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MONOTONE ITERATIVE METHOD FOR FRACTIONAL
DIFFERENTIAL EQUATIONS

ZHANBING BAI, SHUO ZHANG, SUJING SUN, CHUN YIN

Abstract. In this article, by using the lower and upper solution method, we

prove the existence of iterative solutions for a class of fractional initial value

problem with non-monotone term

Dα0+u(t) = f(t, u(t)), t ∈ (0, h),

t1−αu(t)
˛̨
t=0

= u0 6= 0,

where 0 < h < +∞, f ∈ C([0, h] × R,R), Dα0+u(t) is the standard Riemann-
Liouville fractional derivative, 0 < α < 1. A new condition on the nonlinear

term is given to guarantee the equivalence between the solution of the IVP

and the fixed-point of the corresponding operator. Moreover, Moreover, we
show the existence of maximal and minimal solutions.

1. Introduction

Fractional differential equations have recently proved to be useful tools in the
modeling of many physical phenomena. It draws a great application in nonlinear
oscillations of earthquakes, many physical phenomena such as seepage flow in porous
media and in fluid dynamic traffic model. For more details on fractional calculus
theory, one can see [1-6, 8-18]. Some recent contributions to the theory of fractional
differential equations initial value problems can be seen in [1].

In [15], the lower and upper solution method was used to study the IVP

Dα
0+u(t) = f(t, u(t)), t ∈ (0, 1), (0 < α < 1),

u(0) = 0,

where f : [0, 1] × [0,+∞) → [0,+∞) is continuous and f(t, ·) is nondecreasing for
each t ∈ [0, 1].

In [9, 13], the existence and uniqueness of solution of the initial value problem

Dα
0+u(t) = f(t, u(t)), (0 < α < 1; t > 0), (1.1)

Dα−1
0+ u(0+) = u0. (1.2)

was obtained under the assumption that f : [0, 1]× R→ R is Lipchitz continuous,
by using the Banach concentration mapping principle.
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In [17], the existence and uniqueness of solution of the initial value problem

Dα
0+u(t) = f(t, u(t)), t ∈ (0, T ],

t1−αu(t)
∣∣
t=0

= u0

was discussed by using the method of lower and upper solutions and its associated
monotone iterative method. In [12], a new proof of the maximum principle was
given by using the completely monotonicity of the Mittag-Leffler type function.
We refer the readers to [10] for other applications of monotone method to various
fractional differential equations.

In the previous works, the nonlinear term has to satisfy the monotone or other
control conditions. In fact, the nonlinear fractional differential equation with non-
monotone term can respond better to impersonal law, so it is very important to
weaken control conditions of the nonlinear term.

Motivated by the above references, we focus our attention on the problem

Dα
0+u(t) = f(t, u(t)), t ∈ (0, h), (1.3)

t1−αu(t)
∣∣
t=0

= u0, (1.4)

where f ∈ C([0, h] × R,R), Dα
0+u(t) is the standard Riemann-Liouville fractional

derivative, 0 < α < 1. The existence of the blow-up solution, that is to say
u ∈ C(0, h] and limt→0+ u(t) = ∞, is obtained by the use of the lower and upper
solution method.

This paper is organized as follows. In section 2, we recall briefly some notion of
fractional calculus and theory of the operators for integration and differentiation of
fractional order. Section 3 is devoted to the study of the existence of solution for
utilizing the method of upper and lower solutions. The existence of maximal and
minimal solutions is also given.

2. Preliminaries

Given 0 ≤ a < b < +∞ and r > 0, define a set

Cr[a, b] = {u : u ∈ C(a, b], (t− a)ru(t) ∈ C[a, b]}.

Clearly, Cr[a, b] is a linear space with the normal multiplication and addition. Given
u ∈ Cr[a, b], define

‖u‖ = max
t∈[a,b]

(t− a)r|u(t)|,

then (Cr[a, b], ‖·‖) is a normed space. Moreover, if {un} ⊂ Cr[a, b] and ‖un−u‖ → 0,
then one has u ∈ Cr[a, b]. In fact, setting vn(t) = (t−a)run(t), v(t) = (t−a)ru(t),
then vn ∈ C[a, b] and

‖un − u‖ → 0⇔ ‖vn − v‖∞ → 0.

By the completeness of the space C[a, b], one has v ∈ C[a, b], so u(t) = (t −
a)−rv(t) ∈ Cr[a, b]. Thus, (Cr[a, b], ‖ · ‖) is a Banach space.

