Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 08, pp. 1-12.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu

NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING
CRITICAL SOBOLEV EXPONENT AND WEIGHT

MOHAMMED BOUCHEKIF, ALI RIMOUCHE

ABSTRACT. In this article we consider the problem
—div (p(z)Vu) = \u|2*72u +Af inQ
u=0 on 0

where Q is a bounded domain in R, We study the relationship between the
behavior of p near its minima on the existence of solutions.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this article we study the existence of solutions to the problem

—div (p(z)Vu) = > 2u+Af in Q

1.1
u=0 on 0f, (1.1)

where  is a smooth bounded domain of RY, N > 3, f belongs to H™ ' =
W-L2(Q)\ {0}, p € HY(Q) N C(Q) is a positive function, ) is a real parameter
and 2* = 2% is the critical Sobolev exponent for the embedding of Hg(f2) into
L¥ (Q).

For a constant function p, problem has been studied by many authors, in
particular by Tarantello [8]. Using Ekeland’s variational principle and minimax
principles, she proved the existence of at least one solution of with A = 1
when f € H~! and satisfies

9\ (V+2)/4 o9
fudeKN(/|Vu| ) for /|u| =1,
Q Q Q
with
4 N-2
Kn = — (2T 2\(N+2)/4
NEN 2 N2
Moreover when the above inequality is strict, she showed the existence of at least
a second solution. These solutions are nonnegative when f is nonnegative.
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The following problem has been considered by several authors,

—div(p(z)Vu) = [u|* 2u+ Ml in Q
w>0 inQ (1.2)
u=0 onJdf.

We quote in particular the celebrate paper by Brezis and Nirenberg [4], and that
of Hadiji and Yazidi [6]. In [4], the authors studied the case when p is constant.

To our knowledge, the case where p is not constant has been considered in [6]
and [7]. The authors in [6] showed that the existence of solutions depending on
a parameter A\, N, and the behavior of p near its minima. More explicitly: when
p € H'(Q) N C(Q) satisfies

p(z) :p0+ﬁk|x—a|k+ \x—a\ke(m) in B(a,T), (1.3)

where k, B, T are positive constants, and 6 tends to 0 when x approaches a, with
a€p t{po})NQ, po = min, g p(x), and B(a,7) denotes the ball with center 0
and radius 7, when 0 < k < 2, and p satisfies the condition

K < Vp(z).(x — a)

7 —aff a.e x € (. (1.4)

On the one hand, they obtained the existence of solutions to if one of the
following conditions is satisfied:
(i) N>4,k>2and X €]0,\(p)[;
(i) N >4, k=2 and X € ]5(N), M (p)];
(i) N=3,k>2and X € ]v(k), \1(p)[;
(iv) N >3,0< k <2 and p satisfies (1.4), A €]A*, \1(p)[;
where
(N—-2)N(N +2)
AN —1)

Y(N) = B2,

~v(k) is a positive constant depending on k, and A\* € [BkNTQ,)\l(p)[, with 3, =
B min[(diam Q)*~21].
On the other hand, non-existence results are given in the following cases:

(a) N>3,k>0and A <d(p).
(b) N>3,k>0and A > A (p).

We denote by Ai(p) the first eigenvalue of (—div(pV.), H) and
LI Jo Vp(z)(z — a)|Vu|?dx
= in

2ueHL(Q)\{0} Jo lul?da

d(p) =

Then we formulate the question: What happens in (1.1) when p is not necessarily
a constant function? A response to this question is given in Theorem below.

