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GROUND STATES FOR A MODIFIED CAPILLARY SURFACE
EQUATION IN WEIGHTED ORLICZ-SOBOLEV SPACE

GUOQING ZHANG, HUILING FU

Abstract. In this article, we prove a compact embedding theorem for the

weighted Orlicz-Sobolev space of radially symmetric functions. Using the em-
bedding theorem and critical points theory, we prove the existence of multiple

radial solutions and radial ground states for the following modified capillary
surface equation

− div
“ |∇u|2p−2∇up

1 + |∇u|2p
”

+ T (|x|)|u|α−2u = K(|x|)|u|s−2u, u > 0, x ∈ RN ,

u(|x|)→ 0, as |x| → ∞,

where N ≥ 3, 1 < α < p < 2p < N , s satisfies some suitable conditions, K(|x|)
and T (|x|) are continuous, nonnegative functions.

1. Introduction

In this article, we study the following modified capillary surface equation in a
weighted Orlicz-Sobolev space,

−div
( |∇u|2p−2∇u√

1 + |∇u|2p
)

+ T (|x|)|u|α−2u = K(|x|)|u|s−2u, u > 0, x ∈ RN ,

u(|x|)→ 0, as |x| → ∞,
(1.1)

where N ≥ 3, 1 < α < p < 2p < N , s satisfies some suitable conditions, ∇u denotes
the gradient of u, T and K are continuous, nonnegative and measurable functions,
i.e., T,K : (0,+∞)→ [0,+∞] and may be unbounded, decaying and vanishing.

Recently, these type equations have attracted much attention. As p = 1, the
problem (1.1) becomes known as the prescribed mean curvature equation or the
capillary surface equation. Peletier and Serrin [15] studied the following problem

−div
( ∇u√

1 + |∇u|2
)

= −λu+ uq, x ∈ RN ,

u(x)→ 0, as x→∞,
(1.2)

where λ > 0, q > 1 and obtained the existence of radial ground states. As λ = 0,
Ni and Serrin [12, 13] established that if 1 < q ≤ N

N−2 , no positive solutions exist,
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on the contrary, if q ≥ N+2
N−2 , there is a continuum of solutions. del Pino and

Guerra [6] proved the existence of large finite number of ground states, provided that
q lies below but close enough to the critical exponent N+2

N−2 . Moreover, existence,
nonexistence and multiplicity of solutions decaying to zero at infinity have been
proved by [3, 4, 7, 8, 17].

As p > 1, using minimization sequence method and Mountain Pass Lemma,
Narukawa and Suzuki [11] discussed the existence of nonzero solutions for the mod-
ified capillary surface equation

−div
( |∇u|2p−2∇u√

1 + |∇u|2p
)

= λf(x, u), u ≥ 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.3)

where Ω is a bounded domain in RN with smooth boundary, λ is a positive param-
eter; Liang [9] investigated the following modified capillary equation

−div
( |∇u|2p−2∇u√

1 + |∇u|2p
)

= f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.4)

and obtained a negative and a positive solution by variational methods. In particu-
lar, Azzollini, d’Avenia and Pomponio [1] studied the quasilinear elliptic problems

−∇[φ′(|∇u|2)∇u] + |u|α−2u = |u|s−2u, x ∈ RN ,
u(x)→ 0, as |x| → ∞,

(1.5)

where φ(t) behaves like t
q
2 for small t and t

p
2 for large t, 1 < p < q < N , and

obtained some existence results in Orlicz-Sobolev space by using critical points
theory.

On the other hand, some authors studied the semilinear (quasilinear) elliptic
equations with unbounded or decaying radial potentials. Su, Wang and Willem
[18, 19] proved some embedding results for the weighted Sobolev spaces of radially
symmetric functions. Zhang [20] obtained some Strauss-type decay estimates and
obtained some continuous and compact embedding theorems.

In this article, we prove the existence of multiple radial solutions and radial
ground states for the problem (1.1). Firstly, we obtain a compact embedding the-
orem for the weighted Orlicz-Sobolev space of radially symmetric functions. Sec-
ondly, we obtain the existence of radial ground states for the problem (1.1) with
unbounded or decaying radial potentials by using this compact embedding theorem
and critical points theory.

Consider the functional

J(u) =
1
p

∫
RN

(
√

1 + |∇u|2p − 1)dx+
1
α

∫
RN

T (|x|)|u|αdx− 1
s

∫
RN

K(|x|)|u|sdx,

(1.6)
where √

1 + |∇u|2p − 1 ∼

{
|∇u|p, as |∇u| → ∞,
1
2 |∇u|

2p, as |∇u| → 0.
(1.7)

Solutions of (1.1) are, at least formally, critical points of the functional J(u). By
(1.7), we obtain that this different growth at zero and at infinity of the function√

1 + |∇u|2p − 1 and the whole space RN suggest us not to use classical Sobolev
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spaces. Hence, we should define a class of weighted Orlicz-Sobolev space with
respect to the functional (1.6) is well defined and C1. For dealing with the compact
properties of the functional J(u), we would like to get compactness lies in the fact
that the group of translation constitutes an obstruction to compact embedding
in RN , and examine the affects of the unbounded or decaying potentials T (|x|)
and K(|x|). Hence, we restrict the domain of the functional J(u) to the suitable
Orlicz-Sobolev space.

Now we state our main theorems in this paper. Let |x| = r, T (|x|), K(|x|) be
continuous nonnegative functions in (0,∞), and

(T1) There exist real number a and a0, such that lim infr→∞ T (r)/ra > 0, and
lim infr→0 T (r)/ra0 > 0;

(K1) There exist real number b and b0, such that lim supr→∞K(r)/rb <∞, and
lim supr→0K(r/rb0 <∞, K(r) > 0.

