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EXISTENCE AND NONEXISTENCE OF NONTRIVIAL
SOLUTIONS FOR CHOQUARD TYPE EQUATIONS

TAO WANG

Abstract. In this article, we consider the nonlocal problem

−∆u+ u = q(x)
“Z

RN

q(y)|u(y)|p

|x− y|N−α
dy
”
|u|p−2u, x ∈ RN ,

where N ≥ 3, α ∈ (0, N), N+α
N

< p < N+α
N−2

and q(x) is a given potential.

Under suitable assumptions on q(x), we prove the existence and nonexistence

of nontrivial solutions.

1. Introduction

In this article, we are concerned with the equation

−∆u+ u = q(x)
(∫

RN

q(y)|u(y)|p

|x− y|N−α
dy
)
|u|p−2u, x ∈ RN , (1.1)

where N ≥ 3, α ∈ (0, N), N+α
N < p < N+α

N−2 , q(x) ≥ 0 and q(x) is continuous in RN .
It is well known that when N = 3, α = 2, p = 2 and q ≡ 1, Equation (1.1)

becomes the classical stationary Choquard equation

−∆u+ u = (|u|2 ∗ 1
|x|

)u, in R3. (1.2)

It appeared at least as early as in 1954, in a work by Pekar describing the quantum
mechanics of a polaron at rest[26]. In 1976, Choquard used (1.2) to describe an
electron trapped in its own hole, in a certain approximation to Hartree-Fock theory
of one component plasma [11]. In 1996, Penrose proposed (1.2) as a model of self-
gravitating matter, in a program in which quantum state reduction is understood
as a gravitational phenomenon [20], see also [10, 13, 25] for more details.

In 1977, using symmetric rearrangement inequalities, Lieb [11] showed the ex-
istence and uniqueness of the minimizer of (1.2) up to translations. Later, Lions
[14] proved the existence of a sequence of radially symmetric solutions to (1.2) by
dual variational methods. Further results for related problems can be founded in
[1, 6, 15, 19, 24, 27, 28] and references therein. In recent years, the existence and
properties of solutions for the generalized Choquard type equation (1.1) with q ≡ 1
have been considered by many authors. In 2010, Ma and Zhao [18] proved the
positive solutions for the generalized Choquard equation (1.1) with q ≡ 1 must be
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radially symmetric and monotone decreasing about some point under appropriate
assumptions on p, α,N , see also [5, 8]. They also showed the positive solutions of
(1.2) is uniquely determined, up to translations. Moroz and Van Schaftingen [21]
obtained the existence, regularity, positivity and radial symmetry of ground state
solution of (1.1) with q ≡ 1 for the optimal range of parameters. They also derived
the sharp decay asymptotic of the ground state solution, see also [22]. Alves and
Yang [2] studied the multiplicity and concentration behaviour of positive solutions
for quasilinear Choquard equation

− εp∆pu+ V (x)|u|p−2u = εµ−N
(∫

RN

Q(y)F (u(y))
|x− y|µ

dy
)
Q(x)f(u), in RN , (1.3)

where ∆p is the p-Laplacian operator, 1 < p < N , V and Q are two continuous real
functions on RN , F (s) is the primate function of f(s) and ε is a positive parameter,
see [3, 7, 23] for more related problems.

Motivated by the above work, in this article, we consider (1.1) with the nonlinear
potential q on the right side of the equation. To be precise, using variational
method, we investigate the existence and nonexistence of nontrivial solutions to
(1.1) where nonlinear potential q is radial or non-radial. To deduce our statements,
we need the following assumptions:

(H1) lim|x|→∞ q(x) = q∞, where q∞ > 0 is a positive number;
(H2) lim|x|→∞ q(x) = 0;
(H3) q is bounded in RN and there exists R0 > 0 such that min2R≤|x|≤4R q(x) ≥

max|x|≤R q(x) for all R ≥ R0;
(H4) q is radial in RN and q(r) ≤ C(1 + rl) with 0 ≤ l < (N−1)p−N−α

2 , where
C > 0 is a positive constant.

We remark (H1)–(H4) were introduced by Ding and Ni [9] with some modifications.
Recall here that u ∈ H1(RN ) is said to be a ground state solution to (1.1), if u
solves (1.1) and minimizes the energy functional associated with (1.1) among all
possible nontrivial solutions. Now we are ready to state our main results.

Theorem 1.1. Let N ≥ 3, α ∈ (0, N), p ∈ [2, N+α
N−2 ) and q satisfies (H1). Then

the following statements are true:

(i) If lim|x|→∞ q(x) = infx∈RN q(x), then (1.1) has a ground state solution in
H1(RN ).

(ii) If lim|x|→∞ q(x) = supx∈RN q(x) and q is not constant, then (1.1) has no
ground state solution in H1(RN ).

Note that if α ≤ N − 4, then assumptions of Theorem 1.1 can not be satisfied.

Theorem 1.2. Let N ≥ 3, α ∈ (0, N), p ∈ (N+α
N , N+α

N−2 ). Then the following
statements are true:

(i) If q satisfies (H2) and q 6≡ 0. Then (1.1) has a ground state solution in
H1(RN ).

(ii) Suppose q satisfies (H3) and q is not constant. Then (1.1) has no ground
state solution in H1(RN ).

Theorem 1.3. Let N ≥ 3, α ∈ (0, N), p ∈ (N+α
N , N+α

N−2 ). If q satisfies (H4) and
q 6≡ 0, then (1.1) has a nonnegative radial solution in H1

r (RN ) defined in section 2.
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Remark 1.4. If the nontrivial radial solution u obtained in Theorem 1.3 tends
to zero exponentially fast at infinity, then according to the proof of symmetric
criticality principle (see Theorem 1.28 in[29]), we conclude u is a solution of (1.1)
in H1(RN ).