Notation. S is the best Sobolev constant for the embedding from Ha (£2) to L™ ().
|- || is the norm of H{(£2) induced by the product (u,v) = [, VuVvdz. |- |1 and
|+ |p = (fq, |.[Pdz)'/? are the norms in H~! and LP(R) for 1 < p < oo respectively.
We denote the space Hg(€2) by H and the integral [, udz by [w. wy is the area
of the sphere S¥~1 in RY.
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Let E={uec H: [, f(z)u(x)dx > 0} and

al) : pr (2)|*dx
(p) = 5 inf - (I)dx ’
with -
(@) =V (@).(x - )+7+f( | B) = V(o). (@— ).
Put
Ag = 1/2 (S(p))N/4 A= (N - 2)2/ ﬂ
o= KNS 7 et

(1.5)

1
B=| ——v, D:= 1+ |o|2)VF2)/2
/RN T D) [ Qe

where [ > 0 and
Jop(@)|Vul?

S(p) :=
®)= o™ W

Definition 1.1. We say that u is a ground state solution of (L.1)) if Jy(u) =
min{Jx(v) : v is a solution of (1.1)}. Here Jy is the energy functional associate

with (1.1).

Remark 1.2. By the Ekeland variational principle [5] we can prove that for A €
(0, Ag) there exists a ground state solution to (1.1) which will be denoted by wg.
The proof is similar to that in [§].

Remark 1.3. Noting that if « is a solution of the problem (1.1)), then —wu is also a
solution of the problem ([1.1)) with —\ instead of A. Without loss of generality, we
restrict our study to the case A > 0.

Our main results read as follows.

Theorem 1.4. Suppose that €2 is a star shaped domain with respect to a and p
satisfies (1.3). Then there is no solution of problem (1.1)) in E for all0 < XA < a(p).

Theorem 1.5. Let p € HY () N C(Q) such that po > 0 and p satisfies then,
forO< A< %, problem admits at least two solutions in one of the following
condition:

(i) k> 232,

A
(i) Bn-2)2 > A<ND2)/2( 0)(6 NIE,

This article is organized as follows: in the forthcoming section, we give some
preliminaries. Section 3 and 4 present the proofs of our main results.

2. PRELIMINARIES

A function v in H is said to be a weak solution of (1.1)) if u satisfies
/(quVv —|ul? "2uv — A\fv) =0 for all v € H.

It is well known that the nontrivial solutions of (|1.1)) are equivalent to the non zero
critical points of the energy functional

= [pval = 5o [P =2 [ fu. (2.1)
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We know that .Jy is not bounded from below on H, but it is on a natural manifold
called Nehari manifold, which is defined by
Ny ={ue H\{0}: (J\(u),u) = 0}.

Therefore, for u € Ny, we obtain

N
B = [oivup =252 [ ru (22

1 N +2
== [ouP+ 750 [

It is known that the constant S is achieved by the family of functions

or
z, (2.3)

€(N72)/2
(2 + 7)) (N -2/2
For a € Q, we define U, () = Us(x — a) and ue o(2) = &u(2)Ue o (x), where

€, € C°(Q2) with & >0 and &, = 1 in a neighborhood of a. (2.5)

Ue() = e>0, zcRV, (2.4)

We start with the following lemmas given without proofs and based essentially
on [§].

Lemma 2.1. The functional Jy is coercive and bounded from below on Ny.

Set
U (u) = (J3(u),u). (2.6)
For u € N), we obtain
W@ = [olaP - @ -1 [ (2.7)
= (2-2% /p|Vu\2 — A1 -2 /fu. (2.8)

So it is natural to split A into three subsets corresponding to local maxima,
local minima and points of inflection defined respectively by

N ={ueNy: (¥(u),u) >0}, Ny ={ueNy:(¥(u),u) <0},
NY = {u € Ny : (W) (u),u) = 0}.

Lemma 2.2. Suppose that ug is a local minimizer of Jy on Nx. Then if ug ¢ N)(\),
we have J4 (ug) =0 in H~1.
Lemma 2.3. For each A € (0, Ag) we have J\/}(\J = 0.