The existence and embedding results depend on the potentials T,K near 0 and
∞. We define the following relations between p, 2p, and a, b or a0, b0:

s∗ =


(2p)α(N−1+b)−aα
2p(N−1)+a(2p−1) , b ≥ a > −p,
2p(N+b)
(N−2p) , b ≥ −p, a ≤ −p,

α, b ≤ max{a,−p},

(1.8)

and

s∗ =


2p(N+b0)
(N−2p) , b0 ≥ −p, a0 ≥ −p,

(2p)a(N−1+b0)−a0α
2p(N−1)+a0(2p−1) , −p > a0 > − (N−1)

(2p−1)2p, b0 ≥ a0,

∞, a0 ≤ − (N−1)
(p−1) p, b0 ≥ a0.

(1.9)

Remark 1.1. The idea which for establishing conditions (1.8) and (1.9) comes from
Su, Wang and Willem [18, 19]. In this article, we not only develop the methods
in [18,19,20] to the modified capillary surface equation, but also improve and extend
the results in classical Sobolev space to the Orlicz-Sobolev space.

Theorem 1.2 (Multiplicity Result). Assume that (T1) and (K1) hold, 1 < α <
p < 2p < N , s∗ < s < s∗, then there exist infinitely many radially symmetric
solutions for (1.1).

Theorem 1.3 (Ground States). Assume that (T1) and (K1) hold, 1 < α < p <
2p < N , s∗ < s < s∗, then there exists a radial ground states for (1.1).

This article is organized as follows. In Section 2, we introduce a weighted Orlicz-
Sobolev space of radially symmetric function and recall some important lemmas.
In Section 3, we prove some inequalities with radial functions, extending some
inequalities in classic Sobolev space to the Orlicz-Sobolev space, and establish a
new compact embedding theorem (i.e. Theorem 3.1). Section 4 is devoted to the
proof of Theorems 1.2 and Theorem 1.3.

2. Weighted Orlicz-Sobolev spaces

As a first step, we recall some well known facts on the sum of Lebesgue spaces
and introduce some notation of function space.
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Definition 2.1 ( [2]). Let 1 < p < q and Ω ⊂ RN . We denote with Lp(Ω) +Lq(Ω)
the completion of C∞c (Ω,RN ) in the norm

‖u‖Lp(Ω)+Lq(Ω) = inf
{
‖v‖p + ‖w‖q : v ∈ Lp(Ω), w ∈ Lq(Ω), u = v + w

}
. (2.1)

In this article, we set q = 2p and ‖u‖p,2p = ‖u‖Lp(Ω)+L2p(Ω). Moreover, from [2],
we obtain that Lp(Ω) + L2p(Ω) are Orlicz spaces.

For α > 1, s > 1, we define

Lα(RN ;T ) =
{
u : RN → R : u is Lebesgue measurable,

∫
RN

T (|x|)|u|αdx <∞
}
,

and

Ls(RN ;K) =
{
u : RN → R : u is Lebesgue measurable,

∫
RN

K(|x|)|u|sdx <∞
}
.

The corresponding norms in Lα(RN ;T ) and Ls(RN ;K) are respectively

‖u‖LαT (RN ) =
(∫

RN
T (|x|)|u|αdx

)1/α

,

‖u‖LsK(RN ) =
(∫

RN
K(|x|)|u|sdx

)1/s

.

(2.2)

From [2], we have a list of properties of the Orlicz spaces Lp(Ω) + L2p(Ω).

Proposition 2.2 ( [2]). Let Ω ⊂ RN , u ∈ Lp(Ω) + L2p(Ω) and Λu = {x ∈
Ω| |u(x)| > 1}. We have

(i) if Ω′ ⊂ Ω is such that |Ω′| < +∞, then u ∈ Lp(Ω′);
(ii) if Ω′ ⊂ Ω is such that u ∈ L∞(Ω′), then u ∈ L2p(Ω′);
(iii) |Λu| < +∞;
(iv) u ∈ Lp(Λu) ∩ L2p(Λcu);
(v) the infimum in (2.1) is attained;
(vi) Lp(Ω) + L2p(Ω) is reflexive and (Lp(Ω) + L2p(Ω))′ = Lp

′

(Ω) ∩ L(2p)
′

(Ω);
(vii) ‖u‖Lp(Ω)+L2p(Ω) ≤ max{‖u‖Lp(Λu), ‖u‖L2p(Λcu)};
(viii) if B ⊂ Ω, then ‖u‖Lp(Ω)+L2p(Ω) ≤ ‖u‖Lp(B)+L2p(B) + ‖u‖Lp(Ω\B)+L2p(Ω\B).

Let C∞c (RN ,R) denote the collection of smooth functions with compact support
and

(C∞c (RN ,R))rad = {u ∈ C∞c (RN ,R) : u is radial}.

Definition 2.3. Let α > 1, W be the completion of C∞c (RN ,R) in the norm

‖u‖W = ‖u‖LαT (RN ) + ‖∇u‖p,2p, (2.3)

Wrad be the completion of (C∞c (RN ,R))rad in the norm ‖ · ‖, namely

Wrad = (C∞c (RN ,R))rad
‖·‖
.

Lemma 2.4. The space (Wrad, ‖ · ‖) is a reflexive Banach space.

Proof. Firstly, we prove that (Wrad, ‖·‖) is a Banach space. In fact, since Lα(RN ;T )
and Lp(RN ) + L2p(RN ) are completed. Let {un}n be a Cauchy sequence in Wrad,
then {un}n is a Cauchy sequence in Lα(RN ;T ), and there exists u ∈ Lα(RN ;T ),
such that ‖un − u‖LαT (RN ) → 0, as n → ∞. Also {∇un}n is a Cauchy sequence in
Lp(RN )+L2p(RN ), there exists δ ∈ Lp(RN )+L2p(RN ), such that ‖∇un−δ‖p,2p →
0, as n→∞.
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Sufficiently, for every ξ ∈ C∞c (RN ), n ∈ N, we have

lim
n→∞

∫
RN

T (|x|)un∇ξdx =
∫

RN
T (|x|)u∇ξdx, lim

n→∞

∫
RN

ξ∇undx =
∫

RN
ξδdx.

