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BOUNDEDNESS AND LARGE-TIME BEHAVIOR OF
SOLUTIONS FOR A GIERER-MEINHARDT SYSTEM OF THREE
EQUATIONS

SAFIA HENINE, SALEM ABDELMALEK, AMAR YOUKANA

ABSTRACT. The aim of this work is to prove the uniform boundedness and the
existence of global solutions for Gierer-Meinhardt model of three substance
described by reaction-diffusion equations with Neumann boundary conditions.
Based on a Lyapunov functional we establish the asymptotic behaviour of the
solutions.

1. INTRODUCTION

In this article, we consider the Gierer-Meinhardt type system of three equations

0

a—? —a1Au = —bju+ f(u,v,w), in RT x Q,

ov . +

5 asAv = —bov + g(u,v,w), in RT x Q, (1.1)

0

8—1;] —azAw = —bgw + h(u,v,w), in RT x Q,

where

uP

f(u,’U,’LU) = p1($7uavaw)m + 0'1(37)7
ubP2

g(u,v,w) = pg(%u,uw)m + o2(2),

ubs
Va3 + o3 (.’IJ),

h(u,v,w) = p3(x,u,v,w)

with homogeneous Neumann boundary conditions

ou Ov  Ow n
87777677’]7 87’] =0 onR ><5‘Q, (12)

and initial data

u(0,2) = p1(x), v(0,2) = @a(x), w(0,z2)=3(x), inQ. (1.3)
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Here © is an open bounded domain in RY with smooth boundary 92 and outer
normal 7n(x). The constants ¢, p;, ¢;,7i,a; and b;, i = 1,2, 3 are real numbers such
that

¢piygi,mi > 0, and  a;,b; > 0,
and
1
g+ 177y’

1), psmin (——, & 1)} (1.4)

O<p171<max{p2min( mtlg
3 3

The initial data are assumed to be positive and continuous functions on . For
1 = 1,2,3, we assume that o; are positive functions in C’(Q), and p; are positive
bounded functions in C1(Q x RY).

In 1972, following the ingenious idea of Turing |15], Gierer and Meinhardt [2]
proposed a mathematical model for pattern formations of spatial tissue structure
of hydra in morphogenesis, a biological phenomenon discovered by Trembley in
1744 [14]. Tt can be expressed in the following system

p
%:alAu7u1u+u—+a, in R x Q,
ot v
9 o (1.5)
a:azAl}*ﬂgU*FE, in R x Q,

on a bounded Q ¢ RY, with the homogeneous Neumann boundary conditions and
positive initial data: aq,as, p1, 2 and o are positive constants, and p, ¢, 7, s are non
negative constants satisfying the relation
p-1l__a
r s+1
The existence of global solutions to the system is proved by Rothe [11] with
special cases N = 3,p = 2,g = 1,r = 2 and s = 0. The Rothe’s method can not
be applied (at least directly) to general p,q, r, s. Wu and Li [16] obtained the same
results for the problem so long as w,v~! and ¢ are suitably small. Li, Chen
and Qin [7] showed that the solutions of this problem are bounded all the time for
each pair of initial values in L*°() if

p—1

: q
< 1, —1 1.6
" min { s+ 1 (1.6)
Masuda and Takahashi [8] considered the generalized Gierer-Meinhardt system
du; . ,
67155 = a;Au; — piu; + gi(z,up,uz), inRT x Q (i =1,2), (1.7)

where a;, p;, ¢ = 1,2 are positive constants, and
p
uy
gl(xa U, u2) = Pl(x; Uy, UQ)? + 0'1(1'),
2

uy
g2(x,u1, uz) = Pz(%uhuz)u% + o2(2),
2

with o1(+) (resp. o2(+)) is a positive (resp. non-negative) C! function on 2, and p;
(resp. p2) is a non negative (resp. positive) bounded and C* function on  x R?.
They extended the result of global existence of solutions for of Li, Chen and
Qin [7] to

p—1 2

< )
T N + 2

(1.8)
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and
01,00 € WHHQ), 1> max{N,2},

