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MULTIPLE POSITIVE SOLUTIONS FOR SINGULAR
SEMIPOSITONE NONLINEAR INTEGRAL BOUNDARY-VALUE
PROBLEMS ON INFINITE INTERVALS

YING WANG

ABSTRACT. In this article, we study the existence of multiple positive solutions
for singular semipositone boundary-value problem (BVP) with integral bound-
ary conditions on infinite intervals. By using the properties of the Green’s
function and the Guo-Krasnosel’skii fixed point theorem, we obtain the exis-
tence of multiple positive solutions under conditions concerning the nonlinear
functions. The method in this article can be used for a large number of prob-
lems. We illustrate the validity of our results with an example in the last
section.

1. INTRODUCTION

In the Cahn-Hillard theory used in hydrodynamics for studying the behavior of
nonhomogeneous fluids, the following system of partial differential equation was
derived:

. dv
pe+div(pv) =0, — +V(u(p) —7Ap) =0,

with density p and velocity v of the fluid, pu is its chemical potential, v is a constant.
In the simplest model, this system can be reduced into the boundary value problem
for the ordinary differential equation of the second order [9/11],

(t*u') = 4Nt (u+ Du(u — €), ' (0)=0, u(o0)=¢,
where k € N, £ € (0,1), A € (0,400) is a parameter. The function u(t) = ¢
is a solution of this problem and it corresponds to the case of homogeneous fluid
(without bubbles). The solution itself has a great physical significance and the

numerical treatment was done in [9[11].
In this article, we study the generalized problem

(p()z'(1)) + f(t,z(t)) =0, t € (0,+00),

a1z(0) — By tlir(% p(t)z'(t) = /000 g(t)x(t)dt, (1.1)
oz tim_#(0)+ a Tim_p(0)s'(0) = [ et
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where A > 0 is a parameter, aj,as > 0, B1,082 > 0, g,h € L[0,+00), with
IS gt)dt < +oo, [[Ch(t)dt < 400, p € C[0,+00) N C*(0,+00) with p > 0
on (0,+00), [ p(ls)ds < 400, p = af + ai1fs + ajazB(0,00) > 0 in which
B(t,s) = [; ﬁdv, f:(0,400) x (0,400) — (—00,+00) is a continuous function
and f(¢,u) may be singular at ¢ = 0 and v = 0.

The study of BVP on infinite intervals was initiated in the early 1950s. Since
then, great efforts have been devoted to nonlinear BVP due to their theoretical
challenge and great application potential. Many results on the existence of (pos-
itive) solutions for BVP on infinite intervals have been obtained, and for more
details the reader is referred to 1121344561718,/ 10L{12}|13,/15,/16] and the references
therein. Chen and Zhang [5], obtained some sufficient and necessary conditions for
the existence of positive solutions for

2" (t)) + f(t,z(t)) =0, te(0,+00),
xz(0) =r >0, tlim x(t) = const.,

“+oo

or z(0) =r >0, tligrn 2(t)=1>0,
where f : (0,4+00) X [0, +00) — [0, +00) is a continuous function, f(¢,1) £ 0. Liu
et al |[12] established the existence of positive solutions for the following equation
on infinite intervals by applying the fixed point theorem of cone map

(p()2'(t))" +m(t) f (¢, 2(t)) =0, t € (0,+00),
a1z(0) — By tliré1+ p(t)z'(t) =0,

. . /
0z lim_a(t) + B lim_p(t)a'(t) =0,
in which f : [0,400) X [0,400) — [0,400) is a continuous function, m : (0, +00) —
[0,400) is a Lebesgue integrable function and may be singular at ¢t = 0.
Motivated by the above works, we shall study the existence of multiple positive
solutions for . We should address here that our work presented in this paper
has various new features. Firstly, the boundary conditions are more general; that
is, includes two-point, three-point and multi-point boundary value problems
as special cases. Secondly, we study the BVP on infinite intervals, which expands
the domain of definition of ¢ from finite interval to infinite interval, since we can not
use the Ascoli-Arzela theorem in [0, 400), some modification of the compactness
criterion in [0, +00) (see Lemma can help to resolve this problem. Thirdly, the
nonlinear term f in is more complicated, we require f has singularity on ¢t = 0
and v = 0, in addition, we do not need require f be positive, but the solution we
obtain in (1.1)) is a positive solution, where x € C[0, 400) is said to be a positive
solution o if and only if z satisfies (1.1)) and x(t) > 0 for any ¢ € [0, +00).

2. PRELIMINARIES

For convenience of notation, we let

a(t) = ﬂl + OllB(O,t), b(t) = ,82 + OégB(t, OO),
a(oco) = t_l}_%moo a(t) = 1+ a1 B(0,00) < 400, a(0) = }gr(l) a(t) = B,
boo) = lim_b(t) = s, b(0) = lim b{t) = > + a5 B(0, ) < +o0,
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P— fo b(t)dt fo
8= fo tydt — p— fo

It is obvious that a(t) is increasing and b(t) is decreasmg on [O, +00). Define

_ 1 Ja(s)b(t), 0<s<t<+oo,
Gt ) = P {a(t)b(s), 0<t<s<400. 21)

Denote 7(t) = a(t)b(t), then for any 0 < ¢, s < +00, we obtain

0<G(t,s) <G(s,8) < b(o);(s), 0< Gt s) < @,

rals) p 22
Gls) = lim_Glt,s) = 26; 2 < G(s, 8) < +o0.
Lemma 2.1. Suppose 0 = 1/(a(00)b(0)), then G(t,s) > 07(t)G(s,s), 0 < t,s <
+o00.