Theorem 1.5. Let N ≥ 3, α ∈ (0, N), p ∈ (N+α
N−1 ,

N+α
N−2 ). Suppose that q satisfies

(H4) and q(r) → +∞ as r → ∞. Then for large k, (4.1) has two nontrivial weak
solutions in H1

0 (Bk) defined in section 2, one of which is radial while the other is
not.

The remainder of this article is organized as follows. In section 2, we introduce
some notation and give some important compactness lemmas, which play a key
role for the the existence results. In sections 3 and 4, we prove our main results.
Throughout the paper, we write C > 0 for different positive constant.

2. Preliminary results

We shall use the following notation:
• Let N and k be positive integers and BR(0) be an open ball of radius R centered
at the origin in RN .
• H1(RN ) is the usual Sobolev space with the standard norm

‖u‖ =
(∫

RN
(|∇u|2 + |u|2)dx

)1/2

.

H1
r (RN ) is the set of all radial functions in H1(RN ).
• Let C∞c (Bk(0)) be the set of infinitely differential functions with compact support
in Bk(0) and H1

0 (Bk) be the closure of C∞c (Bk(0)) in the norm defined by

‖u‖H1
0 (Bk) =

(∫
Bk(0)

(|∇u|2 + |u|2)dx
)1/2

.

H1
0,r(Bk) is the set of all radial functions in H1

0 (Bk). We can identify u ∈ H1
0 (Bk)

with its extension to RN obtained by setting u = 0 in RN\Bk.
• Let Ω ⊂ RN be a domain. For 1 ≤ s < ∞, Ls(Ω) denotes the Lebesgue space
with the norm

|u|Ls(Ω) =
(∫

Ω

|u|sdx
)1/s

.

If Ω = RN , we write |u|Ls = |u|Ls(Ω).
• The dual space of H1(RN ) is denoted by H−1(RN ).
• Let 〈·, ·〉 be the duality pairing between H1(RN ) and H−1(RN ).
From this, the energy functional I : H1(RN ) → R associated with (1.1) is defined
by

I(u) =
1
2
‖u‖2 − 1

2p

∫
RN

∫
RN

q(x)q(y)|u(x)|p|u(y)|p

|x− y|N−α
dx dy.

Suppose q is bounded in RN . Then the functional is well defined by Hardy-
Littlewood-Sobolev inequality (see[12]), which states that if N+α

N ≤ p ≤ N+α
N−2

and u ∈ L
2Np
N+α (RN ), then∫

RN

∫
RN

q(x)q(y)|u(x)|p|u(y)|p

|x− y|N−α
dx dy ≤ C(N,α, s, t)|q|2L∞ |up|Ls |up|Lt

= C(N,α, s, t)|q|2L∞ |u|
p
Lsp |u|

p
Ltp <∞.

(2.1)
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where C depends only on N,α, s, t, and 1
s + 1

t + N−α
N = 2. This also implies that

I is C1 functional whose derivative is given by

〈I ′(u), v〉 =
∫

RN
(∇u∇v + uv)dx−

∫
RN

∫
RN

q(x)q(y)|u(y)|p|u(x)|p−2u(x)v(x)
|x− y|N−α

dx dy

for all v ∈ H1(RN ). It is easy to see the critical points of I are solutions to (1.1)
in the weak sense. We consider the Nehari manifold

N = {u ∈ H1(RN )\{0} : 〈I ′(u), u〉 = 0}
and c = infu∈N I(u).

In what follows, we consider the limit problem when q satisfies (H1)

−∆u+ u = (
∫

RN

q2
∞|u(y)|p

|x− y|N−α
dy)|u|p−2u, x ∈ RN . (2.2)

The associated energy functional is

I∞(u) =
1
2
‖u‖2 − 1

2p

∫
RN

∫
RN

q2
∞|u(x)|p|u(y)|p

|x− y|N−α
dx dy,

and the corresponding Nehari manifold is

N∞ = {u ∈ H1(RN )\{0} : 〈I ′∞(u), u〉 = 0}.
We define c∞ = infu∈N∞ I∞(u).

For convenience, we introduce

D(u) =
∫

RN

∫
RN

q(x)q(y)|u(x)|p|u(y)|p

|x− y|N−α
dx dy, J(u) =

‖u‖2

D1/p(u)
.

The existence of ground state solution for (2.2) has been investigated in [21, The-
orem 1].

Lemma 2.1 ([21]). Let N ≥ 3, α ∈ (0, N), p ∈ (N+α
N , N+α

N−2 ). Then there exists
a ground state solution w ∈ H1(RN ) such that w satisfies (2.2) weakly in RN and
c∞ = I∞(w).

In the sequel, we shall establish a compactness lemma which plays an important
role in our existence results. To achieve this, we need some basic lemmas.

Lemma 2.2 ([21]). Let Ω ⊂ RN be a domain, s ∈ [1,∞) and (un)n≥1 be a bounded
sequence in Lr(Ω). If un → u almost everywhere on Ω as n → ∞, then for every
s ∈ [1, r],

lim
n→∞

∫
Ω

∣∣|un|s − |un − u|s − |u|s∣∣r/s = 0.

Lemma 2.3 ([30]). Let Ω ⊂ RN be a domain, s ∈ (1,∞) and (un)n≥1 be a bounded
sequence in Ls(Ω). If un → u almost everywhere on Ω as n → ∞, then un ⇀ u
weakly in Ls(Ω).

According to Lemmas 2.2 and 2.3, we obtain the following three lemmas, whose
proofs are similar as that of [16, Proposition A.1] and [17, Lemma 2.15] with some
necessary modifications. For the sake of completeness, we prove them here. In ad-
dition, we remark that we can identify u ∈ Ls(Ω) with its extension to RN obtained
by setting u = 0 in RN\Ω, which ensures that we can use Hardy-Littlewood-Sobolev
inequality to handle with the nonlocal problem.
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Lemma 2.4. Let N ≥ 3, α ∈ (0, N), p ∈ (N+α
N , N+α

N−2 ) and suppose q is bounded in

RN. If (un)n≥1 is a bounded sequence in L
2Np
N+α (RN ), and un → u almost everywhere

on RN as n→∞, then

lim
n→∞

(D(un)− D(un − u)) = D(u).