In fact, by Hölder inequality and Proposition 2.2 (v), by considering (vn,wn) in
inLp(RN )× L2p(RN ) such that

∇un − δ = vn + wn , ‖∇un − δ‖p,2p = ‖vn‖p + ‖wn‖2p,

we have ∣∣∣ ∫
RN

T (|x|)(un − u)∇ξdx
∣∣∣ ≤ ‖∇ξ‖α′‖un − u‖LαT (RN ) → 0,

and ∣∣ ∫
RN

ξ(∇un − δ)dx
∣∣ =

∣∣ ∫
RN

ξvndx+
∫

RN
ξwndx

∣∣
≤ ‖ξ‖p′‖vn‖p + ‖ξ‖(2p)′‖wn‖2p → 0.

Obviously, by the definition of weak derivatives, we have∫
RN

T (|x|)un∇ξdx = −
∫

RN
T (|x|)ξ∇undx.

Hence, we obtain ∫
RN

T (|x|)u∇ξdx = −
∫

RN
T (|x|)ξδdx;

that is, ∇u = δ.
Secondly, we prove that (Wrad, ‖ · ‖) is reflexive. Indeed, we consider the norm

‖u‖∗p,2p = inf{(‖v‖2p + ‖w‖22p)
1
2 | v ∈ Lp(RN ), w ∈ L2p(RN ), u = v + w},

and then, on Wrad, the norm

‖u‖∗Wrad
= ‖u‖LαT (RN ) + ‖∇u‖∗p,2p,

is equivalent to the norm ‖u‖Wrad . Moreover, by [2, Proposition 2.6], the norm
‖u‖LαT (RN ) and the norm ‖ · ‖∗ are uniformly convex. So, on Wrad, we consider
uniformly convex norm ‖∇.‖∗p,2p and the norm ‖ · ‖LαT (RN ). By a well known result,
also the norm

‖ · ‖]Wrad
=
√
‖ · ‖2

LαT (RN )
+ (‖∇.‖∗p,2p)2,

is uniformly convex and then (Wrad, ‖ · ‖]) is reflexive. Hence the norm ‖ · ‖]Wrad
is

equivalent to ‖ · ‖Wrad . Then, we obtain that (Wrad, ‖ · ‖) is also reflexive. �

Remark 2.5. Similar to [1, Theorem 2.8], we obtain that Wrad coincides with the
set of radial functions of W. Hence, using the principle of symmetric criticality
in [14], we only consider the functional J(u) in (1.6) restricted to the weighted
Orlicz-Sobolev space Wrad.
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3. Embedding theorem

To obtain the compactness of the functional J(u), we prove a compact embedding
theorem (Theorem 3.1). Denote by Br the ball in RN centered at 0 with radius r.

Theorem 3.1. Let 1 < α < p < 2p < N . Assume (T1) and (K1) hold, then we
have the continuous embedding

Wrad ↪→ Ls(RN ;K)

for s∗ ≤ s ≤ s∗ when s∗ < ∞, and for s∗ ≤ s < ∞ when s∗ = ∞. Furthermore,
the embedding is compact for s∗ < s < s∗.

Firstly, we prove some inequalities on radial functions which are interesting.

Lemma 3.2. If 1 < p < 2p < N , there exists M̂ > 0 such that for every u ∈ Wrad,

|u(x)| ≤

{
M̂ |x|−(N−2p

2p )‖∇u‖p,2p, for |x| ≥ 1,

M̂ |x|−(N−pp )‖∇u‖p,2p, for 0 < |x| < 1.
(3.1)

The proof of the above lemma is similar to that of [1, Lemma 2.13] and of [19,
Lemma 1].

Lemma 3.3. Let 1 < p < 2p < N . Assume 2p < s < ∞ and write s = 2p(N+c)
(N−2p) ,

for some −p ≤ c <∞. Then there exists M̃ > 0 such that for all u ∈ Wrad(∫
RN
|x|c|u|sdx

)1/s

≤ M̃ max
(
‖∇u‖p,2p, ‖∇u‖2p,2p

)
. (3.2)

Proof. By denseness, it is sufficient to prove that u ∈ (C∞c (RN ,R))rad, (v,w) ∈
Lp(RN )×L2p(RN ), such that ∇u = v +w. By using Lemma 3.2, and s = 2p(N+c)

(N−2p) ,
we have∫

RN
|x|c|u|sdx

= ωN

∫ ∞
0

r(N−1+c)|u(r)|sdr

= − sωN
(N + c)

∫ ∞
0

r(N+c)|u(r)|(s−2)u(r)u′(r)dr

≤ (2p)ωN
(N − 2p)

∫ ∞
0

r(N+c)|u(r)|(s−1)|u′(r)|dr

=
2p

(N − 2p)

∫
RN
|x|(c+1)|u|(s−1)|∇u|dx

≤ 2p
(N − 2p)

(∫
RN
|x|(c+1)|u|(s−1)|v|dx+

∫
RN
|x|(c+1)|u|(s−1)|w|dx

)
≤ 2p

(N − 2p)

[( ∫
RN
|v|pdx

)1/p(∫
RN
|x|c|u|s|x|

(p+c)
(p−1) |u|

(s−p)
(p−1) dx

)( p−1
p )

+
(∫

RN
|w|2pdx

) 1
2p
(∫

RN
|x|c|u|s|x|

(2p+c)
(p−1) |u|

(s−2p)
(2p−1) dx

)( 2p−1
2p )]

≤M ′ 2p
(N − 2p)

[
‖v‖Lp(RN )‖∇u‖

( s−pp )

p,2p

(∫
RN
|x|c|u|sdx

)( p−1
p )
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+ ‖w‖L2p(RN )‖∇u‖
( s−2p

2p )

p,2p

(∫
RN
|x|c|u|sdx

)( 2p−1
2p )]

≤M ′ 2p
(N − 2p)

max
(
‖∇u‖(

s−p
p )

p,2p , ‖∇u‖(
s−2p
2p )

p,2p

)[
‖v‖Lp(RN )

(∫
RN
|x|c|u|sdx

)( 2p−1
2p )

+ ‖w‖L2p(RN )

(∫
RN
|x|c|u|sdx

)( 2p−1
2p )]

≤M ′ 2p
(N − 2p)

max
(
‖∇u‖(

s−p
p )

p,2p , ‖∇u‖(
s−2p
2p )

p,2p

)
‖∇u‖p,2p

(∫
RN
|x|c|u|sdx

)( 2p−1
2p )

≤ M̃ max
(
‖∇u‖

s
p

p,2p, ‖∇u‖
s
2p
p,2p

)(∫
RN
|x|c|u|sdx

)( 2p−1
2p )

,

where ωN is the volume of the unit sphere in RN . It follows that(∫
RN
|x|c|u|sdx

)1/s

≤ M̃ max
(
‖∇u‖p,2p, ‖∇u‖2p,2p

)
.