By Lemma we have V) = NF UNY for all A € (0,Ag). For u € H\ {0}, let

[ p|Vul? )(N*2)/4
@ -1 T

Lemma 2.4. Suppose that A € (0,Ag) and u € H \ {0}, then
(i) If [ fu <0, then there exists an unique t* =t (u) > t,,, such that tTu € Ny
and

tm = tmax(u) = (

Jn(tTu) = sup Jy(tu).
>t
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(ir) If [ fu > 0, then there exist unique t~ = t~(u), tT = tT(u) such that
0<t™ <tm<th,ttueN{, ttue Ny and

) = tu); “u) = inf :
It u) tS;IT)nJA(U)» It u) Oglflgﬁjx(tu)

Thus we put
c= inf Jy(u), ct = inf Jy(u), ¢ = inf Jy(u).

wEN uGN; ueN

Lemma 2.5. (i) If A € (0,A), then ¢ < ¢t < 0.
(i) If X € (0,42), then ¢= > 0.

3. NONEXISTENCE RESULT
Some properties of a(p).

Proposition 3.1. (1) Assume that p € C'(Q) and there exists b € Q such that
Vp(b)(b—a) <0 and f € C* in a neighborhood of b. Then a(p) = —cc.

(2) If p € CH(Q) satisfying with k > 2 and Vp(z)(x —a) > 0 for all x €
and f € Ct in a neighborhood of a and f(a) # 0, then a(p) = 0 for all N > 3.

(3) If pe HY(Q) N C(Q) and Vp(z)(z —a) >0 a.e x € Q, then a(p) > 0.

Proof. (1) Set ¢ € C§5°(RY) such that

1 ifx € B(0;r)

0 ifz ¢ B(0;2r), (3.1)

0<p<l, wm—{
where 0 <r <1.
Set ¢;(x) = sgu[f(x)]p(j(z — b)) for j € N*. We have
1 fB(b,Ar)ﬁ(m)WSDj(x)F
a(p) < = J -
2 fB(bg) f(@)p;(x)

Using the change of variable y = j(x — b) and applying the dominated convergence
theorem, we obtain

j2 ﬁ(b) fB(O,Qr) |v30(y)‘2
a(p) < o m
|f(b)] fB(o,zr) o)
letting j — oo, we obtain the desired result.
(2) Since p € C1(2) in a neighborhood V of a, we write

p(x) = po + il — al* + 61 (2), (3.2)
where 6; € C1(V) such that

+o(1)].

lim 01 (x)
a—a|z — alk
Thus, we deduce that there exists 0 < r < 1, such that
01(x) < |z —al®, forall z € B(a,2r). (3.4)
Let v () = sgn[f(z)]p(j(z — a)), ¢ € C3°(RY) defined as in (31), we have
1)~ )V @)
~ 2 [ f(@)w;(x)

=0. (3.3)

0 < a(p)
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Using (3.2), we obtain
i Jota |7~ AT Fpa ) T 2~ IV 0P
T2 Je f@)v(@) 2 Jo(a,20) F@)5(@)

Using the change of variable y = j(x —a), and integrating by parts the second term
of the right hand side, we obtain

ke Jpo2n WIFIVEWIP  j [pan 0105 + a)div(y|Ve(y) )
172 [pean G +a)le@) 2 [poon lFE+a)lely)

Using (3.4) and applying the dominated convergence theorem, we obtain

0<a(p) <

| 2

0<alp) <y

kB I50.20) "I Ve(y)?
(N +2)j*2 [f(a |fB(02r) o(y)
n 1 fBO,27‘) ly|*div(y|Ve(y)[?)
N2 27T 1F@] Ty #0)

Therefore, for k > 2 we deduce that a(p) = 0, which completes the proof. (]

0<ap) <

+o(1).