Proof. The proof can be split into three steps.
Step 1. For every n, we have

D(un)− D(un − u)

=
∫

RN

∫
RN

q(x)q(y)(|un(y)|p − |un − u|p(y))(|un(x)|p − |un − u|p(x))
|x− y|N−α

dx dy

+ 2
∫

RN

∫
RN

q(x)q(y)(|un(y)|p − |un − u|p(y))|un − u|p(x)
|x− y|N−α

dx dy

=: I1 + 2I2.

Step 2. By Lemmas 2.2 and 2.3, the following statements are true, as n→∞,

q(|un|p − |un − u|p)→ q|u|p strongly in L
2N
N+α (RN ), (2.3)∫

RN

|un(y)|p − |un − u|p(y)
|x− y|N−α

dy →
∫

RN

|u(y)|p

|x− y|N−α
dy

strongly in L
2N
N−α (RN ),

(2.4)

q|un − u|p ⇀ 0 weakly in L
2N
N+α (RN ). (2.5)

Step 3. By (2.1) and (2.3), we obtain

|I1 − D(u)|

≤ |
∫

RN

∫
RN

(
q(x)q(y)(|un(y)|p − |un − u|p(y)− |u(y)|p)(|un(x)|p

− |un − u|p(x))
)/
|x− y|N−α dx dy|

+ |
∫

RN

∫
RN

q(x)q(y)|u(y)|p(|un(x)|p − |un − u|p(x)− |u(x)|p)
|x− y|N−α

dx dy|

≤ C|q|L∞ |q|un|p − q|un − u|p − q|u|p|
L

2N
N+α
||un|p − |un − u|p|

L
2N
N+α

+ C|q|L∞ |q|un|p − q|un − u|p − q|u|p|
L

2N
N+α
|u|p

L
2Np
N+α

→ 0,

(2.6)

as n→∞. By (2.1),(2.3), (2.4) and (2.5), we conclude that

|I2| ≤ |
∫

RN

∫
RN

q(x)q(y)(|un(y)|p − |un − u|p(y)− |u(y)|p)|un − u|p(x)
|x− y|N−α

dx dy|

+ |
∫

RN

∫
RN

q(x)q(y)|u(y)|p|un − u|p(x)
|x− y|N−α

dx dy| → 0,

as n→∞. Then the proof is complete. �

Lemma 2.5. Let N ≥ 3, α ∈ (0, N), p ∈ [2, N+α
N−2 ) and suppose q is bounded in RN.

If (un)n≥1 is a bounded sequence in L
2Np
N+α (RN ), and un → u almost everywhere on

RN as n→∞, then

lim
n→∞

(D′(un)− D′(un − u)) = D′(u) in H−1(RN ).
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Proof. The outline of the proof is as follows.
Step 1. By Lemmas 2.2 and 2.3, for any v ∈ H1(RN ), we have

q|un|p−2un−q|un−u|p−2(un−u)→ q|u|p−2u strongly in L
2Np

(N+α)(p−1) (RN ). (2.7)

Step 2. It is easy to check that

〈D′(un), v〉 − 〈D′(un − u), v〉

= 2p
[ ∫

RN

∫
RN

q(x)q(y)|un(y)|p|un(x)|p−2un(x)v(x)
|x− y|N−α

dx dy

−
∫

RN

∫
RN

q(x)q(y)|un − u|p(y)|un − u|p−2(x)(un − u)(x)v(x)
|x− y|N−α

dx dy
]

=: 2pK.

(2.8)

and

K =
∫

RN

∫
RN

(
q(x)q(y)(|un(y)|p − |un − u|p(y))(|un(x)|p−2un(x)v(x)

− |un − u|p−2(x)(un − u)(x)v(x))
)/
|x− y|N−α dx dy

+
∫

RN

∫
RN

(
q(x)q(y)(|un(y)|p − |un − u|p(y))|un − u|p−2(x)(un − u)(x)v(x)

)
÷ |x− y|N−α dx dy

+
∫

RN

∫
RN

(
q(x)q(y)|un − u|p(y)(|un(x)|p−2un(x)v(x)

− |un − u|p−2(x)(un − u)(x)v(x))
)/
|x− y|N−α dx dy

=: K1 +K2 +K3.

Step 3. By direct calculations, from (2.1), (2.3) and (2.7) we deduce that for n
large enough,

|K1 −
1
2p
〈D′(u), v〉|

=
∣∣∣ ∫

RN

∫
RN

(
q(x)q(y)(|un(y)|p − |un − u|p(y)− |u(y)|p)(|un(x)|p−2un(x)v(x)

− |un − u|p−2(x)(un − u)(x)v(x))
)/
|x− y|N−α dx dy

+
∫

RN

∫
RN

(
q(x)q(y)|u(y)|p(|un(x)|p−2un(x)v(x)

− |un − u|p−2(x)(un − u)(x)v(x))− |u(x)|p−2u(x)v(x)
)/
|x− y|N−α dx dy|

≤ C|q|L∞ |q|un|p − q|un − u|p − q|u|p|
L

2N
N+α

∣∣|un|p−2un

− |un − u|p−2(un − u)
∣∣
L

2Np
(N+α)(p−1)

‖v‖

+ C|q|L∞ |u|p
L

2Np
N+α

∣∣|q|un|p−2un − q|un − u|p−2(un − u)

− q|u|p−2u
∣∣
L

2Np
(N+α)(p−1)

‖v‖ = o(1)‖v‖.

Here and in the following part, we point out that o(1)→ 0 as n→∞.
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Since u ∈ L
2Np
N+α (RN ), for any ε > 0, there exists R1 > 0 such that

|u|
L

2Np
N+α (RN\BR1 (0))

< ε.