%:%:0 on 90 and @1 >0,02>0 in Q. (1.9)
on  On
Jiang [6] obtained the same results as Masuda and Takahashi [8] by another
method such that and are satisfied.
Abdelmalek, et al |1] considered the following Gierer-Meinhardt system of three

equations

Ju uP1 .
a—alAu—_bluﬂ—m"—U, IHR XQ,
o P2
v asAv = —byv + L, in RT x Q, (1.10)
ot ve2T2
ow ub3 N
e —azAw = —b3w+m, in R x Q,
with homogeneous Neumann boundary conditions
0 0 0
T onRT x99, (1.11)
on on  On

and the initial data
u(0,2) = p1(x) > 0,
v(0,2) = @a(x) > 0, (1.12)
w(0,z) = @3(z) >0
in Q, and ; € C(Q) for all i = 1,2,3. Under the condition (T.4) and by using a
suitable Lyapunov functional, they studied the global existence of solutions for the
system ([L.10)—(L.12)). Their method gave only the existence of global solutions, and
they did not obtain results about the uniform boundedness of solutions on (0, +00).
For the asymptotic behavior of the solutions, Wu and Li [16] considered the

system
Ouq u?

ﬁ:alAul—ul—i—ué +0‘1($L’), in R+XQ, (1 13)
) 0 '
Tﬂ:agAug—uQ-&-ﬂ-ﬁ-Jz(iﬁ), in RT X Q,
ot us

with the constant of relaxation time 7 > 0, and they proved that if 01 = 05 =0
and T > ﬁ, then (u(t,z),v(t,z)) — (0,0) uniformly on 2 as t — +oo.

Under suitable conditions on 7 and on the initial data, Suzuki and Takagi [12}/13]
also studied the behavior of the solutions for with the constant of relaxation
time 7.

We first treat the uniform boundedness of the solutions for Gierer-Meinhardt
system of three equations by proving that the Lyapunov function argument pro-
posed in [1] can be adapted to our situation. Interestingly, we show that the same
Lyapunov function satisfies a differential inequality from which the uniform bound-
edness of the solutions is deduced for any positive time. Then under reasonable
conditions on the coefficients by, by and b3, and by using the uniform boundedness
of the solutions and the Lyapunov function which is non-increasing function, we
deal with the long-time behavior of solutions as the time goes to +o00. In particular
we are concerned with o; = 0, 03 and o3 are non-negative constants to assure that

. . 092 . 03
Jim et o = lim_flo(t) = e = Jim_Jfw(t,) = 52 = 0.
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2. NOTATION AND PRELIMINARY RESULTS

2.1. Existence of local solutions. For i = 1,2,3 we set

@i = ming;(x), @; = maxp;(z),
- zeN

zeQ
Pi = Iﬂin Pz(xaf), p_7. = max pl(xag)a
meQ,EeRi meQ,geRi

o; = mino;(z), ¢&; = maxo;(x).
- zeQ €

The basic existence theory for abstract semi linear differential equations directly
leads to a local existence result to system (L.1)~(L.3) (see, Henry [5]). All solutions
are classical on (0,7) x Q, T' < Tpax, where Tax(||o|co, ||wollec) denotes the
eventual blowing-up time in L% ().

2.2. Positivity of solutions.

Lemma 2.1. If (u,v,w) is a solution of the problem (L.1)—(L.3), then for all (t,x) €
(Ovamaz) X Q, we have

(1)
u(t,z) > e_bltﬂ > 0,
v(t,x) > eib?t@ > 0,
w(t,x) > e s > 0.

u(t,z) > min (o1 /by, 1) = m,
t,z) > min (02 /b2, p2) = ma,

) > min (@/bg,@) = mg.

g
~
8

The proof of the above lemma follows immediate from the maximum principle.

3. BOUNDEDNESS OF SOLUTIONS

For proving the existence of global solutions for (L.1)—(1.3), it suffices to prove
that the solutions remains bounded in (0,7) x 2. One of the main results of this
paper reads as follows.

Theorem 3.1. Assume that (L.4) holds. Let (u,v,w) be a solution to (1.1))—(1.3),
and let

u®(t, x)
L(t)= | ———————d lte (0, T 3.1
0= | e, for all 1€ (0.T) (31)
where o, B and v are positive constants satisfying the following conditions:

3by + b3> 1 (a1 + a2)2

3 O (3.2)

> 9 (1,
« max 3 Saia

and

(i_ (a1 + a2)2) (i_ (a1 + as)2) S ((04 —1)(az +a3) (a1 +az)(a: + a3))2.
20 daias 2y 4daias

20\/azas 4y/aazas

(3.3)
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Then there exists a positive constant C such that for all t € (0,T),

d
%L(t) S —(ab1 — 3b26 — ’ybg)L(t) + C. (34)
Corollary 3.2. Under the assumptions of Theorem all solutions of (1.1])—(1.3)

with positive initial data in C(Q) are global and uniformly bounded on (0, +o0) x €.
Before proving the above theorem we first need the following technical lemma.