Lemma 2.1 ([9]). The linear initial value problem

Dα
0+u(t) + λu(t) = q(t),

t1−αu(t)
∣∣
t=0

= u0,
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where λ ≥ 0 is a constant and q ∈ L(0, h), has the following integral representation
for a solution

u(t) = Γ(α)u0t
α−1Eα,α(−λtα) +

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)q(s)ds.

Here, Eα,α(t) is a Mittag-Leffler function.

Lemma 2.2. For 0 < α ≤ 1, the Mittag-Leffler type function Eα,α(−λtα) satisfies

0 ≤ Eα,α(−λtα) ≤ 1
Γ(α)

, t ∈ [0,∞), λ ≥ 0.

Proof. According to [12, 14], the function g(t) := Eα,α(−λtα), t ∈ (0,+∞) is
completely monotonic, that is to say that g(t) possesses of derivatives g(n)(t) for
all n = 0, 1, 2, . . . , and (−1)nf (n)(t) ≥ 0 for all t ∈ (0,∞). This combined with
the fact that Eα,α(−λtα) is continuous on R and Eα,α(0) = 1/Γ(α) yields the
conclusion. �

Lemma 2.3 ([7]). Suppose that E is an ordered Banach space, x0, y0 ∈ E, x0 ≤ y0,
D = [x0, y0], T : D → E is an increasing completely continuous operator and
x0 ≤ Tx0, y0 ≥ Ty0. Then the operator T has a minimal fixed point x∗ and a
maximal fixed point y∗. If we let

xn = Txn−1, yn = Tyn−1, n = 1, 2, 3, . . . ,

then

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ yn ≤ · · · ≤ y2 ≤ y1 ≤ y0,
xn → x∗, yn → y∗.

Definition 2.4. A function v(t) ∈ C1−α[0, h] is called as a lower solution of (1.3),
(1.4), if it satisfies

Dα
0+v(t) ≤ f(t, v(t)), t ∈ (0, h), (2.1)

t1−αv(t)
∣∣
t=0
≤ u0. (2.2)

Definition 2.5. A function w(t) ∈ C1−α[0, h] is called as an upper solution of
(1.3), (1.4), if it satisfies

Dα
0+w(t) ≥ f(t, w(t)), t ∈ (0, h), (2.3)

t1−αw(t)
∣∣
t=0
≥ u0. (2.4)

3. Existence of solutions

The following assumptions will be used in our main results:
(A1) f : [0, h] × R → R and there exist constants A,B ≥ 0 and 0 < r1 ≤ 1 <

r2 < 1/(1− α) such that for t ∈ [0, h]

|f(t, u)− f(t, v)| ≤ A|u− v|r1 +B|u− v|r2 , u, v ∈ R. (3.1)

(A2) Assume that f : [0, h]× R→ R satisfies

f(t, u)− f(t, v) + λ(u− v) ≥ 0, for û ≤ v ≤ u ≤ ũ, (3.2)

where λ ≥ 0 is a constant and û, ũ are lower and upper solutions of Problem
(1.3), (1.4) respectively.
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Remark 3.1. Assume that f(t, u) = a(t)g(u) and g is a Hölder continuous func-
tion, a(t) is bounded, then (3.1) holds.

Theorem 3.2. Suppose (A1) holds. The function u solves problem (1.3), (1.4) if
and only if it is a fixed-point of the operator T : C1−α[0, h]→ C1−α[0, h] defined by

(Tu)(t) = Γ(α)u0t
α−1Eα,α(−λtα)

+
∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)[f(s, u(s)) + λu(s)]ds.

Proof. Firstly, we need to show that the operator T is well defined, i.e., for every
u ∈ C1−α[0, h] and t > 0, the integral∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)[f(s, u(s)) + λu(s)]ds

belongs to C1−α[0, h].
Under condition (3.1),

|f(t, u)| ≤ A|u|r1 +B|u|r2 + C,

where C = maxt∈[0,h] f(t, 0).
By Lemma 2.2, for u(t) ∈ C1−α[0, h], we have∣∣∣t1−α ∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)[f(s, u(s)) + λu(s)]ds
∣∣∣

≤ t1−α
∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)|f(s, u(s)) + λu(s)|ds

≤ t1−α
∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)
(
A|u|r1 + λ|u|+B|u|r2 + C

)
ds

≤ t1−α
∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)
{
As(α−1)r1 [s1−α|u(s)|]r1