Fix R1 > 0. Then there exists R2 > 0 large enough such that∣∣ ∫
RN\BR1+R2 (0)

∫
BR1 (0)

q(x)q(y)|u(y)|p|un − u|p−2(x)(un − u)(x)v(x)
|x− y|N−α

dx dy
∣∣

≤ CR2
α−N‖v‖ < ε‖v‖ (2.9)

Note that |un − u|p → 0 in L
2N
N+α
loc (RN ). For n large enough, we deduce from (2.1),

(2.3) and (2.9) that

|K2|

≤
∣∣ ∫

RN

∫
RN

(
q(x)q(y)(|un(y)|p − |un − u|p(y)− |u(y)|p)|un − u|p−2(x)

× (un − u)(x)v(x)
)/
|x− y|N−α dx dy

∣∣
+
∣∣ ∫

RN

∫
RN\BR1 (0)

q(x)q(y)|u(y)|p|un − u|p−2(x)(un − u)(x)v(x)
|x− y|N−α

dx dy
∣∣

+ |
∫

RN\BR1+R2 (0)

∫
BR1 (0)

q(x)q(y)|u(y)|p|un − u|p−2(x)(un − u)(x)v(x)
|x− y|N−α

dx dy
∣∣

+
∣∣ ∫
BR1+R2 (0)

∫
BR1 (0)

q(x)q(y)|u(y)|p|un − u|p−2(x)(un − u)(x)v(x)
|x− y|N−α

dx dy
∣∣

= o(1)‖v‖.

Similarly, K3 = o(1)‖v‖ for n large enough. This completes the proof. �

Lemma 2.6. Let N ≥ 3, α ∈ (0, N), p ∈ [2, N+α
N−2 ) and suppose q is bounded in RN.

If (un)n≥1 is a sequence such that un ⇀ u weakly in H1(RN ), then 〈D′(un), v〉 →
〈D′(u), v〉 for all v ∈ H1(RN ).

Proof. Since un ⇀ u weakly in H1(RN ), (un)n≥1 is bounded in H1(RN ). Going if
necessary to a subsequence, we assume un → u a.e. on RN . For any v ∈ H1(RN ),
it is easy to verify that

|un|p−2unv → |u|p−2uv strongly in L
2N
N+α (RN ). (2.10)

Step 1. A direct calculation yields

〈D′(un), v〉 − 〈D′(u), v〉 = 2p[
∫

RN

∫
RN

q(x)q(y)|un(y)|p|un(x)|p−2un(x)v(x)
|x− y|N−α

dx dy

−
∫

RN

∫
RN

q(x)q(y)|u(y)|p|u(x)|p−2u(x)v(x)
|x− y|N−α

dx dy]

=: 2pT.

and

T =
∫

RN

∫
RN

q(x)q(y)(|un(y)|p − |u(y)|p)|un(x)|p−2un(x)v(x)
|x− y|N−α

dx dy

+
∫

RN

∫
RN

q(x)q(y)|u(y)|p(|un(x)|p−2un(x)v(x)− |u(x)|p−2u(x)v(x))
|x− y|N−α

dx dy
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= T1 + T2 (2.11)

Step 2. Since v ∈ L
2Np
N+α (RN ), for any ε > 0, there exists R1 > 0 such that

|v|
L

2Np
N+α (RN\BR1 (0))

< ε. Fix R1 > 0. Then there exists R2 > 0 large enough such

that∣∣ ∫
BR1 (0)

∫
RN\BR1+R2 (0)

q(x)q(y)(|un(y)|p − |u(y)|p)|un(x)|p−2un(x)v(x)
|x− y|N−α

dx dy
∣∣

≤ CR2
α−N < ε. (2.12)

Note that |un|p → |u|p in L
2N
N+α
loc (RN ). Letting n→∞ and then ε→ 0, we conclude

from (2.1), (2.11) and (2.12) that

|T1|

≤
∣∣ ∫
BR1 (0)

∫
BR1+R2 (0)

q(x)q(y)(|un(y)|p − |u(y)|p)|un(x)|p−2un(x)v(x)
|x− y|N−α

dx dy
∣∣

+
∣∣ ∫
BR1 (0)

∫
RN\BR1+R2 (0)

q(x)q(y)(|un(y)|p − |u(y)|p)|un(x)|p−2un(x)v(x)
|x− y|N−α

dx dy
∣∣

+
∣∣ ∫

RN\BR1 (0)

∫
RN

q(x)q(y)(|un(y)|p − |u(y)|p)|un(x)|p−2un(x)v(x)
|x− y|N−α

dx dy
∣∣→ 0.

On the other hand, it follows from (2.10) that T2 → 0 as n → ∞. This completes
the proof. �

Now, we are ready to prove the compactness lemma, following exactly the same
lines as the proof of [29, Proposition 8.4].

Definition 2.7. We say that (un)n≥1 ⊂ H1(RN ) is (PS)C sequence of I, if (un)n≥1

satisfies
I(un)→ C, I ′(un)→ 0. (2.13)

Lemma 2.8. Let N ≥ 3, α ∈ (0, N) and 2 ≤ p < N+α
N−2 . Suppose q satis-

fies (H1) and (un)n≥1 ⊂ H1(RN ) is a (PS)C sequence of I. Then, replacing
(un)n≥1 if necessary by a subsequence, there exists a solution v0 ∈ H1(RN ) of
(1.1), {v1, v2, · · ·, vk} ⊂ H1(RN ) of solutions of (2.2), and k sequences (yjn)n≥1,
1 ≤ j ≤ k satisfying

|yjn| → ∞, |yjn − yj
′

n | → ∞, j 6= j′, n→∞,

‖un − v0 −
k∑
j=1

vj(· − yjn)‖ → 0,

‖un‖2 →
k∑
j=0

‖vj‖2,

I(v0) +
k∑
j=1

I∞(vj) = C.