Lemma 3.3. Suppose that x > 0, y > 0 and z > 0, then for each group of indices
r,D,q,0,0,\ and & satisfies X < p < & (not necessarily positive), and any constant
A >0, we have

P x° _px oz

yqz’!’ - yQZf + AT y"hznz

)

where

Proof. We can write

xP dp=N) _0(p=N) _ &= AE=p) O(p=N) __ &=N) _
= (x5 y oAz e LA gy oA qd,~5—x —T).
yaz"

By using Young’s inequality we obtain

Lp < EL(S 4 5_2:; L
yizr — yfz¢ ymznz’
where
m =[g(6 =) —0(p— NG —p)",
e =[r(6—=A) =& — N0 -p) "
Then Lemma [3.3|is proved. (Il

Proof of Theorem[3.1 Let (u,v,w) be the solution of system (L.1)—(L.3) in (0,7).
Differentiating L(t) respect to ¢, we obtain L'(t) = I + J, where

uafl u u®
I = ala/QWAudx — 0426‘/Q WA'UdZ'— (Lg’y-/ﬂ WAU}de',
ua71+P1
J = (—aby + Bby + vbs3)L(t) + a/{)pl(x,u,v,w)mdx
utp2 u&TPs
_ ﬁ/;ZPQ(.’I},u,U,w)Wd.T —’Y/S\?p:g(x,u,v,'lU)Wdl’

uOé

uafl u®

Using Green’s formula, for all ¢t € (0,7"), we obtain (see [1])

I1<0. (3.5)
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Now let us estimate the term J. For all ¢ € (0,7) we have

B uaflﬂn
a+p3 B uozfl
_ﬁy/gzmdx—kaal/z

x
QUPwY

TP

(3.6)
Applying LemmaB3|withp=a—-1,¢=0=0,r=7, 0 =a, { =7and A =0
one gets

B u*1 u® 1
OéO’l/QUﬁw’ydI S ﬂbQ/Q'Uﬁw'de+Cl/Qde’ (37)
where C; = aal(ﬁbQ)

Qo1

Now, we choose ¢; € (0, a) such that

3+ QP2 — (p1 —1)(1+ q2)

afh—l—lIz
e1(p2+1—p1) ppt+1l—p =7
,y_’_aﬁpz—?”Q(Pl—l) r — T2

> 0.
ei(p2 —p1 +1) p2—p1+17—

Again, applying Lemma33|for p=a—1+4+p1, =8+ q,r=7+r1, d = a+ po,
0=p+1+¢q, E=v+re and A = a — €1, we obtain

where

et 1 uP2to !

quz+ﬁ+1wr2+7 172 dz, (3.8)

B+lgp2 — (@2 +1)(p1 — 1) +ei(qn — g2 — 1)](p2 —p1 + 1)

Ny =7+ [rips —r2(p1 — 1)+ €e1(r1 — r2)|(p2 —p1 + 1)~
1—1+e€q
and Cy = apl(

) p2—pP1+L
apy

In an analoguous way, we have

Ot 61 1
CQ/ bQﬁ/ dw + Cg/f\zmdl',

where

(3.9)

=B+aleg (@p2— (@+ )P - D))+ —q—1pa—pr+1)71 >0

ne =7+ ale (ripe —ra(pr — 1)) + 11 —ra)(p2 —pr + 1)1 >0
and 03 = 02(%)7:71

Or, we choose €3 € (0, ) such that

3+ QP — g3(p1—1)

q1 —4qs3 >0
e2(ps —p1+1) ps—p1+1" "7
7+a7”1p3—(7“3+1)(p1—1) T1—7‘2—120'
e2(ps —p1+1) ps—p1+1
Now, applying LemmaB3|withp=p1+a—1,g=q+8,r=r1+7,d =ps+a
0=q3+08,§=r3+v+1and A = a — €3, we find that
B u® 1+p1 u&TPs u&e2
ozpl/QWd 'ypg/ de—i—@;/ﬂ T dx, (3.10)
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where
ns = B+ [qips — q3(p1 — 1) + ea(qr — q3)](p3 — p1 + 1)1,
Mo =+ [rips — (r3 + 1)(p1 — 1) + ea(r1 —r3 — D](ps —p1 + 1) 71,