�

Lemma 3.4. Assume (T1) holds, 1 < α < p < 2p < N , and a > − (N−1)
(2p−1)2p. Then

there exists M̂0 > 0 such that for all u ∈ Wrad,

|u(x)| ≤ M̂0|x|−(
2p(N−1)+a(2p−1)

α(2p) )‖u‖Wrad , for |x| � 1. (3.3)

Proof. By assumption (T1), there exists R > 1 such that for some M0 > 0,

T (|x|) ≥M0|x|a, |x| > R > 1.

For u ∈ Wrad, as θ > −(N − 1), we have
d

dr
(r(θ+N−1)|u|α) = αr(θ+N−1)|u|(α−2)u

du

dr
+ (θ +N − 1)|u|αr(θ+N−2)

≥ αr(θ+N−1)|u|(α−2)u
du

dr
.

(3.4)

Next we only consider |u| ≥ 1, when |u| ≤ 1, set |u′| = 1
|u| , then |u′| ≥ 1. For

all u ∈ Wrad, (v,w) ∈ Lp(RN ) × L2p(RN ), such that ∇u = v + w. Since, a >
− (N−1)

(2p−1)2p, so take θ = min{a(p−1)
p , a(2p−1)

2p }, then θ > −(N − 1). For r > R,
1 < α < p < 2p < N , we have

|u|αr(θ+N−1) ≤ α
∫ ∞
r

|u|(α−1)t(θ+N−1)|u′(t)|dt

=
α

ωN

∫
Bcr

|x|θ|u|(α−1)|∇u|dx

≤ α

ωN

(∫
Bcr

|x|θ|u|(α−1)|v|dx+
∫
Bcr

|x|θ|u|(α−1)|w|dx
)

≤ α

ωN

[
‖v‖Lp(Bcr)

(∫
Bcr

|x|
θp

(p−1) |u|(
(α−1)p
p−1 )dx

)( p−1
p )

+ ‖w‖L2p(Bcr)

(∫
Bcr

|x|
θ(2p)

(2p−1) |u|(
(α−1)(2p)

(2p−1) )dx
)( 2p−1

2p )]
≤ α

ωN

[
‖v‖Lp(Bcr)

(∫
Bcr

|x|a|u|(
(α−1)p
p−1 )dx

)( p−1
p )
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+ ‖w‖L2p(Bcr)

(∫
Bcr

|x|a|u|(
(α−1)2p
(2p−1) )dx

)( 2p−1
2p )]

≤M(α,p,N)

[
‖v‖Lp(Bcr)

(∫
Bcr

T (|x|)|u|(
(α−1)p
p−1 )dx

)( p−1
p(α−1) (α−1))

+ ‖w‖L2p(Bcr)

(∫
Bcr

T (|x|)|u|(
(α−1)2p

2p−1 )dx
)( 2p−1

2p(α−1) (α−1))

≤M(α,p,N)‖∇u‖p,2p‖u‖
(α−1)

L

(α−1)p
(p−1)
T (RN )

≤M(α,p,N)‖∇u‖p,2p‖u‖
(α−1)

LαT (RN )
.

By Young inequality, and |x| = r, we obtain

|u| |x|(
θ+N−1

α ) ≤M1/α
(α,p,N)‖∇u‖

1/α
p,2p‖u‖

(α−1
α )

LαT (RN )

≤ M̂0(‖∇u‖p,2p + ‖u‖LαT (RN ));

i.e.,

|u| ≤ M̂0|x|−(
2p(N−1)+a(2p−1)

α(2p) )‖u‖Wrad ,

where the constant M̂0 = M̂0(α,p,N). �

Lemma 3.5. Assume (T1) holds, 1 < α < p < 2p < N . Then there exist 1 > r0 >

0 and M̃0 > 0 such that for all u ∈ Wrad,

|u(x)| ≤ M̃0|x|−(
2p(N−1)+a0(2p−1)

α(2p) )‖u‖Wrad , for 0 < |x| ≤ r0 < 1, (3.5)

where M̃0 = M̃0(a0, r0, α,N).

Proof. By assumption (T1), there exists 1 > r0 > 0 such that for some constant
M0 > 0,

T (|x|) ≥M0|x|a0 , 0 < |x| ≤ r0 < 1.

For u ∈ Wrad, we have

d

dr
(r(β+N−1)|u|α) = αr(β+N−1)|u|(α−2)u

du

dr
+ (β +N − 1)|u|αr(β+N−2).

Thus, for 0 < r ≤ r0 < 1,

r(β+N−1)|u|α ≤ α
∫ r0

r

|u|(α−1)t(β+N−1)|u′(t)|dt+ (β +N − 1)
∫ r0

r

|u|αt(β+N−2)dt.

(3.6)
As β ≥ a0 + 1, we have∫ r0

r

|u|αt(β+N−2)dt =
∫ r0

r

t(a0+N−1)|u|αt(β−a0−1)dt

≤ ω−1
N r

(β−a0−1)
0

∫
Br0 (0)\Br(0)

|x|a0 |u|αdx

≤ ω−1
N M−1

0 r
(β−a0−1)
0

∫
Br0 (0)\Br(0)

T (|x|)|u|αdx

≤ ω−1
N M−1

0 r
(β−a0−1)
0 ‖u‖αLαT .