Proof. From (2.2)) and the properties of a(t), b(t), for 0 < t,s < 400, we have

(t) (£)b(t)
G(ts) _ Jupr =<t _ fiowg, s<t o T(®)
Glovs) 80 1<s MO0 <y (o)

a(s)”
Therefore, G(t,s) > 67(t)G(s,s) for 0 < t,s < +oo. O

In this article, we assume the following conditions:

(H1) A>0,p— [ g)b(t)dt >0, p— [;° h(t)a(t)dt > 0.

(H2) f:(0,400) x (0,400) — (—00,400) is a continuous function and
~(0) < £(t,u) < (O)(gw) + h(w),  (1,u) € (0, +00) x (0, +00)

where ¥, ¢ : (0,4+00) — [0,+00) is continuous and singular at ¢ = 0,
P(t),¢(t) Z 0 on [0,+00), g : (0,400) — [0,+00) is continuous and non-
increasing, h : [0,4+00) — [0,400) is continuous, g and h are bounded in
any bounded set of [0, 400).

(H3) 0 < [;%1(s)ds < 400, 0 < [~ G(s,5)(1h(s) + p(s))ds < +o0.

Lemma 2.2. Suppose (H1) holds, fo ﬁds < +00, p >0, then the BVP
(p(t)w' () + () =0, t e (0,+00),
a1w(0) = B Jim p(0'(0) = [ g(Bu(ti,
- 0

Qg tligrnoow(t) + B2 tiigrnoo p(t)w' (t) = /0 h(t)w(t)dt

has a unique solution for any 1 € L(0,4+00). Moreover, this unique solution can be
expressed in the form

/ G(t, spb(s)ds + A(E)a(t) + Ba)H(D). (2.3)
where G(t, s) is deﬁned by (2.1) and

A(Y) =

fo fo )det P fo £)b(t ‘
fo fo P(s)dsdt fo b(t)dt |’
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ds dt p—fooh()()dt
) = | IO 60 0t |
W)= —Jo 9@®) i G(t.s)p(s)dsdt [ g
The proof of the above lemma is similar to |13], so we omit it. Let
A= 1[5y tydt  p— fo ’
fo )dt Jo b (

fo tdt  p— fo t)a ‘
fo )dt fo (t)a(t)dt |

We choose a constant d, such that d > a(c0)b(0) + Aa(oc) + Bb(0), and denote

7(t) + Aa(t) + Bb(t)
d

)

(1) = (2.4)

then df > 1, 0 < ((t) <1
Lemma 2.3. The solution defined by (2.3) satisfies w(t) < n((t), where n =

4[5 W (s)ds
Proof. Since w(t) is the unique solution of (2.3). By (2.2))-(2.4), we have

wit) < (/OOO T(t);/}(s) ds + Aa(?) /OOO 2/}(:’)(15 + Bb(t) /OOO w(:)d

< (7(t) + Aa(t) + Bb(t)) /Oo Y(s)

A [
=< / (s)ds = nC(t).

]

To study (1.1)) we use the space
X ={ze€C0,+0) : tllgrnoo () exists}. (2.5)
Clearly (X, || ||) is a Banach space with the norm ||z[| = sup;c(o 4 o) [#(2)], see [16].

Let

’YC()

K:{mGX:x()_ Izl tG[OJFOO)}

where 0 < v = min{1 By < L. ) is defined by (2.4). It is easy to see that

K is a cone in X.
Next we consider the singular nonlinear boundary value problem

()2 (©)) + (1, [2(t) — () + () =0, ¢ € (0,+5),
012(0) = Jim p(02'(1) = [ a(0a(0) 26

’ a(oo)’ b

. . / o
oz Jim_a(t)+Fa Tim_p()o'(0) = [ hit)ete)ar
where w(t) is defined in Lemma [2(t)]* = max{z(t),0}.

Lemma 2.4. If z is a solution of (2.6) with z(t) > w(t) for any t € [0, +00), then
x(t) — w(t) is a positive solution of (1.1)).



EJDE-2015/81 MULTIPLE POSITIVE SOLUTIONS 5

Proof. If x is a positive solution of (2.6)) such that x(t) > w(t) for any t € [0, +00),
then from (2.6) and the definition of [z(¢)]*, we have

(P2 (1) + (f(t,z(t) — w(t) + ¥(t)) =0, t € (0,+00),

sa0) = fn Jim p()a'(0) = [ gle)elt)ar .
as lim_x(t) + B Tim_plt)r :/
Let u(t) = (1) — (1), t € [0,-400), then (p()2'(1)' = (W) + (P (1)'

Thus, (2.7) becomes
(p)u'(t))" + f(t u(t)) =0, te€ (0,+00),
aju(0) — B lim p(t)u'(t) :/ g(t)x(t)dt,
t—0t 0
. . / _
o Jim_ult) + o tim_p(00'(0) = [ hie)e(t)ar
Then u(t) = 2(t) — w(t) is a positive solution of (L.I]). O
To overcome the singularity, we consider the approximate problem
.1
)2/ (0) + (F(6:12(6) ~ (O + ) +6(0)) =0, 1€ (0, +00),
arx(0) - 61 lim p()e'(0) = [ g(Oisle)at, (2.8)
- 0

oz Jim_a(t) + 2 lim_p(0)'(0) = [ hio)ete)ar

where n is a positive integer. Under the assumptions (H1)-(H3), for any n € N,
where N is a natural number set, we define a nonlinear integral operator T, : K — X
by