3 1+teo
and Cy = aﬁl(zz )~ rs—m+1. In the same way, we obtain

utTe? u® 1
04/§;1;775w"76 dzx < bQﬁ/Q Uﬁw’ydl""Cs/gZde, (311)

where
mr =B+ ale; (qips —as(pr — 1)) + @1 — s (ps —p1 + 1)~ >0,
UL =7+a[€51(71p3 —(rs+1)(p1 — 1)) +ri—r3—1)(ps —p1 +1)"' >0,
and C5 = 04("25)
From there exists a positive constant C' such that
L/( ) = _(bla - 361)2 - 7b3) ( )+ 07 vt € <O7T)
Then the proof is complete. O
Proof of Corollary[3.3 Since
C
ab1 — 3b26 — ’}/bg
then there exist non-negative constants Cg, C7 and Cg independent of ¢ such that
||f(u,’l),’lU) - bluHN S 067
Hg(u,’U; U)) - bZU”N S C7a
1A (u, v, w) — byw||y < Cs.

L(t) < L(0) + for all t € (0,7,

Since (1, 2, p3) € (C(Q))3, we conclude from the LP-Li-estimate (see Henry
[5], Haraux and Kirane [4]) that

u € L*((0,T),L>(Q)), veL*((0,T),L>*(), weL>*((0,T),L>=(Q)).

Finally, we deduce that the solutions of the system (1.1)—(1.3) are global and uni-
formly bounded on (0, +00) x €. O

Remark 3.4. It is clear that the results of this section are valid when o1 = 09 =
o3 =0.

4. ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS

In this section, we study the asymptotic behavior of the solutions for the system

%—alAu——blu—Ff(u,v,w), in RT x Q,
% —apAv = —by + g(u,v,w), R xQ, (4.1)
%} —azAw = —bgw + h(u,v,w), in RT xQ,

where
up1

va (W + ¢) T o,

fu,v,w) = p1(z,u,v,w)
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uP2
g(u,v,w) = pa(z,u,v,w) P + o9,
ubs
h(uvvaw):p3(x7u7v7w)m g3,
with homogeneous Neumann boundary conditions
@:@:@:0 on RT x 99, (4.2)
O on  On
and initial data
u(0,2) = p1(x), v(0,2) =p2(x), w(0,2)=ps(x) in Q. (4.3)

Here 01, 03 and o3 are non negative constants.

Before stating the results, let us expose some simple facts concluded from the
result of the previous section. From Theorem [3.1] and by using classical method
of a semi group and a power fractional (see [5]) we can find the positive constants
My, My and Ms explicitly (see [9]) such that

[ult, Moo Mr,  lv(t, oo < M, w(t,)]oo < Ms.

Let us consider the same function as in Theorem [3.1]
u®(t, x)
L(t)= | ———————dx, Vte (0, ,
0= [ e (0700)
where «, § and -y are positive constants satisfying the following conditions
3by + b3 1 (al + a2)2
> 2 1, —), =->-—
«o max( b ) 3 Saia
and

(i_ (a1 +a2)2)( L (m +a3)2> - ((a —1)(ag +a3) (a1 + az)(ay +a3))2.
213 4aiao

N 4\/atazas

The main result in this section reads as follows.

Theorem 4.1. Assume (1.4) holds. Let (u,v,w) be the solution of (4.1)—(4.3)) in
(0, +00). Suppose that o1 =0, and

b bs + K
>ﬂ2+’¥3+

% 4a1 as

by 5 : (4.4)
where
o= 0451(37%)_?;_17;+1
o m[2q1pz—(qz+1)(p1—1)](p2—p1+1)‘1mgrlpz—rz(pl—1)](pz—p1+1)‘1 ’
or
P 04071(3%)7”;’17’;11+1

m[zthm*%(m*1)](P3*p1+1)*1mgrlps»*(Terl)(Pl*1)](P3*P1+1)*1 ’

