
,

provided R >
√

3/a. Thus, if a is taken small and fixed, but independent of p and
λ, and R is chosen sufficiently large depending on this a, then we have that

L(Z) = ∆Z +WξZ ≤
(
− 4

27
1
a2

+mD0

) m∑
j=1

8δ2
j

|x− ξj |4
< 0.

Moreover, ∣∣ ∂
∂ν
Z(x)

∣∣ ≤ m∑
j=1

Cδ2
j

a2|x− ξj |3
= O

( ρ2

a2ε3

)
on ∂Ω,

Z(x) ≥ 1
2

on ∂Ω ∪
(
∪mj=1 ∂B(ξj , Rδj)

)
,

which, together with (2.4), imply that on ∂Ω,

∂Z

∂ν
+ λb(x)Z ≥ O

( 1
a2ε3

ρ2
)

+
1
2
λb(x) ≥ O

(
e−p/2

)
+

1
2
λ min
x∈∂Ω

b(x) > 0 (3.6)

provided that p is chosen sufficiently large. The function Z(x) is what we want.
Step 2: Let R be as before. We define the “inner norm” of φ as

‖φ‖i = sup
x∈∪mj=1B(ξj ,Rδj)

|φ(x)|

and claim that there is a constant C > 0 such that if L(φ) = h in Ω, ∂φ∂ν +λb(x)φ = g
on ∂Ω, then

‖φ‖L∞(Ω) ≤ C
(
‖φ‖i + ‖h‖∗ +

1
λ
‖g‖L∞(∂Ω)

)
,

for any h ∈ C0,α(Ω) and g ∈ C0,α(∂Ω). We will establish this estimate with the
use of suitable barriers. Let M = 2 diam Ω. Consider the problem

−∆ψj =
2δj

|x− ξj |3
in Rδj < |x− ξj | < M,

ψj(x) = 0 on |x− ξj | = Rδj and |x− ξj | = M.

Its solution is the positive function

ψj = − 2δj
|x− ξj |

+A+B log |x− ξj |,

where

A =
2δj
M
−B logM, B = 2

( δj
M
− 1
R

) 1
log
(
M
Rδj

) < 0.

Obviously, ∣∣ ∂
∂ν
ψj(x)

∣∣ = O
(1
p

)
on ∂Ω. (3.7)
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Moreover, for Rδj ≤ |x− ξj | ≤M ,

ψj(x) ≤ A+B log(Rδj) =
2δj
M
−B log

M

Rδj
=

2
R
. (3.8)

Thus, ψj(x) is uniformly bounded from above by a constant independent of p and
λ. Define now

φ̃(x) = C0

(
2Z(x) +

m∑
j=1

ψj(x)
)(
‖φ‖i + ‖h‖∗ +

1
λ
‖g‖L∞(∂Ω)

)
,

where Z was defined in the previous step, and C0 > 2 is chosen larger if necessary.
First of all, observe that for x ∈ ∪mj=1∂B(ξj , Rδj), by the definition of Z,

φ̃(x) ≥ 2C0‖φ‖iZ(x) ≥ ‖φ‖i ≥ |φ(x)|,

for x ∈ ∂Ω, by (3.6), (3.7) and the positivity of Z(x) and ψj(x),

∂φ̃

∂ν
(x) + λb(x)φ̃(x)

≥
[
O
(
e−

1
2p +

1
p

)
+ C0λ min

x∈∂Ω
b(x)

](
‖φ‖i + ‖h‖∗ +

1
λ
‖g‖L∞(∂Ω)

)
≥ 1

2
C0λ

(
min
x∈∂Ω

b(x)
)(
‖φ‖i + ‖h‖∗ +

1
λ
‖g‖L∞(∂Ω)

)
≥ |g(x)|,

and for x ∈ Ω\∪mj=1B(ξj , Rδj), by (2.28), (3.8) and the definition of ‖ ·‖∗ in (2.26),

L(φ̃) ≤ C0

(
‖φ‖i + ‖h‖∗ +

1
λ
‖g‖L∞(∂Ω)

) m∑
j=1

L(ψj)(x)

= C0

(
‖φ‖i + ‖h‖∗ +

1
λ
‖g‖L∞(∂Ω)

) m∑
j=1

(
− 2δj
|x− ξj |3

+Wξ(x)ψj(x)
)

≤ C0

(
‖φ‖i + ‖h‖∗ +

1
λ
‖g‖L∞(∂Ω)

) m∑
j=1

(
− 2δj
|x− ξj |3

+
2mD0

R
eUδj,ξj (x)

)
≤ −C0‖h‖∗

m∑
j=1

δj
(δ2
j + |x− ξj |2)3/2

≤ −|h(x)| ≤ −|L(φ)|(x),

provided R > 16mD0, p and λ large enough. Hence, by the maximum principle in
Step 1, we obtain

|φ(x)| ≤ φ̃(x) for x ∈ Ω̃,
and therefore, since Z(x) ≤ m and ψj(x) ≤ 2

R ,

‖φ‖L∞(Ω) ≤ C
(
‖φ‖i + ‖h‖∗ +

1
λ
‖g‖L∞(∂Ω)

)
.