(3.7)
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Let β = max{ (2p−1)
2p a0,

(p−1)
p a0}, for all u ∈ Wrad, (v,w) ∈ Lp(RN ) × L2p(RN ),

such that ∇u = v + w, we only consider |u| ≥ 1. If |u| ≤ 1, set |u′| = 1/|u|, then
we have |u′| ≥ 1. Hence, we have∫ r0

r

|u|(α−1)t(β+N−1)|u′(t)|dt

= ω−1
N

∫
Br0 (0)\Br(0)

|x|β |u|(α−1)|∇u|dx

≤ ω−1
N

(∫
Br0 (0)\Br(0)

|x|β |u|(α−1)|v|dx+
∫
Br0 (0)\Br(0)

|x|β |u|(α−1)|w|dx
)

≤ ω−1
N

[
‖v‖Lp(Br0 (0)\Br(0))

(∫
Br0 (0)\Br(0)

|x|
βp

(p−1) |u|
(α−1)p
(p−1) dx

) (p−1)
p

+ ‖w‖L2p(Br0 (0)\Br(0))

(∫
Br0 (0)\Br(0)

|x|
β(2p)
(2p−1) |u|

(α−1)(2p)
(2p−1) dx

) (2p−1)
2p

]
≤ ω−1

N ‖v‖Lp(Br0 (0)\Br(0))

(∫
Br0 (0)\Br(0)

|x|a0 |u|(
(α−1)p
p−1 )dx

)( p−1
p(α−1) (α−1))

+ ω−1
N ‖w‖L2p(Br0 (0)\Br(0))

(∫
Br0 (0)\Br(0)

|x|a0 |u|(
2p(α−1)

2p−1 )dx
)( 2p−1

2p(α−1) (α−1))

≤ ω−1
N ‖∇u‖p,2p(Br0 (0)\Br(0))

(∫
Br0 (0)\Br(0)

|x|a0 |u|(
(α−1)p
p−1 )dx

)( p−1
p(α−1) (α−1))

≤ ω−1
N M

−( p−1
p )

0 ‖∇u‖p,2p(Br0 (0)\Br(0))

×
(∫

Br0 (0)\Br(0)

T (|x|)|u|(
(α−1)p
p−1 )dx

)( p−1
p(α−1) (α−1))

≤ ω−1
N M1‖∇u‖p,2p(Br0 (0)\Br(0))

(∫
Br0 (0)\Br(0)

T (|x|)|u|αdx
)(α−1

α )

= ω−1
N M1‖∇u‖p,2p‖u‖(α−1)

LαT (Br0 (0)\Br(0)).

Since

β +N − 1 ≥ 0⇐⇒ a0 > −
(N − 1)
(2p− 1)

2p.

It follows that β +N − 1 ≤ 0 implies β − a0 − 1 ≥ (N−pp−1 ). Hence, from the above
arguments, we have

|u(x)| ≤ M̃0|x|−(
2p(N−1)+a0(2p−1)

α(2p) )‖u‖Wrad , 0 < |x| ≤ r0 < 1,

where the constant M̃0 = M̃0(a0, r0, α,N). �

Lemma 3.6. Let 1 < α < p < 2p < N , 2p < s ≤ ∞. Then for any 0 < r < 1 <
R <∞, the following embedding is compact

Wrad(BR\Br) ↪→ Ls(BR\Br;K).

The proof of the above lemma is similar to [19, Lemma 6].
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Proof of Theorem 3.1. First we prove that the embedding is continuous. It is suf-
ficient to show

Srad(T,K) = inf
u∈Wrad(RN )

‖∇u‖p,2p + ‖u‖LαT (RN )

‖u‖LsK(RN )

> 0. (3.8)

If not, assume that there exists {un} ⊂ Wrad such that

‖∇u‖p,2p + ‖u‖LαT (RN ) = o(1), as n→∞, (3.9)

‖u‖LsK(RN ) = 1, for all n ∈ N. (3.10)

It is a contradiction, if we have

‖u‖LsK(RN ) = 0. (3.11)

By (T1) and (K1), there exist R0 > 1 > r0 > 0, for some M0,

K(|x|) ≤M0|x|b, T (|x|) ≥M0|x|a, for |x| ≥ R0,

K(|x|) ≤M0|x|b0 , T (|x|) ≥M0|x|a0 , for 0 < |x| ≤ r0.
(3.12)

For R > R0 and 0 < r < r0, we estimate the integrals
( ∫

Br
K(|x|)|un|sdx

)1/s and( ∫
BcR

K(|x|)|un|sdx
)1/s in different cases according to the definitions of s∗ and s∗,

BcR denotes the complement of BR.

Firstly, we estimate the term
( ∫

Br
K(|x|)|un|sdx

)1/s

.

Case 1.1: For a0 ≥ −p, b0 ≥ −p. Let s = 2p(N+c)
(N−2p) , by s ≤ s∗, we obtain

η1 = b0 − c ≥ 0. Hence by Lemma 3.3 and (3.9), we have(∫
Br

K(|x|)|un|sdx
)1/s

≤M1/s
0

(∫
Br

|x|b0 |un|sdx
)1/s

≤M1/s
0 r(

b0−c
s )
(∫

Br

|x|c|un|sdx
)1/s

≤M1/s
0 r(

b0−c
s ) max

(
‖∇un‖p,2p, ‖∇un‖2p,2p

)
= r(

b0−c
s )o(1), as n→∞.

(3.13)

Case 1.2: For −p > a0 > − (N−1)
(2p−1)2p, b0 ≥ a0. From s ≤ s∗, we obtain

η2 = b0 − a0 − (s− α)
2p(N − 1) + a0(2p− 1)

α(2p)
≥ 0.