/ G(t, ) f Jar(s) — w(s)]*+3)+w(s))ds

(2.9)
+ A( fn+w) (t) + B(fo +9)b(t), t€0,+00),
where

1 fooo g(t) f0°° G(t,s) (f(s,[x(s) w(s) +w(s dsdt p— fo (t)b(t)dt
— J32 h(t) [5° G(t.s) (f(s,[z(s> w(s)*+ )+w<s>) dsdt [ h(t)b(t)dt
55 o) f3° G(m)( (s.le(s)—w ()] +2 ) +u(s) ) dsdt p— [ h(t)a(t)dt

B(fn + 'l/)) =X

— [ a) [ G(t,s>( (s.fa(s)—w(s)*+21 )+w<e)) dsdt [ g(t)a(t)dt

Obviously, the existence of solutions to (2.8)) is equivalent to the existence of solu-
tions in K for operator equation T,,x = = defined by (2.9).
We list the following lemmas which are needed in our arguments.

Lemma 2.5 ( [4]). Let X be defined by (2.5) and M C X. Then M is relatively
compact in X if the following conditions hold:
(1) M is uniformly bounded in X ;
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(2) the functions from M are equicontinuous on any compact subinterval of
0, +00);

(3) the functions from M are equiconvergent, that is, for any given e > 0, there
exists a T = T(g) > 0 such that |x(t) —x(4+00)| < ¢, foranyt >T, x € M.

Lemma 2.6 ( [7]). Let P be a positive cone in Banach space E, Q1, Qg are bounded
open sets in E, 6 € Qq, Q1 C Qo, A: PNQW\Qy — P is a completely continuous
operator. If the following conditions are satisfied:

|Az|| < ||z||, Yz € PNOQy, |Az| > ||z|, Yz € PN oQs,

or
|Az|| = ||lz||, V& € PNIQ, ||Az| < |lz||, Vo € PN IQs,
then A has at least one fived point in PN (Q2\Q1).

3. MAIN RESULTS

Lemma 3.1. Assume that (H1)—(H3) hold. Then T, : K — K is a completely
continuous operator for any fired n € N.

Proof. (1) we show T,, : K — X is well defined. For z € K, there exists r > 0 such
that |x(t)| < r, for ¢ € [0, +00), also |[z(t) —w(t)]*| < |z(t)] <7, t € [0,400). From
(H2) and the definition of g and h, we have

1
Sy = sup {g(u) + h(u) : — S u<r+1} < +oo.
Thus, by (H2) and (H3), for any ¢ € [0, +oo) we have

/'Gts 8, [a(s) — ()" + 1) +1b(s) ) ds
< [ Gtos) (805)(ollale) ~ (o + 1)

n

Qﬂﬁ—w@]+%n+w@0% (3.1)
< [ G508+ (s

< (Spn + 1)/ G(s,8)(o(s) +¥(s))ds < +o0.
0
By (H2) and (H3), for any ¢ € [0, +00), we also have
A((fn +¥))a(t)
a(t) 57 9@) [5° G(t,s) (f (s,[x(s)—Aw(s)}*+%)+¢(s)) dsdt p—[5° g(t)b(t)dt

AL 5o () [5° G(t,s) (f (s,[a:(s)—/\w(s)]*+%)+w(s)) dsdt  [° h(t)b(t)dt

OO) ‘ J5Z g(0)(Srn+1) [5° G(s,8)(d(s)+(s)) dsdt  p— [° g(t)b(t)dt ‘ (3.2)
A | = SR (Srn+1) [ Gs,8)(d(s)+(s)) dsdt [ h(t)b(t)dt
a(oo) ‘ Jo° g(tydt p— [ g(t)b(t)dt

A JoS h(®)dt [ h

(S +1) / G(5,5)((s) + v(s))ds

— Aa(00) (Syp + 1) / " G(s,5) (B(5) + (s))ds < oo,
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where

a1 I g@)dt p—[° g(t)b(t)dt

A= }o h(t)dt fOOh(t)b(t)dt : (3.3)
In the same way, for any ¢ [0 +00), we obtain

B((fn +))b(t) < Bb(0)(S,, +1) /Ooo G(s,8)(9(s) +9(s))ds < +oo,  (3.4)

where

B_i
A

Jo bt p— [ h
It T | (35)

Hence, by (3.1] . ) and ., we can see that
(L)1) = / G(t,5) (1 (5, le(s) — w(5))* + ) + () )ds
T A(fu + 0)alt) + B(fo + $)b(0)
< (14 Ta(o0) + BHO)Srn +1) [ Gls.s)(00) + 0(5))ds
< 400, te][0,400).

Then, from (3.6]), T,z is well defined for any x € K.
On the other hand, for any ¢,t; € [0,400), t; — t, by the continuity of G(t, s),
we obtain

(3.6)

G(tj,s) (f(s, [z(s) — dw(s)]" + %) + 1/)(3))

. (3.7)
= Gt,s) (/s [x(s) = M)+ =) (),
for s € [0,+00) as j — +oo. By (2 , we have
/ G(t 2(s) — Mw(s)]" %) +1(s) ) ds
< (Spn+1) / G(s,8)(o(s) +¥(s))ds < 400,
0 (3.8)

/Oo G(t, s) (f(s, [2(s) — Aw(s)]* + %) + ¢(s))d5
0

< (St 1) [ " Gls,8)(@(s) + b(s))ds < +o0.