Proof. The proof can be split into three steps.
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Step 1. Since I(un)→ C and I ′(un)→ 0, then for n large enough, we have

C + 1 + ‖un‖ ≥ I(un)− 1
2p
〈I ′(un), un〉

= (
1
2
− 1

2p
)
∫

RN
(|∇un|2 + |un|2)

= (
1
2
− 1

2p
)‖un‖2,

which yields that ‖un‖ is bounded.
Step 2. We assume that un ⇀ v0 in H1(RN ) and un → v0 a.e. on RN . Then we
claim that I ′(v0) = 0 and u1

n := un − v0 such that

‖u1
n‖2 = ‖un‖2 − ‖v0‖2 + o(1),

I∞(u1
n)→ C − I(v0),

I ′∞(u1
n)→ 0 in H−1(RN ).

Indeed, applying Lemma 2.6, we have I ′(v0) = 0. Since lim|x|→∞ q(x) = q∞ and

u1
n → 0 in L

2Np
N+α
loc (RN ), then we derive from (2.1) that for n large enough,

I∞(u1
n) = I(u1

n) + o(1). (2.14)

On the other hand, ‖u1
n‖2 = ‖un‖2−‖v0‖2 +o(1). Then it follows from Lemma 2.4

and (2.14) that

I∞(u1
n) = I(un)− I(v0) + o(1) = C − I(v0) + o(1).

Since I ′(un)→ 0 in H−1(RN ), it follows from Lemma 2.5 that for n large enough,

I ′∞(u1
n) = I ′(u1

n) + o(1)

= I ′(un)− I ′(v0) + o(1) = o(1).
(2.15)

Therefore, the claim holds.
Step 3. Let

δ := lim sup
n→∞

(
sup
y∈RN

∫
B1(y)

|u1
n|2dx

)
.

If δ = 0, by Lemma 1.21 in [29], we have u1
n → 0 in L

2Np
N+α (RN ). Moreover,

I ′∞(u1
n)→ 0, then it follows from (2.1) that, for n large enough,

‖u1
n‖2 = 〈I ′∞(u1

n), u1
n〉+

∫
RN

∫
RN

q2
∞|u1

n(y)|p|u1
n(x)|p

|x− y|N−α
dx dy = o(1),

and then we complete our proof. If δ > 0, then there exists a sequence (y1
n)n≥1

such that
∫
B1(y1

n)
|u1
n|2 > δ

2 . Let v1
n := u1

n(· + y1
n). Then v1

n ⇀ v1 weakly in
H1(RN ) and v1

n → v1 a.e. on RN . Applying the compactness of the embedding
H1

0 (B1(0)) ↪→ L2(B1(0)) and
∫
B1(0)

|v1
n|2 > δ

2 , we have
∫
B1(0)

|v1|2 ≥ δ
2 and v1 6= 0.

Because u1
n ⇀ 0 a.e. on H1(RN ), so (y1

n)n≥1 must be unbounded.
Suppose |y1

n| → ∞ as n → ∞. We claim I ′∞(v1) = 0 and u2
n := u1

n − v1(· − y1
n)

such that

‖u2
n‖2 = ‖un‖2 − ‖v0‖2 − ‖v1‖2 + o(1),

I∞(u2
n)→ C − I(v0)− I∞(v1),
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I ′∞(u2
n)→ 0 in H−1(RN ).

Indeed, since v1
n ⇀ v1 weakly in H1(RN ), we have

‖u2
n‖2 = ‖u1

n(·+ y1
n)− v1‖2 = ‖u1

n‖2 − ‖v1‖2 + o(1).

Applying Lemma 2.4 and similar arguments as Step 2, we prove the claim. In the
sequel, we iterate the above procedure, and then construct sequences (vj) and (yjn)
such that |yjn| → ∞ and |yin − yjn| → ∞ for i 6= j, n → ∞. Since I(un) → C and
I∞(vj) ≥ c∞ for every nontrivial critical point vj of I∞, then the iteration must
terminate at some finite number of steps, which completes the whole proof. �

3. Non-radial case

In this section, we first give some properties of the Nehari manifold N and the
relationship between c and c∞. Some of similar results can be found in [21] and
[16]. Here we give the complete proof.

Lemma 3.1. Let N ≥ 3, α ∈ (0, N) and 2 ≤ p < N+α
N−2 . If q(x) satisfies (H1), then

the following statements are true:
(i) N is nonempty. Moreover, for every u ∈ H1(RN ) with D(u) > 0, there

exists a unique tu ∈ (0,∞) such that tuu ∈ N and

tu =
(‖u‖2

D(u)

) 1
2p−2

. (3.1)

Furthermore, I(tuu) = supt>0 I(tu) = (1
2 −

1
2p )J

p
p−1 (u).

(ii) c = infu∈N I(u) = infu∈H1(Rn)\{0} supt>0 I(tu).
(iii) c > 0.
(iv) N is a C2-submanifold of H1(RN ).
(v) c ≤ c∞.

Proof. (i) First, it follows from (H1) that there exists R > 0 large enough such that
q(x) > 1

2q∞ for |x| > R, and then we can find u ∈ H1(RN ) such that D(u) > 0. In
addition, for t > 0, we have

d

dt
I(tu) = 〈I ′(tu), u〉 = t‖u‖2 − t2p−1

∫
RN

∫
RN

q(x)q(y)|u(x)|p|u(y)|p

|x− y|N−α
dx dy.

Then there exists a unique tu such that 〈I ′(tuu), u〉 = 0, which yields that tuu ∈ N .
Since the map t 7→ I(tu) is increasing for 0 < t < tu and decreasing for t > tu, we
have I(tuu) = supt>0 I(tu). Furthermore, it follows from direct calculation that

I(tuu) =
1
2

(‖u‖2
D(u)

) 2
2p−2 ‖u‖2 − 1

2p

(‖u‖2
D(u)

) 2
2p−2

=
(1

2
− 1

2p
)( ‖u‖2

D1/p(u)

) p
p−1

=
(1

2
− 1

2p
)
J

p
p−1 (u).