We choose a cut-off function φ such that φ = 1 for 0 ≤ |x| ≤ r0
2 , and φ = 0 for

|x| ≥ r0. Then by Lemma 3.5, for r < r0
2 , we have(∫

Br

K(|x|)|un|sdx
)1/s

≤M1/s
0

(∫
Br

|x|b0 |φun|sdx
)1/s

= M
1/s
0

(∫
Br

|x|(b0−a0)|φun|(s−α)|x|a0 |φun|αdx
)1/s

≤M2‖φun‖
( s−αs )

W

(∫
Br

|x|(b0−a0−(s−α)
2p(N−1)+a0(2p−1)

α(2p) )T (|x|)|un|αdx
)1/s
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≤M3r
(
b0−a0
s −(s−α)

2p(N−1)+a0(2p−1)
sα(2p) )‖un‖

( s−αs )

Wrad
‖un‖α/sLαT (Br)

≤M ′3r
(
b0−a0
s −(s−α)

2p(N−1)+a0(2p−1)
sα(2p) )‖un‖Wrad

= r

(
b0−a0
s −(s−α)

2p(N−1)+a0(2p−1)
sα(2p)

)
o(1), as n→∞. (3.14)

Case 1.3: For a0 ≤ − (N−1)
(p−1) p, b0 ≥ a0, in the case s∗ = ∞. For ∞ > s > α, it

holds

η3 = b0 − a0 − (s− α)
2p(N − 1) + a0(2p− 1)

α(2p)
≥ 0.

With the same function φ given in Case 1.2, and r < r0
2 , by Lemma 3.5, we have(∫

Br

K(|x|)|un|sdx
)1/s

≤M1/s
0

(∫
Br

|x|b0 |φun|sdx
)1/s

= M
1/s
0

(∫
Br

|x|(b0−a0)|φun|(s−α)|x|a0 |φun|αdx
)1/s

≤M4‖φun‖
( s−αs )

Wrad

(∫
Br

|x|(b0−a0−(s−α)
2p(N−1)+a0(2p−1)

α(2p) )T (|x|)|un|αdx
)1/s

≤M5r
(
b0−a0
s −(s−α)

2p(N−1)+a0(2p−1)
sα(2p) )‖un‖

( s−αs )

Wrad
‖un‖

α
s

LαT (Br)

≤M ′5r
(
b0−a0
s −(s−α)

2p(N−1)+a0(2p−1)
sα(2p) )‖un‖Wrad

= r(
b0−a0
s −(s−α)

2p(N−1)+a0(2p−1)
sα(2p) )o(1), as n→∞.

(3.15)

Secondly, we estimate the term
( ∫

BcR
K(|x|)|un|sdx

)1/s

.
Case 2.1: For −p < a ≤ b, by s ≥ s∗, we obtain

λ1 = b− a− (s− α)
2p(N − 1) + a(2p− 1)

α(2p)
≤ 0.

Hence by Lemma 3.4 and (3.9), for R > R0 > 1, we have(∫
BcR

K(|x|)|un|sdx
)1/s

≤M1/s
0

(∫
BcR

|x|b|un|sdx
)1/s

= M
1/s
0

(∫
BcR

|x|(b−a)|un|(s−α)|x|a|un|αdx
)1/s

≤M6‖un‖
( s−αs )

Wrad

(∫
BcR

|x|(b−a−(s−α)
2p(N−1)+a(2p−1)

α(2p) )T (|x|)|un|αdx
)1/s

≤M7R
1
s (b−a−(s−α)

2p(N−1)+a(2p−1)
α(2p) )‖un‖

( s−αs )

Wrad
‖un‖

α
s

LαT (Bcr)

≤M ′7R
1
s (b−a−(s−α)

2p(N−1)+a(2p−1)
α(2p) )‖un‖Wrad

= R
1
s (b−a−(s−α)

2p(N−1)+a(2p−1)
α(2p) )o(1), as n→∞.

(3.16)
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Case 2.2: For b ≥ −p, a ≤ −p, let s = 2p(N+c)
(N−2p) , by s ≥ s∗, we obtain λ2 = b−c ≤ 0.

Hence by Lemma 3.3, for R > R0 > 1, we have(∫
BcR

K(|x|)|un|sdx
)1/s

≤M1/s
0

(∫
BcR

|x|(b−c)|x|c|un|sdx
)1/s

≤M8R
( b−cs ) max

(
‖∇un‖p,2p, ‖∇un‖2p,2p

)
≤M ′8R( b−cs )‖un‖Wrad = R( b−cs )o(1), as n→∞.

(3.17)

Case 2.3: For b ≤ max{a,−p}, s > α = s∗. As for R > R0 > 1, when a > −p, b ≤
a, it always holds

λ3 = b− a− (s− α)
2p(N − 1) + a(2p− 1)

α(2p)
< 0,

so similar to Case 2.1, we have(∫
BcR

K(|x|)|un|sdx
)1/s

≤M ′7R
1
s (b−a−(s−α)

2p(N−1)+a(2p−1)
α(2p) )‖un‖Wrad

= R
1
s (b−a−(s−α)

2p(N−1)+a(2p−1)
α(2p) )o(1), as n→∞.

(3.18)

and when a ≤ −p, b ≤ −p ≤ c, let s = 2p(N+c)
(N−2p) , we obtain (b − c) ≤ 0, we have

similar to Case 2.2 that(∫
BcR

K(|x|)|un|sdx
)1/s

≤M ′8R( b−cs )‖un‖Wrad = R( b−cs )o(1), as n→∞. (3.19)

Now we write∫
RN

K(|x|)|un|sdx =
∫
Br

K(|x|)|un|sdx+
∫
BcR

K(|x|)|un|sdx

+
∫
BR\Br

K(|x|)|un|sdx.

As s∗ is finite and s∗ ≤ s ≤ s∗, by (3.13), (3.14), (3.16), (3.17), (3.18) and Lemma
3.6, we obtain that (3.11) holds. As s∗ is infinite and s∗ ≤ s < ∞, by (3.15),
(3.16), (3.17), (3.18) and Lemma 3.6, we obtain that (3.11) holds. Therefore the
embedding is continuous in each case.