So, by (H3), (3.7)), (3.8) and the Lebesgue dominated convergence theorem, we have

oo

tiw, [ Gty (£ (s.lo (s)—/\w(s)]*—i—%) (s) ) ds

= /OO lim G(t s) (f(s [z(s) — dw(s)]" + %) + w(s))ds
/ G(t, s) 2(5) — Mw(s)]* %) +w(s))ds

Consequently, together with the continuity of a(t) and b(t), we have
[ Tn(ty) — Toa(t )I

‘/ Gt #(s) ~ ()" + 1) +(s) )ds
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+ A(fn +9)alty) + B(fn + ¢)b(E;)

/ G(t.)(£(s WE)]* + 1)+ ls) ) ds
— A(fa+¥)a(t) = B(fa +¥)b(0)
1
<| [ e (4,0 (s [als) — ()" + ) +6(5)) ds

+ A( fn+w))|a( i) —a(®)] + B(fn +9))[b(t;) — b(t))|

— 0, as j — +o00.
Therefore, T,z € C[0,+00). In what follows, for any ¢; € [0,+00), t; — 400, by
(2.2), we have
_ 1
Glt;.5)(£(5:[a(s) = Mo(s)]" + =) +(s))

— () (£ (5. Tals) ~ Mols)]” + ) +6(5))

for s € [0,4+00) as j — 4o00. Then by the Lebesgue dominated convergence theorem
and the property of a(t), b(t), we also have

tim (T,2)() = / TG (s [nls) @]+ 1) () s
+ A(fn +¥)a(0) + B(fn + ¥) B2 < +00.

So, for any x € K, we obtain T,,x € X, which implies that T}, maps K to X.
(2) we show T,,(K) C K. For any x € K, from the definition of || - | and (2.2),

we have

)+ 1(s) ) ds

| Tzl| < /Ooo G(s,5) (£ (s, [o(s) = w(s)]" + % (3.9)
)

+ A(fn +¢)a(00) + B(fn + 1)b(0).
By Lemma 2.1] (2.4) and the monotonicity of a(t), b(t), we obtain

(Tn)(?)

> 0r(t )/ Gss ()]*—F%)—I—w(s))ds
A(fn +¥)a ()+B(fn+1/)) (t)
> bt / G(s,s)( f(s, [z(s) —w(s)]" + %)—l—d)(s))ds

+A(fn+¢ ()+B(fn+¢)()
(o / G(s. ) ()]*—I—%)-i-z/}(s))ds

Afu+0)a(t) + B(fa + )b <>) 5 (Al )a(t) + B(fu + 9)H(0)
r(0)-+ Aat) + B0(0) [ 65,9 (£ o) ~ w0 + 1) + 6(5)) ds
(Al +0)alt) + B(fn + 0H(0)
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=50 /OOO G(s,8) (4 (s [2(9) = o))" + 1) +16(5) ) ds
+ % (A(fn +¥)alt) + B(fn +1)b(t))

+ 300 (AU + 0)alt) + B(fn + 0)b(1)

- C(zt)(/ooo G(s,s)(f(s, [z(s) —w(s)]" + %) + w(s))ds

+ A(fa +¥)alt) + B(fa +0)b(1))

> C(;)(/OOO G(s,s)(f(s, [z(s) —w(s)]" + %) + w(s))ds

B B2
wlogy AU+ ¥)a(o0) + 3 & B+ 9)H0))

> yg(t)(/o‘” G(s, s) (f(s, [z(s) —w(s)]" + %) + zb(s))ds

_|_

2
+ Alfu + $)a(00) + B(fu + ¥)b(0) ) (3.10)

Combining (3.9) and (3.10)), we have (T,,z)(t) > %(t)HTan, for any ¢t € [0, +00).
Therefore, T,,(K) C K.
(3) for any positive integers n, k € N, we define an operator T, 1, : K — X by

(T o) () = /1: G(t,5)(f (s, la(s) ~ w(s)]" + %) +1(s) ) ds

+ Ak(fn + ¥)a(t) + Bi(fn +¥)b(t), t € [0,400),

(3.11)

where
Ap(fn + )
1 ffg(t)fffkG(m)(f(s,ms)—u(s)]*ﬁ)+w<s>) dsdt p— [ g(t)b(t)dt
A —fo°°h(t)fffkG(m)(f(s,ms)—u(sn*ﬁ)+w<s>) dsdt [< bt |
By (fn + )
IR h(t)ff;kG(t,s)(f(s,[us)—w(s)]*ﬁ)+w<s)) dsdt p—[5° h(t)a(t)dt
A —fo°°g(t)fffkG(t,s>(f(s,[z<s>—w<s>}*+%)+w<s>) dsdt [ g(®aydr |

Using the similar method as the discussion in (1) and (2), we obtain T}, ; : K — X
is well defined and T, x(K) C K. In what follows, we will prove that T}, ; : K — K
is completely continuous, for each k > 1.