(ii) Define M = {u ∈ H1(RN ) : D(u) > 0}. For u ∈ M, tuu ∈ N and
then I(tuu) ≥ infu∈N I(u), which concludes infu∈M supt>0 I(tu) ≥ infu∈N I(u).
If u ∈ H1(RN )\M and u 6= 0, we have supt>0 I(tu) = ∞. In the contrary, if
u ∈ N , then tu = 1 and hence I(u) ≥ infu∈N supt>0 I(tu) which implies that
I(u) ≥ infu∈H1(RN ) supt>0 I(tu). This yields a conclusion.
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(iii) Let λ > 0. For any u ∈ N , it follows from (i) above that I( λ
‖u‖u) ≤ I(u),

and then I(u) ≥ infv∈S I(v), where S = {v ∈ H1(RN ) : ‖v‖ = λ}. Assume
λ = ( p

2C|q|2
L∞

)
1

2p−2 . According to (2.1) and Sobolev embedding theorem, for any
v ∈ S, we have

I(v) ≥ 1
2
‖v‖2 − C

2p
|q|2L∞ |v|

p

L
2Np
N+α
|v|p

L
2Np
N+α

≥ 1
2
‖v‖2 − C

2p
|q|2L∞‖v‖2p

= λ2(
1
2
− λ2p−2C|q|2L∞

2p
) > 0,

(3.2)

where C only depends on p, N and α. This yields c > 0.
(iv) Denote G : H1(RN ) → R by G(u) = ‖u‖2 − D(u). Applying the same

method as Appendix B in [16], we derive G is of class C2 and its derivative is given
by

G′(u)v = 2〈u, v〉 − 2p
∫

RN

∫
RN

q(x)q(y)|u(y)|p|u(x)|p−2u(x)v(x)
|x− y|N−α

dx dy

for all u, v in H1(RN ). Since N = G−1(0) and

G′(u)u = 2‖u‖2 − 2pD(u) 6= 0

for all u ∈ N , then we imply 0 is a regular value of G. This, combined with (ii)
yields that N is a submanifold of class C2 of H1(RN ) and u /∈ kerG′(u) for u ∈ N .

(v) By Lemma 2.1, we assume w is a ground state solution of (2.2) and (xn)n≥1 is
the unbounded sequence such that |xn| → ∞, as n→∞. Then for every w(·−xn),
according to (i) above, there exists tn such that tnw(· − xn) ∈ N with

tn =
(‖w(x− xn)‖2

D(w(x− xn))

) 1
2p−2

.

Since w ∈ N∞, by dominated convergence theorem, we have tn → 1, and then

c = inf
u∈N

I(u) ≤ I(tnw(x− xn))

=
1
2
t2n‖w(x− xn)‖2 − 1

2p
|tn|2pD(w(x− xn))

→ I∞(w) = c∞.

(3.3)

This completes the proof. �

Next we show that the energy functional satisfies the Mountain-Pass geometry.

Lemma 3.2. Let N ≥ 3, α ∈ (0, N) and 2 ≤ p < N+α
N−2 . Suppose q satisfies (H1).

Then the functional I satisfies the following conditions.
(i) There exists r > 0 such that I(u) ≥ θ > 0 for all ‖u‖ = r.
(ii) There exists e ∈ H1(RN ) such that e ≥ 0, ‖e‖ > r and I(e) < 0.

Proof. (i)By (2.1), we have

I(u) ≥ 1
2
‖u‖2 − C

2p
|q|2L∞ |u|

p

L
2Np
N+α
|u|p

L
2Np
N+α

≥ 1
2
‖u‖2 − C

2p
|q|2L∞‖u‖2p.

(3.4)
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where C only depends on p, N and α. Since p ≥ 2, we can choose r, θ > 0 such
that I(u) ≥ θ > 0 for all ‖u‖ = r.

(ii) Note that I(0) = 0. In addition, we can find some u ∈ H1(RN ) such that
D(u) > 0. Then it follows from p ≥ 2 that

lim
t→+∞

I(tu) = lim
t→+∞

(
1
2
t2‖u‖2 − 1

2p
t2pD(u)

)
= −∞.

Hence, there exists t0 > 0 such that ||t0u|| > r and I(t0u) < 0. Take e = |t0u|.
Then the proof is complete. �

Define
c1 = inf

γ∈Γ
max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], H1(RN )) : γ(0) = 0, γ(1) = e}. In following lemma, we
will show the relationship between c and c1 (see [9, Proposition 2,14]).

Lemma 3.3. Let N ≥ 3, α ∈ (0, N) and 2 ≤ p < N+α
N−2 . Suppose q satisfies (H1).

Then c = c1.

Proof. According to Lemma 3.2(i), there exists a small ball in H1(RN ) containing
the origin such that I(u) ≥ 0 for all u in this component. By Lemma 3.2(ii), we
have

〈I ′(e), e〉 = 2I(e) + (
1
p
− 1)D(e) < 0.

Thus every γ ∈ Γ has to cross N and c ≤ c1.
On the other hand, for any ū ∈ N , let l = {tū : t ≥ 0} be a half-line and I(|ū|) =

I(ū) = maxu∈l I(u) due to Lemma 3.1(i). Similarly, we denote h = {te : t ≥ 0}.
Let V + be the set {a|ū|+be : a ≥ 0, b ≥ 0}, let V be the 2-dimensional subsequence
of H1(RN ) spanned by |ū| and e. Note that D(|ū|) 6= 0 and D(e) 6= 0. Then for
any v ∈ V +\{0}, we have D(v) > 0. Hence there exists a circle S on V with radius
R large enough such that I ≤ 0 on S

⋂
V +. Suppose that l and h intersect S at

v and v1, respectively. Thus we can find a path γ̄ ∈ Γ through v and v1 such that
I(|ū|) = maxu∈γ̄ I(u). Therefore, c ≥ c1. This completes the proof. �

Proposition 3.4. Let N ≥ 3, α ∈ (0, N) and 2 ≤ p < N+α
N−2 . Suppose q satisfies

(H1). If c < c∞ holds, then I has a critical point u ∈ H1(RN ) such that I(u) = c.