Step 3: We prove uniform a priori estimates for solutions φ of the problem L(φ) = h

in Ω, ∂φ
∂ν + λb(x)φ = g on ∂Ω, where h ∈ C0,α(Ω), g ∈ C0,α(∂Ω) and in addition

we prove the orthogonality conditions:∫
Ω

eUδj,ξjZijφ = 0 for i = 0, 1, 2; j = 1, . . . ,m. (3.9)
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Namely, we prove that there exists C > 0 such that for ξ = (ξ1, . . . , ξm) ∈ Oε,
h ∈ C0,α(Ω) and g ∈ C0,α(∂Ω),

‖φ‖L∞(Ω) ≤ C
(
‖h‖∗ +

1
λ
‖g‖L∞(∂Ω)

)
,

for p and λ sufficiently large. By contradiction, assume the existence of sequences
pn → +∞, λn → +∞, points ξn = (ξn1 , . . . , ξ

n
m) ∈ Oε, functions hn, gn and asso-

ciated solutions φn such that ‖hn‖∗ → 0, 1
λn
‖gn‖L∞(∂Ω) → 0 and ‖φn‖L∞(Ω) = 1.

Since ‖φn‖L∞(Ω) = 1, Step 2 shows that lim infn→+∞ ‖φn‖i > 0. Set φ̂nj (y) =
φn(δnj y+ ξnj ) for j = 1, . . . ,m. By (2.29) elliptic estimates imply that φ̂nj converges
uniformly over compact sets to a bounded solution φ̂∞j of equation (3.2). Further-
more, φ̂∞j is a linear combination of the functions zi, i = 0, 1, 2, defined in (3.1).
Since ‖φ̂nj ‖L∞(Ω) ≤ 1, by Lebesgue’s theorem, the orthogonality conditions on φ̂nj
pass to the limit and give∫

R2

8
(1 + |y|2)2

zi(y)φ̂∞j dy = 0 for i = 0, 1, 2.

Hence, φ̂∞j ≡ 0 for any j = 1, . . . ,m contradicting lim infn→+∞ ‖φn‖i > 0.
Step 4: We prove that there exists a positive constant C > 0 such that any
solution φ of equation L(φ) = h in Ω, ∂φ

∂ν + λb(x)φ = 0 on ∂Ω and in addition the
orthogonality conditions:∫

Ω

eUδj,ξjZijφ = 0 for i = 1, 2; j = 1, . . . ,m, (3.10)

satisfies
‖φ‖L∞(Ω) ≤ Cp‖h‖∗,

for h ∈ C0,α(Ω). Proceeding by contradiction as in Step 3, we can suppose further
that

‖φn‖L∞(Ω) = 1, pn‖hn‖∗ → 0 as n→ +∞. (3.11)

but we lose the condition
∫

R2
8

(1+|y|2)2 z0(y)φ̂∞j = 0 in the limit. Hence, we have
that

φ̂nj → φ̂∞j = Cj
|y|2 − 1
|y|2 + 1

in C0
loc(R2

+), (3.12)

for some constants Cj . To reach a contradiction, we have to show that Cj = 0 for
any j = 1, . . . ,m. We will obtain it from the stronger condition (3.11) on hn.

To this end, we perform the following construction. According to [3, 11], there
exist radial solutions ω and ζ respectively of equations

∆ω +
8

(1 + |y|2)2
ω =

8
(1 + |y|2)2

z0(y), ∆ζ +
8

(1 + |y|2)2
ζ =

8
(1 + |y|2)2

in R2,

such that

ω(y) =
4
3

log |y|+O
( 1
|y|

)
, ζ(y) = O

( 1
|y|
)

as |y| → +∞,

∇ω(y) =
4
3
· y

1 + |y|2
+O

( 1
1 + |y|2

)
, ∇ζ(y) = O

( 1
1 + |y|2

)
for all y ∈ R2,

since 8
∫ +∞

0
r (r2−1)2

(r2+1)4 dr = 4
3 and 8

∫ +∞
0

r r2−1
(r2+1)3 dr = 0.
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For simplicity in the rest of this article, we omit the dependence on n. For
j = 1, . . . ,m, define

uj(x) = ω
(x− ξj

δj

)
+

4
3

(log δj)Z0j(x) +
8π
3
Hλ(ξj , ξj)ζ

(x− ξj
δj

)
and denote its projection Puj = uj + H̃j , where H̃j is a correction term defined as
the solution of

−∆H̃j = 0 in Ω,

∂H̃j

∂ν
+ λb(x)H̃j = −∂uj

∂ν
− λb(x)uj on ∂Ω.