(i) we show Ty, : K — K is continuous for any natural numbers n, k. Let
Xy, ¢ € K are such that ||z, — z|| = 0 as v — +00. By and (H3), we know

G(t,s) (f(s, [y (s) —w(s)]" + %) + w(s))ds

o0
‘ 1/k
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[ G(t, s) (f(s, [z(s) —w(s)]" + %) + w(s)>ds)
1/k
< [ Gs,)(F(5. () ~ o))" +2) + F(s, [als) — ()] + 1) + 26(s) )
1/k
< [ 6ts,)(00) (9((rus) —w(s))* + ) + hl(m(s) — (o))" +2))
1/k

+ o(s) (g ([a:(s) —w(s)]" + i) + h([z(s) —w(s)]" + %)) + 21/)(5))d5
<208 n+1) /000 G(s,5)(9(s) +9¥(s))ds < +o0, t€[0,+00) (3.12)

where Sy, = sup{g(u) + h(u) : + < u <7’ +1} < o0 (by (H2)), ' is a real
number such that ' > max,en{||z||, ||zs||}. Denote

Ak,v(fn"'w)
52 9t) [5 G(t,S)(f(&[wv(S)—w(S)]“r )+w<s>) dsdt p—[5° g(t)b(t)dt

1

A —f0°°h(t)ff/"kG(t,S)(f(87[%(S)—w(s)]*+g)+w(8)) dsdt [ h(t)b(t)dt
By (fn + )

&< ht) [, G(m)(f(s,[xv<s>w<s>]*+ )+w(s)) dsdt p— [ h(t)a(t)dt

1
A — [ g(t) f1°/°k G(t,s) (f(&[IU(s)—w(s)]*_i_ ).Hp(s)) dsdt  [5° g(t)a(t)dt

Through calculation, we obtain

| A, v(fn +9) - Ak(fn +¢)la(t )

o g dt P fo ‘
B A fo tydt [ h
< [ 6tss) (f(s, [r(s) = wls))* + 1) £ (s o) — @) + ) + 20(s))ds
1/k n n
<A G(s,s) <¢(8) (g([xv(s) —w(s)* + l) + h([xU(S) —w(s)]* + l)) +1(s)
1/k n n
+ () (g([a(s) — (o))" + %) Fh((s) — ) + 1)) () )ds
< 24a(o0 ,«n—i—l/ G(s,s)( ¥(s))ds < 400, t€[0,+00).
(3.13)
In the same way, we obtain
(3.14)
< 2Bb(0 Tn—l—l/ G(s, s)( P(s))ds < 400, t€0,400).

From —-, for any € > 0, by (H3), there exists a sufficiently large Ay
(Ao > 1/k), such that

o0

max{1, a(c0)A, b(O)BY(Spn+1) [ G(s,s)((s) +1(s))ds < 1i (3.15)

Ag 2
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On the other hand, by the continuity of f (s,u+ 1) on [1/k, Ag] x [0,r'], for the
above £ > 0, there exists a § > 0 such that for any s € [1/k, Ag] and u,v € [0,7'],
when |[u—v| = |(u+21) - (v+ 1)] <4, we have

1 1 £ — . [Ae -1
|f(s,u+ ﬁ) — f(s,v+ EH < g(max{l, a(c0)A, b(O)B} /1/k G(s,s)ds) .

(3.16)
From ||z, — z|| — 0 (n — +00) and the definition of the norm || - || in the space X,
for the above § > 0, there exists a sufficiently large nature number Vj, such that
when v > Vp, for all s € [1/k, Ag], we have

[(fros) =) + 1) — ([as) ()" + )|
< ||$v(5) w(s)| +zu(s) —w(s) | (8) w(s)| + x(s) w(8)|
2 2 (3.17)
||1?v(5) ( )|;|$( ) —wl)l | zz)(5)2 1(5)|
< Ju(s) — 2(3)] < oo — 2] <
Hence, by 7, when v > Vp, t € [0,4+00), we have the inequality
| Ao (fr + 1) = Ap(fn +9¥)a(t)
S Ak (fn +9) = Ap(fr + ¥)]a(0)
a(c0) ) Fop— [~ g(t)b(t)dt‘ Hy p— [ g(t)b(t )dt‘ ‘
A LFy  f57 h(t)b(t)dt Hy [ h(t )b(t)dt
Ao
< a(o0)A D G(s, s)|f(s, [, (8) — w(s)]" + %) — f(s, [z —w(s)]* + %) ‘ds
+20(00) Ay +1) [ Glora)(6(5) 4 v(s))ds < 5,
’ (3.18)

where

e o[ oty )
Ao oo

o0 . l s 8
F = —/0 h(t) f(s,[o(s) —w(s)]* + n) + ( ))d dt,

A
- /0°° all /1:; " /Aoo )Gt 5) (£ (s [ — w(s)]* + ) +4(s)) ds
o= /0°° o) /1:; " /AOO )Gt 5) (£ (s [ = o))" + %) +(s)) ds .

Using the same method as (3.18]), when v > Vp, ¢ € [0, +00), we obtain
€
|Br,o(fn + %) = Bi(fu + 9)Ib(t) < 3. (3.19)

Then, by (3.18)), (3.19) and the above discussion, when v > Vp, ¢t € [0,+00), we
obtain

‘(Tn,kxv)(t) - (kax) (t)|
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‘/ Gt 5)( (5. [ (5) — w()]" + =) +1(s) ) ds
1/k n
+ Ak,v(fn + w) ( ) + Bk,v(fn + ¢)b(t)
[ Gl (F(s.frls) — () + 1) +0(s) ) s
1/k

— Ax(fa+ 0)a(t) = Bilfu + 0)b(2)]

Ao . 1 y 1
< | Glss)| [ (s [(s) —w(s)]" + —) = f(5 [2(s) —w(s)]" + ~)|ds

1/k
[ G (£l lra(o) =]+ 5) + S (5 folo) — ()] + 5) +20(s) )
<—+2 ,n+1/ G(s, 8)( P(s))ds < e.