Then for all t € (0,400) we have

L(t) < /Q _#t@) g,

5 ()3 (x)
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Corollary 4.2. Under the assumptions of Theorem [[1], for all positive initial data
in C(Q2) we have
lu(t, )|oo = 0 ast— 4o,
o
lo(t,) = 32Nl — 0 as t — +oo,
2

g3

bs
Proof of Theorem[/.1. From (3.5)) and (3.6), we obtain for all ¢ € (0, +00)

lw(t,.) = —|lec = 0 ast— +oo.

ua*1+P1

L'(t) < —(aby — Bba — vba) L(t) + aﬁl/Qde

w2 uetps (4.5)
- 6@/{2 VB+1+a2 yytr2 dz — ’Y@/Q VBt+as Y t+1ltrs dz.

Now, we apply LemmaB3|for p=a—1+p1,q=0B+q,r=~v+7r1, d = a+ ps,
0=0B4+1+qs, £ =741 and A = o we obtain

@ 1+p1 u&tpr2 4 u
pl/Q VBFaL Y+ - ﬂ@/g2 pB+1tazqyv+re + 4 QUM WMo ’ (4.6)

where

no =B+ [qap2 — (g2 + 1)(p1 — D](p2 —p1 + 1)1 > 0,
Mo =7 + [rip2 — r2(p1 — )] (p2 — p1 +1)7' >0,

and A; = aﬁl(%)*mp—lp_ﬁl,
Or, applying LemmaB3|for p=a —1+p1, =08+ q,r=7+7r1, § = a+ ps,
0=04+4q3, E=~v+1+r3 and A = «, we obtain

uoc—l-'rm ua+p3 u®
_ < .
Oépl‘/Q vﬁ+q1 w"/+’l"1 de - ’y@/ﬂ Uﬁ+q3w7+1+7’3 dx + —142/Q pMiqpniz de', (4 7)
where

m1 =B+ [aps —gz(p1 — V](ps —p1 +1)71 >0,
M2 =7+ [rps— (rs + 1) (p1 — D](ps —p1 +1)7' > 0,

p1—1
and Ay = aﬁl(%)_ips =571, By combining (4.5) with (£.6) and (€.7) we obtain

L'(t) < —(aby — Bby — ybg — K)L(t), Vt € (0,+00), (4.8)
where
p1—1
. api (22) " m e
o m[2Q1p2—(qz+1)(P1—1)](P2—p1+1)_1ml[aT'lpz—T'Q(Pl—1)](P2—p1+1)_1 ’
or
(122" mm T
K= P (5p) P

m[QQlPs*Qs(Pl*1)](173*;014»1)*1mgﬁpsf(r3+1)(,’01*1)](P37p1+1)*1 :

Using (4.4) we deduce that the function ¢ — L() is a non-increasing function.
This completes the proof of Theorem [4.1 O
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Proof of Corollary[{.3 Setting for all (¢,z) € (0,+00) x
hi(t,x) = u(t, ),
ha(t, ) = o(t, z) — 22,
hs(t,x) = w(t,x) — —.
For ¢ = 1,2,3 we have
dh; Pi
= a;Ah; = =b;h; + pi(x,u,v w)qujwh.
Multiplying (4.9) by h;(t,x), ¢ = 1,2, 3 and integrating over [0,¢] X 2 we obtain

1 t t
f/hfd:chai//|Vhi|2dxds+bi//hfdxd5
/h2 dac—&—//zplxuv

From , for all t € (O +oo), and for i = 1,2, 3 we obtain

MpzMﬁMW
// sz:vuv dxds<pZMZ // 3 dx ds < 400.
madmSmy QUPw?

One obviously deduces that for ¢ =1,2,3,

“+o0
hi(t,.) € L*(Q), / /|Vhi|2d:cds < +o0,
0 Q

(4.9)

dx ds.

+oo
/ h dx ds < +oo,
0 Q

so that Barbalate’s lemma |3, Lemma 1.2.2] permits to conclude that
tl}-&-moollhi(t’ I2=0, i=1,2,3.
On the other hand, since the orbits {h;(t,.)/t > 0,i = 1,2, 3} are relatively compact
in C(Q) (see |4]), it follows readily that
tllgrnooﬂhi(t, Moo =0, i=1,2,3.
Then proof of Corollary [£:2]is complete. O

Acknowledgments. The authors want to thank Prof. M. Kirane and the anony-
mous referee for their suggestions that improved the quality of this article.
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