Observe that on ∂Ω,( ∂
∂ν

+ λb(x)
)(
H̃j +

8π
3
Hλ(x, ξj)

)
= O

(
λρ
)

+ (log δj)O
(
λρ2
)

+Hλ(ξj , ξj)O
(
λρ
)
.

From the maximum principle with Robin boundary condition we obtain

Puj = uj −
8π
3
Hλ(x, ξj) +O

(
ρ
)

in C(Ω),

Puj = −8π
3
Gλ(x, ξj) +O(ρ) in Cloc(Ω \ {ξj}).

(3.13)

The function Puj solves

∆Puj +WξPuj = eUδj,ξjZ0j +
(
Wξ − eUδj,ξj

)
Puj +Rj in Ω,

∂

∂ν
Puj + λb(x)Puj = 0 on ∂Ω,

(3.14)

where

Rj(x) =
(
Puj − uj +

8π
3
Hλ(ξj , ξj)

)
eUδj,ξj . (3.15)

Multiplying (3.14) by φ and integrating by parts we obtain∫
Ω

eUδj,ξjZ0jφ+
∫

Ω

(
Wξ − eUδj,ξj

)
Pujφ =

∫
Ω

Pujh−
∫

Ω

Rjφ. (3.16)

We estimate each term of (3.16). First of all, by Lebesgue’s theorem and (3.12)
we obtain ∫

Ω

eUδj,ξjZ0jφ −→ Cj

∫
R2

8(|y|2 − 1)2

(|y|2 + 1)4
dy =

8π
3
Cj . (3.17)

From (2.15) and the maximum principle with Robin boundary condition, we deduce
that |∇Hλ(x, ξj)| = O(1) holds uniformly in Ω. Thus, by (2.28), (2.29) and (3.13),
we have∫

Ω

(
Wξ − eUδj,ξj

)
Pujφ

=
∫
B(ξj ,ε

√
δj)

(
Wξ − eUδj,ξj

)
Pujφ−

8π
3

∑
k 6=j

Gλ(ξk, ξj)
∫
B(ξk,ε

√
δk)

Wξφ+O
(√
ρ
)

=
∫
B(0,ε/

√
δj)

8
(1 + |y|2)2

1
p

(
ω1 − U1,0 −

1
2
U2

1,0

)4
3

(log δj)z0(y)φ̂j

− 8π
3

∑
k 6=j

Gλ(ξk, ξj)
∫
B(0,ε/

√
δk)

8
(1 + |y|2)2

φ̂k +O
(1
p

)
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= −Cj
3

∫
R2

8(|y|2 − 1)2

(1 + |y|2)4

(
ω1 − U1,0 −

1
2
U2

1,0

)
(y) + o(1) .

Lebesgue’s theorem and (3.12) imply∫
B(0,ε/

√
δj)

8
(1 + |y|2)2

(
ω1 − U1,0 −

1
2
U2

1,0

)
z0(y)φ̂j

→ Cj

∫
R2

8(|y|2 − 1)2

(1 + |y|2)4

(
ω1 − U1,0 −

1
2
U2

1,0

)
,

and ∫
B(0,ε/

√
δk)

8
(1 + |y|2)2

φ̂k → Ck

∫
R2

8
(1 + |y|2)2

|y|2 − 1
|y|2 + 1

= 0.

In a straightforward but tedious comptation, by (2.10) we obtain∫
R2

8(|y|2 − 1)2

(1 + |y|2)4

(
ω1 − U1,0 −

1
2
U2

1,0

)
(y)dy = −8π.