This implies that the operator 7}, ;, : K — K is continuous for any natural numbers
n, k.

(ii) we show T, 1, : K — K is a compact operator for natural numbers n, k. First
of all, let M be any bounded subset of K. Then there exists a constant R > 0

such that ||lz|| < R for any € M. By (3.11), (H2) and (H3), for any z € M,
t € [0,400), we have

[ Gt (5o lals) — (o) + ) + v())as]
1/k

< /1: G(s,s)(¢(s)<g([x(s) —w(s)]* + l) 1 h(z(s) — w(s)])* + %)) +1/)(S))ds

n
o)

< o G(s,8)(¢(s)Srn + ¥(s))ds

< (Spat1) / " G, 5)(6(s) + (s))ds < +oo,

(3.20)
where Sg, := sup{g(u) + h(u) : £ <u < R+1}. By proof similar to (3.2)), (3.4),
for any x € M, t € [0, +00), we have

Ax(fa + 0)alt) < Aa(00) (Spp + 1) / G(s,5)(9(s) +10(s))ds < +o0,
(3.21)
Bi(fn + $)b(t) < Bb(0) (S + 1) / G(5,5)((5) +1(s))ds < +o0.

Then, from (3.20)), ([3.21)), for any z € M, ¢t € [0, +00), we have
[(Tnz)(t)]
< (1 + Aa(00) + Bb(0)) (Srn + 1) / (s, 5)((s) + ¥(s))ds < +oo.
0

Therefore, T, 1, M is bounded in K.
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Next, given @ > 0, for any x € M and ¢,t € [0,a], by (3.11)), we obtain

| //OO Gt 5) (1 (52 lals) = (o) + ) +(5) ) s

[ o ) (S s, lr(e) — (@) + 1) ()

1/k
S / * .
< /1/k |G(t,s) + G(t', s)] (f(S, [x(s) —w(s)]" + ﬁ) + 1/1(5))(15
S Q(SR,n + 1) 1k G(S, S)(d)(S) + '(/J(S))dS < +OO,

and so, for any ¢’ > 0, we can find a sufficiently large Hy (Ho > %) such that

w&n+nlfagﬁxwg+w@»@<f;

By the uniformly continuity of G(t, s) on [0, @] x [%, Hy), for the above ¢’ > 0, there
exists 6 > 0 such that for any ¢,t' € [0,@], s € [, Ho] and [t — | < &', we have

5/ Hy —1
Gt.9) = Gt 9)] < 5 (Sma +1) [ (609) +05))ds)
1/k
Therefore, for any x € M, t,t' € [0,al, [t — t'| < ¢, we obtain

| /;o G(t,5) (F (5. [als) — ()] + 1) +0(s) ) ds

[t (F(s. () o) + 1)+ 0(s))as

1/k
H, / .
< /1/k G(t,s) = G(t', )| (f(s, [2(s) —w(s)]" + ) + w(s))ds (3.22)
+ [ 169 = 69| (F(s. o) = (o) + 3) + () ds
< %I +2(Srn +1) o G(s,5)(d(s) +1(s))ds < %/
1/k

Also by the uniformly continuity of a(t),b(t) on [0,@], for the above &' > 0, there
exists 0" > 0 such that for any ¢,¢' € [0,a] and |t — ¢'| < §”, we have

a(t) — a(t) < & (A(Smn +1) [ Cls5)(6(s) + v(s))ds)
1 A ) (3.23)

!

! ‘(B - s, s)(o(s s))ds
0) = 00 < 5 (Bl +1) [ Gls,5)(006) + vis))s)

By (3.22)), (3.23)), for the above &’ > 0, let §o = min{d’, §"”}, then for any ¢,t’ € [0, a]
with [t — ¢'| < do, and for any x € M, we have

T k2(t) — T ez (t)]
= ‘ G(t, s) (f(s7 [2(s) —w(s)]" + %) + 1/)(s)>ds
1/k

+ Ak (fn +)a(t) + Bi(fa + ¥)b(t)

—1
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[ a9 (s fol) o)+ 1)+ 0s))as

1/k

— Ap(fn +)a(t’) = Be(fo + ¥)D(t)

> / * 1
</ 69 = G 9 (£ (o) — )" + 2) + w(s))ds

+A(Sra+1) [ " G5, 9)(6(s) +0(s))dslalt) — alt)

+ B(Spn+1) /Ooo G(s,8)(9(s) +(s))ds|b(t) — b(t")| < €.

So, {T,, xx : © € M} is equicontinuous on [0,a]. Since @ > 0 is arbitrary, {T}, s :
x € M} is locally equicontinuous on [0, +00).

At last, let T), g (+00) = limy_ 4 o Ty xx(t), by a simple calculation, we can see
that lim,— 4o T k2 (t) < 400, so we obtain

|Tn kx ) =Ty kx(+oo)|
<| [ (6005 =G (15 (s) ~ (o)) + 1) + w(s) )
1/k n
Ao+ O)lalt) — a(o0)| + Bulfo + V)Ib() — b{o0)].