+ λsα−1s1−α|u(s)|+Bs(α−1)r2 [s1−α|u(s)|]r2 + C}ds

≤ A‖u‖r1t1−α

Γ(α)

∫ t

0

(t− s)α−1s(α−1)r1ds+
λ‖u‖t1−α

Γ(α)

∫ t

0

(t− s)α−1sα−1ds

+
B‖u‖r2t1−α

Γ(α)

∫ t

0

(t− s)α−1s(α−1)r2ds+
Ct

Γ(α+ 1)

≤ A‖u‖r1 Γ((α− 1)r1 + 1)
Γ((α− 1)r1 + α+ 1)

t(α−1)r1+α+1−α + λ‖u‖ Γ(α)
Γ(2α)

tα

+B‖u‖r2 Γ((α− 1)r2 + 1)
Γ((α− 1)r2 + α+ 1)

t(α−1)r2+α+1−α +
Ct

Γ(α+ 1)

≤ Γ[(α− 1)r1 + 1]Ah(α−1)r1+1

Γ[(α− 1)r1 + α+ 1]
‖u‖r1 + λ‖u‖ Γ(α)

Γ(2α)
hα

+
Γ[(α− 1)r2 + 1]Bh(α−1)r2+1

Γ[(α− 1)r2 + α+ 1]
‖u‖r2 +

Ch

Γ(α+ 1)
.

That is to say that the integral exists and belongs to C1−α[0, h].
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The the above inequality and the assumption 0 < r1 ≤ 1 < r2 < 1/(1−α) imply
that

lim
t→0+

t1−α
∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)[f(s, u(s)) + λu(s)]ds = 0.

Combining with the fact that limt→0+Eα,α(−λtα) = Eα,α(0) = 1/Γ(α) yields that
limt→0+ t

1−α(Tu)(t) = u0.
The above arguments combined with Lemma 2.1 implies that the fixed-point of

the operator T solves (1.3), (1.4). And the vice versa. The proof is complete. �

In the following, we consider the compactness of a set of the space Cr[0, h]. Let
F ⊂ Cr[0, h] and E = {g(t) = trh(t) | h(t) ∈ F}, then E ⊂ C[0, h]. It is clear that
F is a bounded set of Cr[0, h] if and only if E is a bounded set of C[0, h].

Therefore, to proof that F ⊂ Cr[0, h] is a compact set, it is sufficient to prove
that E ⊂ C[0, h] is a bounded and equicontinuous set.

Theorem 3.3. Suppose (A1) holds. Then T is a completely continuous operator.

Proof. Given un → u ∈ C1−α[0, h], with the definition of T and condition (A1),
one has

‖Tun − Tu‖
= ‖t1−α(Tun − Tu)‖∞

= max
0≤t≤h

∣∣∣t1−α ∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)[f(s, un)− f(s, u) + λ(un − u)]ds
∣∣∣

≤ 1
Γ(α)

max
0≤t≤h

t1−α
∫ t

0

(t− s)α−1[A|un − u|r1 +B|un − u|r2 + λ|un − u|]ds

≤ 1
Γ(α)

[
A max

0≤t≤h
t1−α

∫ t

0

(t− s)α−1s−r1(1−α)sr1(1−α)|un − u|r1ds

+ λ max
0≤t≤h

t1−α
∫ t

0

(t− s)α−1s−(1−α)s(1−α)|un − u|ds

+B max
0≤t≤h

t1−α
∫ t

0

(t− s)α−1s−r2(1−α)sr2(1−α)|un − u|r2ds
]

≤ 1
Γ(α)

[
A‖un − u‖r1 max

0≤t≤h
t1−α

∫ t

0

(t− s)α−1s−r1(1−α)ds

+ λ‖un − u‖ max
0≤t≤h

t1−α
∫ t

0

(t− s)α−1s−(1−α)ds

+B‖un − u‖r2 max
0≤t≤h

t1−α
∫ t

0

(t− s)α−1s−r2(1−α)ds
]

≤ A‖un − u‖r1Γ[1− r1(1− α)]
Γ[1− r1(1− α) + α]

h1−r1(1−α) +
λ‖un − u‖Γ[α]

Γ[2α]
hα

+
B‖un − u‖r2Γ[1− r2(1− α)]

Γ[1− r2(1− α) + α]
h1−r2(1−α)

→ 0, (n→∞).

That is to say that T is continuous.
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Suppose that F ⊂ C1−α[0, h] is a bounded set. The argument as in the proof of
Theorem 3.2 shows that T (F ) ⊂ C1−α[0, h] is bounded.