Therefore ∫
Ω

(
Wξ − eUδj,ξj

)
Pujφ =

8π
3
Cj + o(1). (3.18)

As for the right-hand side of (3.16), that by (2.26) and (3.13), we have∣∣ ∫
Ω

Pujh
∣∣ ≤ C‖h‖∗ m∑

k=1

∫
Ωδk

1
(1 + |y|2)3/2

|Puj(δky + ξk)|dy

≤ C‖h‖∗
∫

R2

log(|y|+ 2)
(1 + |y|2)3/2

dy + Cp‖h‖∗
∫

R2

dy

(1 + |y|2)3/2

≤ Cp‖h‖∗,

(3.19)

where Ωδk := 1
δk

(Ω− {ξk}). Finally, by (3.13) and (3.15) we deduce∫
Ω

Rjφ = O
(∫

Ω

eUδj,ξj
(
|x− ξj |+ ρ

)
dx
)

= O
(
e−

1
4p
)
. (3.20)

Hence, inserting (3.17)-(3.20) in (3.16) and taking into account (3.11), we conclude
that

16π
3
Cj = o(1) for any j = 1, . . . ,m.

Necessarily, Cj = 0 by contradiction and the claim is proved.
Step 5: We establish the validity of the a priori estimate

‖φ‖∞ ≤ Cp‖h‖∗ (3.21)

for solutions of problem (3.3) and h ∈ C0,α(Ω). Step 4 gives

‖φ‖L∞(Ω) ≤ Cp
(
‖h‖∗ +

2∑
i=1

m∑
j=1

|cij | · ‖eUδj,ξjZij‖∗
)
≤ Cp

(
‖h‖∗ +

2∑
i=1

m∑
j=1

|cij |
)
.

As before, arguing by contradiction of (3.21), we can proceed as in Step 3 and
suppose further that

‖φn‖L∞(Ω) = 1, pn‖hn‖∗ → 0, pn

2∑
i=1

m∑
j=1

|cnij | ≥ δ > 0 as n→ +∞. (3.22)
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We omit the dependence on n. It suffices to estimate the values of the constants
cij . For this aim, we define PZij as the projection of Zij under homogeneous Robin
boundary condition, namely

∆PZij = ∆Zij = −eUδj,ξjZij in Ω,
∂PZij
∂ν

+ λb(x)PZij = 0 on ∂Ω.
(3.23)

As in the proof of Lemma 2.1, for i = 1, 2 and j = 1, . . . ,m we have the expansions:

PZij = Zij + 8πδj∂(ξj)iHλ(·, ξj) +O
(
ρ3
)
, PZ0j = Z0j − 1 +O

(
ρ2
)
, (3.24)

in C(Ω) and in C2
loc(Ω), and

PZij = 8πδj∂(ξj)iGλ(·, ξj) +O(ρ3), PZ0j = O(ρ2), (3.25)

in C(Ω \ {ξj}) and in C2
loc(Ω \ {ξj}). By (3.24), (3.25) and that |∂(ξj)iHλ(x, ξj)| =

O(1) uniformly holds in Ω, we can easily deduce the following “orthogonality”
relations: for each i, l = 1, 2 and j, k = 1, . . . ,m,∫

Ω

eUδj,ξjZijPZlk =
(

64
∫

R2

|y|2

(1 + |y|2)4

)
δjkδil +O

(
ρ
)
, (3.26)

uniformly for any set of points ξ = (ξ1, . . . , ξm) ∈ Oε, where δjk and δil denote the
Kronecker’s symbols.

Multiplying equation (3.3) by PZij , i = 1, 2, j = 1, . . . ,m, and integrating by
parts we find

2∑
l=1

m∑
k=1

clk

∫
Ω

eUδk,ξkZlkPZij +
∫

Ω

hPZij =
∫

Ω

WξφPZij −
∫

Ω

eUδj,ξjZijφ. (3.27)

By (2.28), (2.29) and (3.26), a direct computation shows

Dcij +O
(
e−

p
2

∑
l, k

|clk|+ ‖h‖∗
)

=
1
p

∫
B(0,ε/

√
δj)

32yi
(1 + |y|2)3

(
ω1 − U1,0 −

1
2
U2

1,0

)
φ̂j +O

(‖φ‖∞
p2

)
,

(3.28)

where D = 64
∫

R2
|y|2

(1+|y|2)4 and φ̂j(y) = φ(δjy + ξj). Hence, we obtain

2∑
l=1

m∑
k=1

|clk| = O
(
‖h‖∗ +

1
p
‖φ‖∞

)
= o(1). (3.29)

As in Step 4, we conclude that for each j = 1, . . . ,m,

φ̂j → Cj
|y|2 − 1
|y|2 + 1

in C0
loc(R2),

with some constant Cj ∈ R and thus∫
B(0,ε/

√
δj)