By the similar method as (3.22), for any € > 0, there exists N’ such that, when
t > N', it is true that

| = Gs) (5 lals) = wl)" + )+ (s) s < =

1/k

Together with the continuity of a(t),b(t) on [0,400), we obtain that for the above
g > 0, there exists N’ such that, when ¢ > N’, we have |1}, 2 (t) — T}, xz(+00)| < E.
Hence, {1,z : © € M} is equiconvergent at +oo, which implies that {7, yz : z €
M} is relatively compact (by Lemma [2.5).
Thus, together with the continuity of T, , which we discuss in (2), we obtain
that the operator 7), , : K — K is completely continuous for natural numbers n, k.
(4) we show T,, : K — K is a completely continuous operator. For any ¢ €

[0,400) and z € S ={x € K : ||z|]| < 1}, by (2.9) and (3.11)), we have

1/k

[ Gtes) (£(5: [als) = ()" + 1) +9(s) ) s
1/k

< [ Gss) (q/)(s) (o) (6" + 1) + () —wls))* + 1)) +2(s) ) s

/ G(s,5)(p(s)S1,n +9(s))ds — 0, k — +o0,
(3.24)
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where Sy ,, := sup{g(u)+h(u) :
x € S, we obtain

I(fn+¢)* (f P)la(t)

< u <2} < 400. And then, for any ¢ € [0, +00),

1
n

< N fO t p— fO b
- A fo dt Iy~ h(t)b(t)d
/ (f [o(s) — w(o)" + %) + 1 (5, l2ls) — W + ) +26(5)) ds
2A(S1n + 1)a / G(s,8)(o(s) +¢(s))ds — 0, k— +oo.
(3.25)
Using the similar method, for any ¢ € [0, +00), z € S, we have
‘B(fn + 7/}) - Bk(fn + zb)|b( )
(3.26)
<2B(S1n+1)b / G(s,8)(¢p(s) +9(s))ds — 0, k — +oc.

Inequalities (3.24] 7 3.26]) imply that
||Tn —Th il =sup ||[Thx — Th x| — 0, k — +o0.
€S
Therefore, by T), , : K — K is a completely continuous operator, we obtain that

T, : K — K is a completely continuous operator. ([l

Theorem 3.2. Assume that (H1)—(H3) hold. In addition, suppose that the follow-
ing condition are satisfied:

(H4) There exists a constant 1 > max{4, L1, L2,477’y_1}, such that

h(ri)= sup h(u )S —
u€e[0,r1+1] L2

where
Ly = 2 (1 + Aa(o0) + BH(0)) / " G(5,9) ((8)9(1C(5)) + 0(s))ds
L = 2 (1 + Aa(o0) + Bb(0)) /O  Gs, 9)6(s)ds,

1 is defined by Lemma A and B are defined by (3.3) and (3.5)).
(H5) There exists a constant o > r1 and [z1, z2] C (0, +00), such that

f(t,u) > TTQ (t,u) € [21, 22] X [dra, T2 + 1],

I =0a(z1)b(22) /z2 G(s,s)ds

—lazl z9 al\ z1 Z9
0<5_4g(( )b(22) + Aa(z1) + Bb(22)) < 1,

where

0 is defined by Lemma d, A, B are defined by (2.4).
(H6) limy_ o0 9 = 0.

u

Then (1.1) has at least two positive solutions.
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Proof. Let B,, ={x € X :||z|]| <ri}. Forany x € KNJB,,, t € [0,+00), by the
definition of || - || and Lemma [2.3] we have

[2(t) —w(®)] <a(t) < [lz]| <,

w(t) —w(t) = 2(t) —n(t) = =(t) -

el = 2
> 6Ol vé(i)h > c(t)
So, for any © € K N9B,,, t € [0,400), by (H4), we have
[(Tn)(t)]
=/00Gts(f £ )+ ls))ds + A(f +¥)a)
+ B(fn +9)b(t )
/ G(s,s)(o(s (s)* + %) + h([z(s) —w(s)]" + %)) + ¢(3)>d3
+ A(fn +¢)a(00) + B(fn +1)b(0)
< (1+a(o0) + Bb(0)) | " G(s, ) (65) (9(1€(9)) + Flr)) + (s) ) s

= (1 + Aa(0) —&-Eb(O)) /000 G(s, s)d(s) (g(’yg(s)) + w(s)>ds

+ (1 + Aa(oo) + Bb(0)) /000 G(s,s)d(s)h(r)ds < ry.

Thus,
ITnz|| < |z, for any z € KNJB,,. (3.27)

On the other hand, let B,, = {x € X : ||z|]| < re}. For any z € K N 9B,,,
t € [0, +00), since 1o > r; > 4y~ !, we have

o(t) — w(t) > a(t) — nC(t) > a(t) — 2;1”;5? > @ > ”C(ti”x” > ’K(f”.