Proof. By Lemma 3.2, the energy functional I satisfies the mountain pass geom-
etry. Due to Lemma 3.3 and the mountain pass theorem, there exists a sequence
(un)n≥1 ⊂ H1(RN ) such that I(un) → c and I ′(un) → 0. Since c < c∞, Lemma
2.8 completes the proof. �

Now, we are in a position to prove our main existence result.

Proof of Theorem 1.1. First we prove (i). The proof can be split into two cases.
Case 1. q ≡ q∞. By scaling, the conclusion follows from Lemma 2.1.
Case 2. q 6≡ q∞. For any u ∈ H1(RN )\{0}, it is easy to check I(u) < I∞(u). Due
to Lemma 2.1, we have c∞ can be attained by a w ∈ H1(RN ). By Lemma 3.1(i),
there exists tw > 0 such that tww ∈ N . Hence

c ≤ I(tww) < I∞(tww) ≤ I∞(w) = c∞.

Therefore, Proposition 3.4 yields our conclusion.
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Next we prove (ii). By way of contradiction, we assume c can be achieved by
η ∈ H1(RN ). It follows from that Lemma 3.1(i) that there exists tη > 0 such that
tηη ∈ N∞. Therefore,

c = I(η) ≥ I(tηη) > I∞(tηη) ≥ c∞,

a contradiction to Lemma 3.1(v). This completes the proof. �

Proof of Theorem 1.2. Set

c̃ = inf{‖u‖2 : u ∈ H1(RN ), D(u) = 1}. (3.5)

According to the proof of Lemma 3.1(i), it suffices to prove whether c̃ can be
attained by some u ∈ H1(RN ) or not.

First we prove (i). Without loss of generality, there exists a nonnegative min-
imizing sequence (un)n≥1 such that ‖un‖2 → c̃ and D(un) = 1. Then going if
necessary to a subsequence, there exists u0 ∈ H1(RN ) such that un ⇀ u0 weakly
in H1(RN ) and un → u0 a.e. on RN . It is easy to see u0 is nonnegative, ‖u0‖2 ≤ c̃
and D(u0) ≤ 1.

Since lim|x|→∞ q(x) = 0, then for any ε > 0, we can find some R > 0 such that
for any |x| > R, we have |q(x)| < ε. By Lemma 2.3, we derive |un|p ⇀ |u0|p weakly

in L
2N
N+α (RN ). In addition, un → u0 in L

2Np
N+α
loc (RN ). Then by Hardy-Littlewood-

Sobolev inequality (2.1), we have

|D(un)− D(u0)|

≤ |
∫

RN\BR(0)

∫
RN

q(x)q(y)|un(y)|p|un(x)|p

|x− y|N−α
dx dy

−
∫

RN\BR(0)

∫
RN

q(x)q(y)|u0(y)|p|u0(x)|p

|x− y|N−α
dx dy|

+ |
∫
BR(0)

∫
RN

q(x)q(y)|un(y)|p(|un(x)|p − |u0(x)|p)
|x− y|N−α

dx dy|

+ |
∫
BR(0)

∫
RN

q(x)q(y)(|un(y)|p − |u0(y)|p)|u0(x)|p

|x− y|N−α
dx dy|

→ 0.

(3.6)

Hence D(u0) = 1. Let u∗ = c̃
1

2(p−1)u0. Then according to the proof of Lemma 3.1(i),
we conclude I(u∗) = c and 〈I ′(u∗), u∗〉 = 0. Therefore, the Lagrange multiplier rule
yields that u∗ is a ground state solution of (1.1).

Now we prove (ii). Assume for contradiction, c̃ is attained by some u ∈ H1(RN )
such that D(u) = 1 and ‖u‖2 = c̃. Let R > 0 and uR(x) = u(x − xR), where
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xR = (3R, 0, · · · , 0). Clearly, ‖uR‖2 = c̃, and it is easy to check that

D(uR) ≥
∫
BR(xR)

∫
BR(xR)

q(x)q(y)|uR(x)|p|uR(y)|p

|x− y|N−α
dx dy

≥ min
x∈BR(xR)

q(x) min
y∈BR(xR)

q(y)
∫
BR(0)

∫
BR(0)

|u(x)|p|u(y)|p

|x− y|N−α
dx dy

≥ min
2R≤|x|≤4R

q(x) min
2R≤|y|≤4R

q(y)
∫
BR(0)

∫
BR(0)

|u(x)|p|u(y)|p

|x− y|N−α
dx dy

≥ max
|x|≤R

q(x) max
|y|≤R

q(y)
∫
BR(0)

∫
BR(0)

|u(x)|p|u(y)|p

|x− y|N−α
dx dy

=
∫
BR(0)

∫
BR(0)

q(x)q(y)|u(x)|p|u(y)|p

|x− y|N−α
dx dy + h(R).

(3.7)

Here

h(R) :=
∫
BR(0)

∫
BR(0)

[ max
|x|≤R

q(x) max
|y|≤R

q(y)− q(x)q(y)]
|u(x)|p|u(y)|p

|x− y|N−α
dx dy ≥ 0.

Since q is not constant, we have h 6≡ 0 in RN . In addition, h is nondecreasing
in R and bounded in RN due to the fact that q ∈ L∞(RN ). We assume h(∞) =
limR→∞ h(R). Then there exist R1 ≥ R0 such that h(R) > 1

2h(∞) for all R ≥ R1.
On the other hand, since D(u) = 1, we can find R2 ≥ R0 such that∫

BR(0)

∫
BR(0)

q(x)q(y)|u(x)|p|u(y)|p

|x− y|N−α
dx dy > 1− 1

2
h(∞),

for all R ≥ R2. Take R = max{R1, R2}. Then D(uR) > 1. Let ũR = ( 1
D(uR) )

1
2puR.