32yi
(1 + |y|2)3

(
ω1 − U1,0 −

1
2
U2

1,0

)
φ̂j

→ Cj

∫
R2

32yi(|y|2 − 1)
(1 + |y|2)4

(
ω1 − U1,0 −

1
2
U2

1,0

)
= 0.
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Therefore,
2∑
l=1

m∑
k=1

|clk| = o(
1
p

) +O(‖h‖∗),

which is impossible because of (3.22).
Step 6: We prove the solvability of (3.3). To this purpose, we consider the spaces:

Kξ =
{ 2∑
i=1

m∑
j=1

cijPZij : cij ∈ R for i = 1, 2; j = 1, . . . ,m
}
,

K⊥ξ =
{
φ ∈ L2(Ω) :

∫
Ω

eUδj,ξjZijφ = 0 for i = 1, 2; j = 1, . . . ,m
}
.

Define Πξ : L2(Ω)→ Kξ by

Πξφ =
2∑
i=1

m∑
j=1

cijPZij ,

where the coefficients cij are uniquely determined (as it follows by (3.26)) by the
system∫

Ω

eUδk,ξkZlk

(
φ−

2∑
i=1

m∑
j=1

cijPZij

)
= 0 for any l = 1, 2; k = 1, . . . ,m.

Let Π⊥ξ = Id − Πξ : L2(Ω) → K⊥ξ . Moreover, the Hilbert space K⊥ξ ∩ H1(Ω) is
endowed with the inner product

〈φ, ψ〉H =
∫

Ω

∇φ∇ψ + λ

∫
∂Ω

b(x)φψ.

Problem (3.3), expressed in a weak form, is equivalent to find φ ∈ K⊥ξ ∩ H1(Ω)
such that

〈φ, ψ〉H =
∫

Ω

(Wξφ− h)ψ for all ψ ∈ K⊥ξ ∩H1(Ω).

With the aid of Riesz’s representation theorem, this equation gets rewritten in
K⊥ξ ∩H1(Ω) in the operator form φ = K(φ) + h̃, where

h̃ = −Π⊥ξ
[(
−∆

)
|Ω +

( ∂
∂ν

+ λb(x)
)
|∂Ω

]−1
h,

K(φ) = Π⊥ξ
[(
−∆

)
|Ω +

( ∂
∂ν

+ λb(x)
)
|∂Ω

]−1(Wξφ)

is a linear compact operator in K⊥ξ ∩H1(Ω). By the Fredholm’s alternative with
Robin boundary condition (see [5, 13]), we obtain the unique solvability of this
problem for any h̃ ∈ K⊥ξ provided that the homogeneous equation φ = K(φ) has
only the trivial solution in K⊥ξ ∩ H1(Ω), which in turn follows from the a priori
estimate (3.21) in Step 5. Finally, by density we obtain the validity of (3.5) also
for h ∈ C(Ω) (not only for h ∈ C0,α(Ω)). �

Remark 3.2. Given h ∈ C(Ω), let φ be the solution of problem (3.3) given by
Proposition 3.1. Multiplying (3.3) against φ and integrating by parts, we obtain

‖φ‖2H :=
∫

Ω

|∇φ|2 + λ

∫
∂Ω

b(x)φ2 =
∫

Ω

Wξφ
2 −

∫
Ω

hφ.
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By Lemma 2.3, we obtain

‖φ‖H ≤ C (‖h‖∗ + ‖φ‖∞) .

Let us solve the nonlinear auxiliary problem: for any set of points ξ = (ξ1, . . . , ξm)
in Oε, we find a function φ, and scalars cij , i = 1, 2, j = 1, . . . ,m, such that

∆(Uξ + φ) + (Uξ + φ)p =
2∑
i=1

m∑
j=1

cije
Uδj,ξjZij in Ω,

Uξ + φ > 0 in Ω,
∂φ

∂ν
+ λb(x)φ = 0 on ∂Ω,∫

Ω

eUδj,ξjZijφ = 0 for i = 1, 2; j = 1, . . . ,m.

(3.30)

Proposition 3.3. Let ε > 0 be fixed and small. There exist C > 0, p0 > 0 and
λ0 > 0 such that for any set of points ξ = (ξ1, . . . , ξm) ∈ Oε, any p > p0 and λ > λ0,
problem (3.30) has a unique solution φξ, scalars cij(ξ), i = 1, 2, j = 1, . . . ,m, such
that

‖φξ‖∞ ≤
C

p3
,

2∑
i=1

m∑
j=1

|cij(ξ)| ≤
C

p4
, ‖φξ‖H ≤

C

p3
. (3.31)

Furthermore, the map ξ → φξ is a C1-function in C(Ω) and H1(Ω).