At last, we prove the equicontinuity of T (F ). Let f1(t, u) = f(t, u) + λu. Given
ε > 0, for every u ∈ F and t1, t2 ∈ [0, h], t1 ≤ t2,∣∣[t1−α(Tu)(t)]t=t2 − [t1−α(Tu)(t)]t=t1

∣∣
≤
[
Γ(α)u0Eα,α(−λtα)

]t2
t1

+
[
t1−α

∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)f1(s, u(s))ds
]t2
t1

≤
[
Γ(α)u0Eα,α(−λtα)

]t2
t1

+
1

Γ(α)

∫ t2

t1

t1−α2 (t2 − s)α−1|f1(s, u(s))|ds

+
1

Γ(α)

∫ t1

0

[
t1−α2 (t2 − s)α−1 − t1−α1 (t1 − s)α−1

]
sα−1

∣∣s1−αf1(s, u(s))
∣∣ ds.

For the first term of the above formula, by the function Eα,α(−λtα) is continuous
and therefore uniformly continuous on [0, h], there exists δ1 > 0 such that when
|t2 − t1| < δ1, there is [

Γ(α)u0Eα,α(−λtα)
]t2
t1
<
ε

3
;

For the second term, by the continuity of t1−α2 (t2 − s)α−1|f1(s, u(s))|, there is a
positive M1 such that

1
Γ(α)

|t1−α2 (t2 − s)α−1f1(s, u(s))| < M1,

Thus, letting δ2 = ε/(3M1), when |t2 − t1| < δ2, we have

1
Γ(α)

∫ t2

t1

t1−α2 (t2 − s)α−1|f1(s, u(s))|ds < ε

3
;

For the third term,
∫ t1
0
sα−1ds = (t1)α−1/(α−1). By the continuity of the function

s1−αf1(s, u(s)), there is a positive constant M2 such that

|s1−αf1(s, u(s))| ≤M2;

The function t1−α2 (t2− s)α−1− t1−α1 (t1− s)α−1 is continuity and therefore uniform
continuity on [0, h]3, so there exists δ3 > 0 such that when |t2 − t1| < δ3, there is

1
Γ(α)

|t1−α2 (t2 − s)α−1 − t1−α1 (t1 − s)α−1| < ε(α− 1)
3M2hα−1

,

thus
1

Γ(α)

∫ t1

0

[
t1−α2 (t2 − s)α−1 − t1−α1 (t1 − s)α−1

]
sα−1

∣∣s1−αf(s, u(s))
∣∣ ds < ε

3
.

To sum up, Given ε > 0, for every u ∈ F and t1, t2 ∈ [0, h], let δ = min{δ1, δ2, δ3},
when |t2 − t1| < δ, there holds∣∣[t1−α(Tu)(t)]t=t2 − [t1−α(Tu)(t)]t=t1

∣∣ < ε.

That is to say that T (F ) is equicontinuous. The proof is complete. �

Theorem 3.4. Assume (A1), (A2) hold, and v, w ∈ C1−α[0, h] are lower and upper
solutions of (1.3) and (1.4) respectively, such that

v(t) ≤ w(t), 0 ≤ t ≤ h. (3.3)
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Then, the fractional IVP (1.3), (1.4) has a minimal solution x∗ and a maximal
solution y∗ such that

x∗ = lim
n→∞

Tnv, y∗ = lim
n→∞

Tnw.

Proof. Clearly, if functions v, w are lower and upper solutions of IVP (1.3), (1.4),
then there are v ≤ Tv,w ≥ Tw. In fact, by the definition of the lower solution,
there exist q(t) ≥ 0 and ε ≥ 0 such that

Dα
0+v(t) = f(t, v(t))− q(t), t ∈ (0, h),

t1−αv(t) = u0 − ε.
Using Theorem 3.2 and Lemma 2.2, one has

v(t) = Γ(α)(u0 − ε)tα−1Eα,α(−λtα)

+
∫ t

0

(t− s)α−1Eα,α(−λ(t− s)α)[f(s, v(s)) + λv(s)− q(s)]ds

≤ (Tv)(t).

Similarly, there is w ≥ Tw.
By Theorem 3.3 the operator T : C1−α[0, h] → C1−α[0, h] is increasing and

completely continuous. Setting D := [v, w], by the use of Lemma 2.3, the existence
of x∗, y∗ is obtained. The proof is complete. �
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