Then D(ũR) = 1. But ‖ũR‖2 < c̃, which contradicts the definition of c̃. This
completes the proof. �

4. Radial case

It is known to us that if q is radial and bounded in RN , by standard variational
methods and the symmetric criticality principle (see [29, Theorem 1.28]), we can
find a nontrivial radial solution to (1.1) in H1(RN ). But in this section, we consider
the case that q is radial and q may be unbounded in RN . Applying a similar idea as
that of [9], we obtain a nontrivial nonnegative radial solution for (1.1) in H1

r (RN ).
First, we give the Radial lemma that will play a key role in the proof of Theorem
1.3. Throughout this section, we denote the norm of H1

r (RN ) ( or H1
0,r(Bk)) by

‖ · ‖H1
r (RN ) (or ‖ · ‖H1

0,r(Bk), respectively).

Lemma 4.1 ([4]). Let N ≥ 2. Then for any radial function u ∈ H1(RN ),

|u(r)| ≤ C‖u‖r
1−N

2 , for r ≥ 1,

where C only depends on N .

Proof of Theorem 1.3. First, we define

M∞ = sup
‖u‖H1

r (RN )=1

D(u).

It follows from Lemma 4.1 and (H4) that M∞ <∞. Without loss of generality, we
assume there exists a nonnegative minimizing sequence (un)n≥1 ⊂ H1

r (RN ) such
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that ‖un‖H1
r (RN ) = 1 and D(un) → M∞ as n → ∞. Then going if necessary to a

subsequence, un ⇀ u0 weakly in H1(RN ) and un → u0 a.e. on RN . Obviously, u0

is nonnegative, radial and ‖u0‖H1
r (RN ) ≤ 1. Applying Lemma 4.1 and (H4) again,

we obtain (qupn)n≥1 is uniformly bounded in L
2N
N+α (RN ), and then for any ε > 0,

there exists R > 0 such that |qupn|
L

2N
N+α (RN\BR(0))

< ε. Here R is independent of

n. Since un → u0 strongly in L
2Np
N+α
loc (RN ), by (2.1), some standard argument yields

that D(un)→ D(u0) = M∞.
Next we show ‖u0‖H1

r (RN ) = 1. If not, we can find ũ0 ∈ H1
r (RN ) such that

‖ũ0‖H1
r (RN ) = 1 and ũ0 = λu0 with λ > 1. This implies D(ũ0) > M∞, a contra-

diction to the definition of M∞. Let u∗ = ( 1
M∞

)
1

2p−2u0. According to Lagrange
multiplier rule, we conclude u∗ is a nonnegative radial solution of (1.1) in H1

r (RN ).
This completes the proof. �

Theorem 1.5 can be treated as a by-product of Theorem 1.3. Now we give a
simple proof. Let

Dk(u) =
∫
Bk(0)

∫
Bk(0)

q(x)q(y)|u(x)|p|u(y)|p

|x− y|N−α
dx dy.

Proof of Theorem 1.5. This proof can be split into two steps.
Step 1. Define

Mk,r = sup
‖u‖

H1
0,r(Bk)=1

Dk(u), Mk = sup
‖u‖

H1
0(Bk)=1

Dk(u)

Fix k. Without loss of generality, we assume there exists an nonnegative minimizing
sequence (vkn)n≥1 ⊂ H1

0,r(Bk) such that ‖vkn‖H1
0,r(Bk)=1 and Dk(vkn) → Mk,r as

n → ∞. Then going if necessary to a subsequence, vkn ⇀ uk weakly in H1
0,r(Bk)

and vkn → uk a.e. on RN as n → ∞. Obviously, uk is nonnegative, radial and

‖uk‖H1
0,r(Bk) ≤ 1. Since vkn → uk strongly in L

2Np
N+α
loc (RN ), by (2.1), some standard

arguments can imply that Dk(vkn) → Dk(uk) as n → ∞. Hence Dk(uk) = Mk,r.
Similar to the proof of Theorem 1.3, we have ‖uk‖H1

0,r(Bk) = 1. Therefore, Mk,r

is attained by uk ∈ H1
0,r(Bk). Let wk =

(
1

Mk,r

) 1
2p−2

uk. It follows from Lagrange
multiplier rule and symmetric criticality principle (see [29, Theorem 1.28]) that wk
is a nontrivial nonnegative radial solution of the equation

−∆u+ u = q(x)(
∫
Bk(0)

q(y)up(y)
|x− y|N−α

dy)up−1 in Bk(0),

u ≥ 0 in Bk(0),
u = 0 on ∂Bk.

(4.1)

Similarly, Mk is also attained by u∗k ∈ H1
0 (Bk) and w∗k = ( 1

Mk
)

1
2p−2u∗k.

Step 2. Since Mk,r is increasing with k, according to Theorem 1.3,( 1
M∞

) 1
2p−2 ≤ ‖wk‖H1

r (RN ) =
( 1
Mk,r

) 1
2p−2 ≤

( 1
M1,r

) 1
2p−2

,

that is to say, (wk)k≥1 is uniformly bounded in H1
r (RN ).
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On the other hand, we choose u0 ∈ H1(RN ) such that u0 has compact support
in B1(0) and ‖u0‖ = 1. Then for large k, there exists xk ∈ RN such that B1(xk) ⊂
Bk(0). Without loss of generality, we assume |xk| → ∞ as k →∞. Hence

Mk ≥
∫
Bk(0)

∫
Bk(0)

q(x)q(y)|u0(y − xk)|p|u0(x− xk)|p

|x− y|N−α
dx dy

≥
∫
B1(xk)

∫
B1(xk)

q(x)q(y)|u0(y − xk)|p|u0(x− xk)|p

|x− y|N−α
dx dy

≥ min
x∈B1(xk)

q(x) min
y∈B1(xk)

q(y)
∫
B1(0)

∫
B1(0)

|u0(y)|p|u0(x)|p

|x− y|N−α
dx dy.

(4.2)

This implies that Mk → ∞ as k → ∞. Then for k large enough, (4.1) has two
different weak solutions wk and w∗k. One is radial and the other is not. This
completes the proof. �
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