Proof. Proposition 3.1 allows us to apply the contraction mapping principle to find
a solution for problem (3.30) satisfying (3.31). Since it is a standard procedure, we
shall not present the detailed proof, see [11, Lemma 4.1]. �

4. Variational reduction

After problem (3.30) has been solved, we find a solution of (2.25) and hence to
the original problem (1.1) if ξ = (ξ1, . . . , ξm) ∈ Oε satisfies

cij(ξ) = 0 for all i = 1, 2; j = 1, . . . ,m. (4.1)

Equation (1.1) is the Euler-Lagrange equation of the functional Jλp : H1(Ω) → R
defined by

Jλp (u) =
1
2

∫
Ω

|∇u|2 − 1
p+ 1

∫
Ω

up+1
+ +

λ

2

∫
∂Ω

b(x)u2. (4.2)

We introduce the finite-dimensional restriction Fλp : Oε → R given by

Fλp (ξ) = Jλp (Uξ + φξ), (4.3)

where φξ is the unique solution to problem (3.30) given by Proposition 3.3.

Proposition 4.1. The function Fλp : Oε → R is of class C1. Moreover, for all
sufficiently large p and λ, if DξF

λ
p (ξ) = 0, then ξ satisfies (4.1).

Proof. The function Fλp is of class C1 since ξ → φξ is a C1-map into H1(Ω). Then
DξF

λ
p (ξ) = 0 is equivalent to

0 = (DJλp )′(Uξ + φξ)(DξUξ +Dξφξ)

= −
2∑
i=1

m∑
j=1

cij(ξ)
∫

Ω

eUδj,ξjZijDξUξ +
2∑
i=1

m∑
j=1

cij(ξ)
∫

Ω

Dξ

(
eUδj,ξjZij

)
φξ,

(4.4)
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where the seconde equality is due to
∫

Ω
eUδj,ξjZijφξ = 0. From the definition of Uξ

in (2.12), we obtain

∂(ξk)lUξ =
m∑
j=1

1

γµ
2/(p−1)
j

{
∂(ξk)l

[
Uδj ,ξj (x) +

1
p
ω1

(x− ξj
δj

)
+

1
p2
ω2

(x− ξj
δj

)
+ γµ

2/(p−1)
j Hj(x)

]
+O(1)

}
.

As in the proof of Lemma 2.1, by the maximum principle with Robin boundary
condition we can prove that

∂(ξk)l

[
γµ

2/(p−1)
j Hj(x)

]
= δkj

(
1− C1

4p
− C2

4p2

)
8π∂(ξk)lHλ(x, ξj)

−
(

2− C1

p
− C2

p2

)
∂(ξk)l logµj +O(

ρ

p
),

where δkj denote the Kronecker’s symbol. Thus, by (2.1), (2.4), (2.8), (3.4) and
(3.24) we have that

∂(ξk)lUξ =
1

δkγµ
2/(p−1)
k

{(
1− C1

4p
− C2

4p2

)
PZlk +O

(
ρ3 +

1
p

δ2
k

|x− ξk|2 + δ2
k

)}
+O(

1
γ

).

On the other hand, it can be shown that ‖Dξ(e
Uδj,ξjZij)‖L∞(Ω) = O(1/δj) by

computing directly. Consequently, (4.4) can be written as, for each l = 1, 2 and
k = 1, . . . ,m,

−
∑
i, j

cij(ξ)
[
1 +O( 1

p )
]

δkγµ
2/(p−1)
k

∫
Ω

eUδj,ξjZijPZlk

+
∑
i, j

|cij(ξ)|O
( 1
γ

+ ‖φξ‖∞
∫

Ω

∣∣∂(ξk)l

(
eUδj,ξjZij

)∣∣) = 0,

so that, using (3.26) and (3.31),

− 64clk(ξ)

δkγµ
2/(p−1)
k

∫
R2

|y|2

(1 + |y|2)4
dy +O

( 1
δkpγ

+
1
γ

+
1

p3δk

) 2∑
i=1

m∑
j=1

∣∣cij(ξ)∣∣ = 0,

which implies clk(ξ) = 0. �

Proposition 4.2. Let ε > 0 be fixed. There exist p0 > 0 and λ0 > 0 such that for
any p > p0 and λ > λ0,

Fλp (ξ) =
4πmp
γ2

− 32π2

γ2
ϕλm(ξ1, . . . , ξm) +

4πm
γ2

+
m

2γ2

∫
R2

( 8
(1 + |y|2)2

U1,0 −∆ω1

)
+ o
( 1
p2

) (4.5)

C1-uniformly with respect to ξ = (ξ1, . . . , ξm) ∈ Oε, where ϕλm(ξ) is defined by
(1.7).
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Proof. According to the proof of [11, Proposition 5.3], it suffices to establish the
expansion (4.5) in the C0-sense. Multiplying the first equation in (3.30) by Uξ +φξ
and integrating by parts, we obtain∫

Ω

(Uξ + φξ)p+1 =
∫

Ω

|∇(Uξ + φξ)|2 + λ

∫
∂Ω

b(x)(Uξ + φξ)2

+
2∑
i=1

m∑
j=1

cij(ξ)
∫

Ω

eUδj,ξjZijUξ.