Proof of Theorem Suppose that « is a solution of (L.1]). We multiply (1.1
by Vu(z).(x — a) and integrate over 2, we obtain

[ V@@ - a) = =252 [P (35)

)\/f(a:)Vu(x).(x _a) = —/\/(Vf(x).(a: _a)+ Nf@)ul@),  (3.6)

- /div(p(x)Vu(:v))Vu(a:).(z —a)

N -2

=22 [p@Iu@P - § [ Ve - ava@P @)

1 ou o
-3 | pe—avgE
Combining (3.5)), (3.6) and (3.7, we obtain

N -2

-2 [p@Ivu@)? - 5 [ Vi) - o) Vu@)?
21 z)(x—a Ou s
5 | @)= oG] (38)

2 .
22 [ @ = [(9f@) e - 0+ Nfe)ula),
Multiplying (1.1]) by uu and integrating by parts, we obtain

N [r@vu@p =202 [u@P a2 [ e, @)

From and (3.9), we obtain
—5 [ o)t Va3 /8 o) - @)\ Te2 4 2 [ @) =o.
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Then
1 Vple)(z — a)| V(o)
2 [ f(z)u(x) B

Hence the desired result is obtained.

4. EXISTENCE OF SOLUTIONS

We begin by proving that

1
inf Jy(u) = ¢ < c+ = (poS)NV/2. (4.1)
ueN, N

By some estimates in Brezis and Nirenberg [3], we have

lwo + Rue al2 = lwol3 + R? |uc.qo|2 + 2*R/ lwol? ~2wotie.q
4 orR2 -l /uﬁf;lwo +o(eN-2)/2).
Put
|vua,a 3 = Ao + O(€N72)7 |us,a %I =B+ O(gN)a (4'3)
S =5(1)=A4,B7¥%. (4.4)
Lemma 4.1. Let p € H'(Q) N C(Q) satisfying (1.3) Then we have estimate
[ p@I o
podo + O(eN2) if N—2<k,
< poAg + Are® +o(eF) if N—2>k,

poAo + M(ﬁ]\{,z + M)wneV 2| Ine| +o(eVN72|Ine|) if N -2=k,

where M is a positive constant.

Proof. by calculations,

N [ ()| V(o)
[ p@)I V)P s [ p(@)lEu@)Ple — af?
- [ - [P

-y [ETER)

(2 + |z — al2)N-1"

Suppose that {, =1 in B(a,r) with » > 0 small enough. So, we obtain

2N / p(2)| Vite o (2)?
- p(@)|Vea(a)? o [ P@)a@)e — af?
/Q\BW) @t lo—apyvz & 2)/ @+ |z —a?)"

o p()Ea (£)VE, () (z — a)
20 2)/Q\B<a,r> @+ |z aP)¥ T

a(p). (3.10)

(4.2)
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Applying the dominated convergence theorem,

/p(x)|vu5’a(x)|2 _ (N _ 2)2€N—2/p(x)‘§a(x)| “r — CL| —|—O(€N_2).

(24 |z —al?)N

Using expression (1.3]), we obtain

NN =27 [ o) Vuea (o)
_/ polx — al? + Brlr — al¥+2 4 0(x)|r — alF+2
B(a,T)

(e2+ |z —al?)N

p(x)|€a(m)‘2|$ - a|2 Noo
" »/Q\B(a,r) (€2 + |z — al2)N + 0@ 79).

Using again the definition of £,, and applying the dominated convergence theorem,
we obtain

2" N(N —2)72 /p($)|vua7a(x)‘2

f/ |z - af? +ﬂ/ & — a+2
T ey @ H = a7 Jpen @ F e —aP)V

9($)|$ - a|kJr2 N—2
+ e YY) .
/BW) @+ —ap)¥ ")

We distinguish three cases:
Case 1. If k < N — 2,

2NN —2)2 / ()| Vit o) ?
_ / p—a? / 0(x) |z — a|+2
T S @H = aP)V T S @+ e —aP)N
k42 k42
+ [/ §k|x a| \N _/ §k|x a| ) N} +O(5N_2>
ey 2+ 2 —aP)N T Jam sl E + [z — a)

Using the change of variable y = ¢~!(2—a) and applying the dominated convergence
theorem, we obtain

(N —2)2 / ()| Vite o)

k 5k\y|k+2 k/ 9(a+5y)\y|k+2 k
ZpoBo+5 / — 5 7 oN  XB(0,Z +O(E )
ay (L4 [y2)N gy (L+[y)N PO

Since 6(z) tends to 0 when z tends to a, this gives us
/p(w)lws,a(az)? = podo + BrAre” + o(e").