Now we show that the embedding obtained above is compact. Let {un} ⊂ Wrad

be such that
‖un‖Wrad = ‖∇un‖p,2p + ‖un‖LαT (RN ) ≤M. (3.20)

Without loss of generality, we consider

un ⇀ 0, in Wrad as n→∞. (3.21)

To obtain the compactness, we only need to show that

lim
n→∞

(∫
RN

K(|x|)|un|sdx
)1/s

= 0. (3.22)

As s∗ < s < s∗, the exponents ηi of r in the estimates (3.13), (3.14), (3.15) are
strictly positive, and the exponents λj of R in the estimates (3.16), (3.17), (3.18)
are strictly negative, we obtain the following estimates by similar arguments as
above (∫

Br

K(|x|)|un|sdx
)1/s

≤Mrηi‖un‖Wrad , i = 1, 2, 3, (3.23)
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BcR

K(|x|)|un|sdx
)1/s

≤MRλj‖un‖Wrad , j = 1, 2, 3, (3.24)

By (3.20), (3.23), (3.24) and Lemma 3.6, we obtain (3.22). Hence the embedding
is compact in each case. In conclusion, the proof of Theorem 3.1 is complete. �

4. Proof of Theorems 1.2 and 1.3

In this section, we prove our main theorems. Now, let us define the functional
J :Wrad → R as:

J(u) =
1
p

∫
RN

(
√

1 + |∇u|2p − 1)dx+
1
α

∫
RN

T (|x|)|u|αdx− 1
s

∫
RN

K(|x|)|u|sdx.

(4.1)
Obviously, by [5, Lemma 2.2], the functional J is well defined and it is of class
C1. We obtain that solutions of (1.1) are critical points of the functional J . By
Remark 2.5 and using the standard Palais’ result [14], we infer that Wrad is a
natural constraint for the functional J .

In the following propositions and lemmas, we show that the functional J satisfies
the geometrical assumptions Z2-symmetric version of the Mountain Pass Lemma
[16]. More precisely, we have the following result.

Proposition 4.1. The functional J satisfies the following properties:
(i) J(0) = 0;
(ii) there exist ρ, c such that J(u) ≥ c, for any u ∈ Wrad with ‖u‖Wrad = ρ;

(iii) there exists u ∈ Wrad such that J(u) ≤ 0.

Proof. (i) Trivially, J(0) = 0. (ii) As there exists a positive constant c such that

c|∇u|p ≤
√

1 + |∇u|2p − 1, if |∇u| ≥ 1,

c|∇u|2p ≤
√

1 + |∇u|2p − 1, if 0 ≤ |∇u| ≤ 1.

Then, if ‖u‖Wrad is sufficiently small, by α < p < 2p < s, Proposition 2.2 (iv), and
since Wrad ↪→ Ls(RN ;K), we have that

J(u) ≥ c1
∫

Λc∇u

|∇u|2pdx+ c2

∫
Λ∇u

|∇u|pdx+
1
α

∫
RN

T (|x|)|u|αdx

− 1
s

∫
RN

K(|x|)|u|sdx

≥ cmax
(∫

Λc∇u

|∇u|2pdx,
∫

Λ∇u

|∇u|pdx
)

+
1
α

∫
RN

T (|x|)|u|αdx

− 1
s

∫
RN

K(|x|)|u|sdx

≥ c
[
‖∇u‖2pp,2p + ‖u‖αLαT (RN ) − ‖u‖

s
LsK(RN )

]
≥ c
[
‖u‖2pWrad

− ‖u‖sWrad

]
≥ c.

(iii) Let u ∈ C∞c (RN ,R), as there exists a positive constant C such that{
(
√

1 + |∇u|2p − 1) ≤ C|∇u|p, if |∇u| ≥ 1,
C|∇u|2p, if 0 ≤ |∇u| ≤ 1;
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then for all t > 0, we obtain

J(tu) ≤ C1

∫
Λc∇(tu)

|∇(tu)|2pdx+ C2

∫
Λ∇(tu)

|∇(tu)|pdx

+
1
α

∫
RN

T (|x|)|tu|αdx− 1
s

∫
RN

K(|x|)|tu|sdx

≤ C
[
t2p
∫

RN
|∇u|2pdx+ tp

∫
RN
|∇u|pdx

+ tα
∫

RN
T (|x|)|u|αdx− ts

∫
RN

K(|x|)|u|sdx
]
.

Therefore, for t sufficiently large, there exists u0 = tu such that J(u0) = J(tu) <
0. �

Proposition 4.2. The functional J |Wrad satisfies the (PS) condition.

Proof. Let {un}n ⊂ Wrad be a (PS)-sequence for the J , namely for a suitable c ∈ R

J(un)→ c and J ′(un)→ 0 in W ′rad.

Let us check that {un}n is bounded. In fact, as there exists 0 < µ < 1 such that

|∇u|2p√
1 + |∇u|2p

≤ sµ

2
(
√

1 + |∇u|2p − 1), for all t ≥ 0,

then we have

c+ on(1)‖un‖ = J(un)− 1
s
J ′(un)un;

i.e.,

c+ on(1)‖un‖

=
∫

RN

[1
p

(
√

1 + |∇un|2p − 1)− 1
s

|∇u|2p√
1 + |∇u|2p

]
dx+

( 1
α
− 1
s

) ∫
RN

T (|x|)|un|αdx

≥ (2− µp)
2p

∫
RN

(
√

1 + |∇un|2p − 1)dx+
( 1
α
− 1
s

) ∫
RN

T (|x|)|un|αdx

≥ c
[
min

(
‖∇un‖2pp,2p, ‖∇un‖

p
p,2p

)
+ ‖un‖αLαT (RN )

]
.