Since Uξ is a bounded function, by (3.31) we obtain∫
Ω

(Uξ + φξ)p+1 =
∫

Ω

|∇(Uξ + φξ)|2 + λ

∫
∂Ω

b(x)(Uξ + φξ)2 +O(
1
p4

)

uniformly for any set of points ξ = (ξ1, . . . , ξm) ∈ Oε. Hence, by (2.20)-(4.3) we
obtain

Fλp (ξ) =
(1

2
− 1
p+ 1

)[( ∫
Ω

|∇Uξ|2 + λ

∫
∂Ω

b(x)U2
ξ

)
+ 2
(∫

Ω

∇Uξ∇φξ + λ

∫
∂Ω

b(x)Uξφξ
)

+
(∫

Ω

|∇φξ|2 + λ

∫
∂Ω

b(x)φ2
ξ

)]
+O

( 1
p4

)
.

(4.6)

We expand the term
∫

Ω
|∇Uξ|2 + λ

∫
∂Ω
U2
ξ : in view of (2.18) we deduce∫

Ω

|∇Uξ|2 + λ

∫
∂Ω

b(x)U2
ξ =

∫
Ω

(−∆Uξ)Uξ

=
m∑
j=1

1

γµ
2/(p−1)
j

∫
B(ξj ,ε)

[
eUδj,ξj − 1

pδ2
j

∆ω1

(x− ξj
δj

)
− 1
p2δ2

j

∆ω2

(x− ξj
δj

)]
Uξ

+O(ρ2)

=
m∑
j=1

1

γ2µ
4/(p−1)
j

∫
B(0,ε/δj)

[ 8
(1 + |y|2)2

− 1
p

∆ω1(y)− 1
p2

∆ω2(y)
]

×
[
p+ U1,0(y) +

1
p
ω1(y) +

1
p2
ω2(y) +O(ρ|y|) +O

(ρ
p

)]
dy +O

(
ρ2
)

=
m∑
j=1

1

γ2µ
4/(p−1)
j

[
8πp+

∫
R2

( 8
(1 + |y|2)2

U1,0 −∆ω1

)
+O(

1
p

)
]

=
8πmp
γ2

− 32π
γ2

m∑
j=1

logµj +
m

γ2

∫
R2

( 8
(1 + |y|2)2

U1,0 −∆ω1

)
+O

( 1
p3

)
since µ

− 4
p−1

j = 1− 4
p logµj +O( 1

p2 ). Recalling the expansion (2.17) of µj , then we
obtain∫

Ω

|∇Uξ|2 + λ

∫
∂Ω

b(x)U2
ξ =

8πmp
γ2

− 64π2

γ2
ϕλm(ξ) +

24πm
γ2

+
m

γ2

∫
R2

( 8
(1 + |y|2)2

U1,0 −∆ω1

)
+O

( 1
p3

)
.

(4.7)
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On the other hand, by (3.31), we have

2
(∫

Ω

∇Uξ∇φξ + λ

∫
∂Ω

b(x)Uξφξ
)

+
(∫

Ω

|∇φξ|2 + λ

∫
∂Ω

b(x)φ2
ξ

)
= O

( 1
p7/2

)
.

(4.8)

Consequently, inserting (4.7)-(4.8) in (4.6), we obtain (4.5). �

5. Proof of Theorem 1.1

Definition 5.1. Let D be an open set compactly contained in Ωm with smooth
boundary. We recall that ϕ∞m links in D at critical level C relative to B and B0

if B and B0 are closed subsets of D with B connected and B0 ⊂ B such that the
following conditions hold: let us set Γ to be the class of all maps Φ ∈ C(B,D) with
the property that there exists a function Ψ ∈ C([0, 1]×B,D) such that

Ψ(0, ·) = IdB , Ψ(1, ·) = Φ Ψ(t, ·)|B0 = IdB0 for all t ∈ [0, 1].