Case 2. If k > N — 2,
_ T 0(2)e — afF+2
€ 2 - A N -2 2gN-2 / (ﬁk
/p(a:)|Vu ()" = podo + ( )e [ Blar (2 4|z —aP)N

_ / (Be +0(x)) |z — a|k+2}
B(a,m)\Q

(€24 |z —al?)N
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2] k42

Jr(Ni2)25N72/ g:c)|x a|2 -
B(a,T) (E + |.’I? - a’| )

By the change of variable y = x — a, we obtain

+0(eN72).

. N (Br + 0(a + y))|y|F+2
/p(x)Wug,a(fC)\ =podo + (N —2)% /B(O,‘f') (e2 + [y]2)N

_ 0(a+ y)ly/F*? _
+ N — 2 25N 2/ _— + O €N 2 .
W=D em G TOET)

Put M := max6(z) where 6(z) is given by (1.3). Then
€N

/mmw%amﬁ
|y|k+2

=poAo +eVN3(N —2)%(3 +M/ — T _dy+ 0N,
PoAo ( ) ( k ) B(0.r) (62—|—|y\2)N Y ( )

Applying the dominated convergence theorem,

/p(x)|Vu€’a(m)\2 = poAo + 0N 2.

Case 3. If kK = N — 2, following the same previous steps, we obtain
[ p@Iueao

- f(x)|z — af*+?
— podg + (N — 2)2eN 2/ ) —alm
poAo + ( )°e O (2 + |z — a]?)N

+(N—2)25N—2[/ w_/ M}
B

B(a,r) (€2 + |z —al)N (@@ 2+ |z —al?)V

+0@EN2).
Therefore,
/mww%wmﬁ
~ _2+0(x))|x —alV
A (N — 92N 2/ (Bn-2
Pt (N =2 e T @A )"
_ 0(x)|z — a|F+? _
N — 2)2:N 2/ O(eN-2).
TN =D e @t fr—ap¥ O
Then
/mmw%amﬁ

N

< podo + (N — 2)2eN=2(35_ M/ __lw=d® Ny,
< poAo + ( )°e (Bn—2+ M) o) (52—|—|x—a|2)N+ (e )
On the other hand

e [l e [ o
Blar) (€2 + |z —al?)N o (E@+rH)N

_ 1 ez [T ()N N-2
T aNtNe /0 @y o
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and

eN-2 / _lw—a® L N2 Ine| + o(e¥ 2| Ing]), (4.5)
B(a,T) (62 + |‘T - a’|2)N 2

Therefore,

2)2

N —
/p(l')wue,a(x)\Q < podo + (7(5N—2 + M)wneM 2| Ine| + o(eVN 72| In¢g]).

2
]

Knowing that wy # 0, we set Q' C  as a set of positive measure such that
wo > 0 on Q. Suppose that a € Q' (otherwise replace wg by —wg and f by —f).

Lemma 4.2. For each R >0 and 2k > N — 2, there exists €9 = o(R,a) > 0 such
that

1
Ixn(wo + Rueq) < ¢+ N(poS)N/Q, for all 0 < e < &p.

Proof. We have

2

1 .
—;/\wo—i-Rus,aP —)\/fwo—)\R/fuaya.