Therefore, by Theorem 3.1, there exists u0 ∈ Wrad such that

un ⇀ u0, weakly in Wrad, (4.2)

un → u0, strongly in Ls(RN ;K), (4.3)

un → u0, a.e. in RN . (4.4)

Inspired by [11], we write J(u) = A(u)−B(u), where A(u) = A1(u) +A2(u) and

A1(u) =
1
p

∫
RN

(
√

1 + |∇u|2p − 1)dx, A2(u) =
1
α

∫
RN

T (|x|)|u|αdx,

B(u) =
1
s

∫
RN

K(|x|)|u|sdx.

Then, we have

A(un)−B(un)→ c, A′(un)−B′(un)→ 0, in W ′rad.
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By (4.3), we infer that

B(un)→ B(u0), B′(un)→ B′(u0), in W ′rad.

Therefore,
A′(un)→ B′(u0) in W ′rad. (4.5)

Since A1(u) and A2(u) are convex, so A(u) is convex, we have

A(u0) ≥ A(un) +A′(un)(u0 − un),

namely
A(un) ≤ A(u0) +A′(un)(un − u0).

So, by (4.2) and (4.5), we obtain lim supn→∞A(un) ≤ A(u0). Since A is convex
and continuous, we obtain A is lower weak semicontinuity

A(u0) ≤ lim inf
n→∞

A(un);

therefore,
A(un)→ A(u0), as n→∞. (4.6)

By (4.2) and arguing as in [10, page 208], we have

∇un ⇀ ∇u0, weakly in Lp(RN ) + L2p(RN ), (4.7)

un ⇀ u0, weakly in Lα(RN ;T ), (4.8)

and A1 and A2 are lower weak semicontinuity, we have

A1(u0) ≤ lim inf
n→∞

A1(un), A2(u0) ≤ lim inf
n→∞

A2(un).

Thus, together with (4.6), we obtain

A1(u0) = lim inf
n→∞

A1(un), (4.9)

A2(u0) = lim inf
n→∞

A2(un). (4.10)

Then (4.8) and (4.10), imply

un → u0, in Lα(RN ;T ).

Moreover, by (4.7) and (4.9) and by [5, Lemma 2.3], we have

∇un → ∇u0, in Lp(RN ) + L2p(RN ).

Therefore, un → u0 in Wrad. �

Proof of Theorem 1.2. By the Z2-symmetric version of the Mountain Pass Lemma,
we only need to prove that there exist {Vn}n, a sequence of finite dimensional
subspaces of Wrad with dimVn = n and Vn ⊂ Vn+1, and {Rn}n, a sequence of
positive numbers, such that J(u) ≤ 0 for all u ∈ Vn\BRn .

Let {φn}n be a sequence of radially symmetric test functions such that, for any
n ≥ 1, the functions φ1, φ2, . . . , φn are linearly independent. Denote by Vn =
span{φ1, φ2, . . . , φn} ⊂ (C∞c (RN ,R))rad ⊂ Wrad.

By the proof of Proposition 4.1 (iii), and since Vn is a finite dimensional space of
test functions, so the norms in Vn are equivalent, and we conclude observing that,
if u ∈ Vn\BRn and Rn is sufficiently large,

J(u) ≤ C
[
‖∇u‖2pp,2p + ‖T (|x|)u‖αα − ‖K(|x|)u‖ss

]
≤ C

[
‖u‖2pWrad

+ ‖u‖αWrad
− ‖u‖sWrad

]
≤ C[R2p

n +Rαn −Rsn] ≤ 0.
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So J satisfies the Z2-symmetric version of the Mountain Pass Lemma [16], and
problem (1.1) has infinitely many radially symmetric solutions. �

To obtain a ground state solution in Wrad, we need the following lemmas.
Let us denote withM the set of all nontrivial solutions of (1.1) inWrad, namely

M = {u ∈ Wrad\{0}|J ′(u) = 0}.
Obviously, we know that M 6= ∅.

Lemma 4.3. There exists a positive constant c > 0, such that ‖u‖ ≥ c, for all
u ∈M.

Proof. As J ′(u) = 0, namely∫
RN

|∇u|2p√
1 + |∇u|2p

dx+
∫

RN
T (|x|)|u|αdx−

∫
RN

K(|x|)|u|sdx = 0.

Since there exists a positive constant c such that

c|∇u|(p−2) ≤


|∇u|(2p−2)√

1+|∇u|2p
, if |∇u| ≥ 1,

|∇u|(2p−2)√
1+|∇u|2p

, if 0 ≤ |∇u| ≤ 1;

we have

‖u‖sLsK(RN ) =
∫

RN

|∇u|2p√
1 + |∇u|2p

dx+
∫

RN
T (|x|)|u|αdx

≥ c max
(∫

Λc∇u

|∇u|2pdx,
∫

Λ∇u

|∇u|pdx
)

+
∫

RN
T (|x|)|u|αdx

≥ c
[
‖∇u‖2pp,2p + ‖u‖αLαT (RN )

]
≥ c‖u‖2pWrad

≥ c‖u‖2p
LsK(RN )

.

�

Lemma 4.4. There exists a positive constant c > 0, such that J(u) ≥ c, for all
u ∈M

Proof. Let u ∈ M. Repeating the arguments of the proof of Proposition 4.2 and
by Lemma 4.3, we have

J(u) = J(u)− 1
s
J ′(u)u ≥ c

[
min(‖∇u‖2pp,2p, ‖∇u‖

p
p,2p) + ‖u‖αLαT (RN )

]
≥ c.

�

Remark 4.5. By Lemma 4.4, we infer that

τ = inf
u∈M

J(u) > 0,

and by Theorem 1.3, we obtain that this infimum is achieved.

Proof of Theorem 1.3. Let {un}n ⊂M be a minimizing sequence, namely

J(un)→ τ and J ′(un) = 0.

Then {un}n is a (PS)-sequence for the functional J and we obtain the result by
means of Proposition 4.2. �
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Remark 4.6. As special case, our result can be applied to mean curvature equation
or the capillary equation

−div
( ∇u√

1 + |∇u|2
)

+ T (|x|)|u|α−2u = K(|x|)|u|s−2u, u > 0, x ∈ RN ,

u(|x|)→ 0, as |x| → ∞.
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