We assume
sup
y∈B0

ϕ∞m (y) < C ≡ inf
Φ∈Γ

sup
y∈B

ϕ∞m (Φ(y)), (5.1)

and for all y ∈ ∂D such that ϕ∞m (y) = C, there exists a vector τy tangent to ∂D at
y such that

∇ϕ∞m (y) · τy 6= 0. (5.2)
Under these conditions a critical point ȳ ∈ D of ϕ∞m with ϕ∞m (ȳ) = C exists, as a
standard deformation argument involving the negative gradient flow of ϕ∞m shows.
It is easy to check that the above conditions hold if

inf
x∈D

ϕ∞m (y) < inf
x∈∂D

ϕ∞m (x), or sup
x∈D

ϕ∞m (x) > sup
x∈∂D

ϕ∞m (x),

namely the case of (possibly degenerate) local minimum or maximum points of ϕ∞m .
We call C a nontrivial critical level of ϕ∞m in D.

Proof of Theorem 1.1. Since Ω is not simply connected, from the proof of [7, The-
orem 1] it follows that given any m ≥ 1, ϕ∞m has a nontrivial critical level C in
some open set D, compactly contained in Ωm. Let us consider the set D, the as-
sociated critical value C and ξ ∈ D. According to Proposition 4.1, the function
up,λ = Uξ + φξ where Uξ is defined in (2.12) and φξ is the unique solution to prob-
lem (3.30) given by Proposition 3.3, is a solution to problem (1.1) if we adjust ξ so
that it is a critical point of Fλp (ξ) defined by (4.3). This is equivalent to finding a
critical point of

F̃λp (ξ) = − γ2

32π2

[
Fλp (ξ)− 4πmp

γ2
− 4πm

γ2
− m

2γ2

∫
R2

( 8
(1 + |y|2)2

U1,0 −∆ω1

)]
.

On the other hand, from Proposition 4.2, for ξ = (ξ1, . . . , ξm) ∈ D ∩Oε, we have

F̃λp (ξ) = ϕλm(ξ) + o(1)Θp,λ(ξ), (5.3)

where Θp,λ and ∇ξΘp,λ are uniformly bounded in the considered region as p and λ
go to +∞.

We claim that

ϕλm(ξ) = ϕ∞m (ξ) +O
(
1/λ
)

uniformly in C1(Oε) as λ→ +∞. (5.4)
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From the definitions of ϕλm and ϕ∞m it suffices to establish that for any set of points
ξ = (ξ1, . . . , ξm) ∈ Oε,

Hλ(x, ξj) = H∞(x, ξj) +O
(
1/λ
)

in C(Ω) and in C1
loc(Ω) as λ→ +∞. Indeed, if we set h(x) = Hλ(x, ξj)−H∞(x, ξj),

then by (2.15),

−∆h = 0 in Ω,
∂h

∂ν
+ λb(x)h = −∂G∞

∂ν
(x, ξj) on ∂Ω.

Furthermore, by the maximum principle with Robin boundary condition and the
definition of Oε in (2.3), we deduce

max
Ω

∣∣h(x)
∣∣+ max

Ω

∣∣ dist(x, ∂Ω)∇h(x)
∣∣ ≤ C

λ

∥∥∂G∞
∂ν

(x, ξj)
∥∥
L∞(∂Ω)

= O
(
1/λ
)
.

According to Definition 5.1, we have that if M > C, then assumptions (5.1),
(5.2) still hold for the function min{M,ϕ∞m (ξ)} as well as for min{M,ϕ∞m (ξ) +
o(1)Θp,λ(ξ) + O(1/λ)}. By (5.3)-(5.4) it follows that the function min{M, F̃λp (ξ)}
satisfies for all p and λ large assumptions (5.1), (5.2) in D and therefore has a
critical value Cp,λ < M which is close to C in this region. If ξp,λ ∈ D is a critical
point at this level for F̃λp (ξ), then since

F̃λp (ξp,λ) = ϕ∞m (ξp,λ) + o(1)Θp,λ(ξp,λ) +O(1/λ) ≤ Cp,λ < M, (5.5)

we have that there exists ε > 0 such that |ξi,p,λ − ξj,p,λ| > 2ε, dist(ξi,p,λ, ∂Ω) > 2ε.
This implies C1-closeness of F̃λp (ξ) and ϕ∞m at this level, hence ∇ϕ∞m (ξp,λ) → 0
and thus ∇ϕλm(ξp,λ) → 0 as p → +∞ and λ → +∞. The function up,λ(x) =
Uξp,λ(x)+φξp,λ(x) is therefore a solution with the qualitative properties as predicted
in Theorem 1.1. �
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