Using (4.2)), (4.3) and the fact that wq satisfies (L.1]), we obtain
Ix(wo + Rue,q)

R? s R¥ 2" -1 2" -1 (N—2)/2
Sc—&—? p|Vue o —?A—R uZ o two +o(e ).
Taking w = 0 the extension of wy by 0 outside of 2, it follows that
(N+2)/2
2% -1, €
/ue,a Wo = \/]RN w(z)fa(x) (62 ¥ |J3 _ a|2)(1\/‘+2)/2
1 z
_ (N-2)/2 Lot
D [ w@ao) o)
where 9 (x) = (1 + |z|?)N+2)/2 ¢ LY(RY). We deduce that

1 T
/RN w(x)fa(x)s—Nw(g) —D ase—0.

1 R?
Ixn(wo + Rue ) = 5/p|Vwo|2 +R/prows,a + —/p|vuw|2

Then
Consequently
J)\(wo + Rug,a)
2 2" . 4.6
<c+ % /p|VuE,a|2 - };—*B — R¥eW=D2D 4 o(e(N-2/2), (4.6)

Replacing [ p|Vue q|? by its value in ([4.6), we obtain
Ix(wo + Rue q)
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*

et Bpodg— BB —c(N-2/2DR> =1 1 o(c(N-2/2) jf | > N2,

< c+ %2])0140 — 1372:3 + ﬂkAkSk + O(Ek) if k< %,
— 2 2* 2

c+ Epodo — &-B - €(N_2)/2(%6(N72)/2A(N72)/2

~DR¥ 1) 4 o= ND12) if k= N=2,

Using that the function R — ®(R) = R;BfRQ—iAO attains its maximum & (po.S)™/?
at the point Ry = (42)V=2)/% we obtain

Ix(wo + Rue q)
et L(poS)N/2 — N-D2DRY T 4 p(e(N-D/2) if k> N2

c+ % (PoS)N/? + Ape® + o(eF) if k< 82,
2
c+ % (poS)N? — eN=2)/2 (%5(1\172)/214(1\172)/2
~DRYTY) 4+ o= ND12) if k= N=2,
So for ey = o(R,a) > 0 small enough, k > Y2 or k = £-2 and
2DR? 3
Bin—2)2 > F——,
(N-2)/2 B(N72)/2
we conclude that 1
Ix(wo + Rug,q) < ¢+ N(poS)Nm, (4.7)
for all 0 < € < g9. O

Proposition 4.3. Let {u,} C N, be a minimizing sequence such that:
(a) Ja(up) — ¢ and
(b) [[J3(un)l|-1 — 0.
Then for all X € (0,A0/2), {un} admits a subsequence that converges strongly to a
point wy in H such that wy € Ny and Jy(wy) =c™.
Proof. Let v € H be such that ||u|| = 1. Then

tT(wue Ny, and Jy(tT(v)u) = max I (tu).

The uniqueness of t*(u) and its extremal property give that u — t*(u) is a con-
tinuous function. We put
Uy={u=0orueH\{0}: |ul < tﬂﬁ)},
u
Uz ={ue H\ {0} : [Jul| > t+(m)}-
Then H\ N, =U; UU, and N;' C U. In particular wg € U;.
As in [8], there exists Ry > 0 and ¢ > 0 such that wg + Roue,q € Uz. We put

F ={h:[0,1] — H continuous, h(0) = wy and h(1) = wo + Roue 4 }-
It is clear that h : [0,1] — H with h(t) = wo + tRou. o belongs to F. Thus by
Lemma [£.2] we conclude that

_ L g2
co = jinf max IA(h(t)) < e+ 57 (PoS) ™" (4.8)
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Since h(0) € Uy, h(1) € Uy and h is continuous, there exists tg €]0, 1[ such that
h(ty) € Ny Hence
co > ¢ = inf Jy(u). (4.9)
ueNy
Applying again the Ekeland variational principle, we obtain a minimizing sequence
(un) C Ny such that (a) Jx(u,) — ¢~ and (b) ||J5(un)||-1 — 0. Thus, we obtain
a subsequence (u,,) such that

u, — wi strongly in H.
This implies that w, is a critical point for Jx, wy € Ny and Jy(wy) = c¢™. ]

Proof of Theorem[1.5 From the facts that wo € N}\, w1 € Ny and Ny NNy =0

for A € (0, %), we deduce that problem (|1.1]) admits at least two distinct solutions
in H. O
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