So, for any z € K NJB,,, t € [z1, 22], by (2.4), we have

Sry = 4l (a(21)b(22) + Aa(z1) + Bb(z2)) 2

< % (r(t) + a(21)b(22) + Aa(z1) + Bb(22)) 72 (3.28)

< W’C(t)TQ
- 4

QU

<a(t) —w(t) <z(t) <rg.
By (H5) and (3.28), for any € K N dB,,, we have
[(T,x)(t)| = /OOG t,8)( f (s, [x(s) —w(s)]* + %) +w(s)>ds
+ A( fn+1/f) (t) + B(fn +)b(t)
/ or(t s, [2(s) —w(s)]" + %)ds

> [ vabt )G(s,s)r—zds

zZ1 l
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Thus,
|Tnx|| > |||, for any x € K NOB,,. (3.29)
On the basis of (H6) and the continuity of h(u) on [0, +00), we have

(u)

=

=0.

lim
u——+00 u

For

& = max {1, (4(1 + Aa(o0) + Bb(0)) /OOO G(s,5)(b(s) + w(s))d8>—1}’

there exists N > 0, such that when z > N, for any 0 < y < z, we have h(y) <@
Select

r3 > max {rz, N, 2(1 4 Aa(co) + Bb(0)) /000 G(s,8)p(s)g (v¢(s)) ds}.

Let By, = {z € X : ||z|| < r3}, for any x € KN 9B,,, t € [0,+00), we have
[2(t) —w@)]" <a(t) < |lz| <7s,
a(t) = (®) 2 0(t) — n¢(e) 2 (t) - 22D 5 T 5 2 5 gy,
Hence, for any z € K N JB,,, t € [0,400), we obtain

|(Tn)(8)]

:/ Gts(f +%)+w(s))ds
+ A(fa +9)a(t) + B(fu +9)b(t)
/ G(s,s <¢ w(s)]* + %) + h([z(s) — w(s)]" + %)) + w(s)>ds
+A(fa +9 G(OO)+B fn +1)b(0 )
< (1 + Aa(oo) + Bb(0 / G(s,5) (8(5) (0 (1C(5)) + s + 1) +(s) ) ds
< (14 (o) + B0) [ Gls,5)6(5)9 ((5) s
+¢ (1 + Aa(oo) + Bb(0) 7“3—1—2/ G(s,s)( P(s))ds < rs.

Thus,
ITnx|| < |lz||, forany z € K NJB,,. (3.30)

It follows from the above discussion, (3.27)), (3.29), (3.30)), Lemmas [2.6| and
that for any n € N, T}, has two fixed points x1,,, x2,, such that r < z1, <7y <
ZTop < 3.




18 Y. WANG EJDE-2015/81

Let {x1,}22, be the sequence of solutions of (2.8), we know it is uniformly
bounded. From r; < x1,, < ro, we have

[21n () —w(B)]" < @1a(t) < [Jzan]l <725 ¢ €0, +00),

Tin(t) — w(t) > 1, (t) — nC(t) > z10(t) — %iz(t) (3.31)
> 2l 5 o), te o, +00)

-2
Next, given @ > 0, we will prove that {z1,};2; is equicontinuous on [0,a@']. For
any £ > 0, by fooo G(s,3)(p(s)(g(v¢(s)) + h(re) + 1(s))ds < 400, where h(ry) =
sup{h(u) : 0 < u < ry+ 1}, we can find a sufficiently large Hy > 0 such that
oo _ g/
- G(s,5)(@(s)(9(vC(s)) + h(r2) + ¥(s))ds < 13-
0
By the uniformly continuity of G(t, s) on [0,@] x [0, Hy], for the above & > 0, there
exists & > 0, such that for any ¢,t' € [0,@],s € [0,Ho] and |t — t/| < 5, we have

Hy
Gt =9l < 5 (| 06 60¢(0) +T(ra)) + v())ds)

-1

Therefore, for any n € N, ¢,#' € [0,a,s € [0, Ho] and |t — | < 5, we obtain
]/ G(t, ) (£ (s, [z1n(s) — w(s)]* + %) + w(s))ds
= [T G (1o loanls) o) + )+ 0(s)) s
0

1

Ho
< [ 1605 = G ) (£ (5 ora () = )" + 5) 000 s

+/j° Gt 5) = G, )|(f (5 [1a(s) — w(s)]" + %) +0(s))ds  (3.32)

Hy
Ho B
< [1609) - G ) (96)0(C) + i) + 00 s
+/ G(t,s) = G(t',5)|(¢(5)(g(v¢(s)) + h(r2)) + 1 (s))ds

<—+2/ G(s,s)(¢(s)(g (C(s))+ﬁ(r2))+1ﬁ(s))ds<§.
For

An(fn + )
1| g s (f(s,[m(s)fw(s)m%) <s>) dsdt p— [ g()b(t)dt
A e g G(t,s)(f(s’[mn(s)*w(s)] %)+w<s>) dsdt [ h()b(t)dt
Bin(fn +¥)

fooo h(t) fDOO G(t,s) (f (s,[zln(s)fw(s)] %)4”(/)(5)) dsdt p— fo (t)a(t)dt

B~

— [ 9() [ Gltys) (f(s,[m(s)w(s)}wi)w(s)) dsdt [ g(H)a(t)dt
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through calculation, we obtain

AM%+@SAAMG@®@@@WQW+hWD+Ww%<+w

Bmm+wSBAme@w@mwmm+Mw»+wm@<+w,

where A and B are defined as (3.3) and (3.5). So by the uniformly continuity of
a(t),b(t) on [0,@], for the above & > 0, there exists 5" > 0 such that, for any
t,t' €10,@] and |t —t'| < 5", we have

—1

olt) — )] < 5 (A [ Gl ) @(s)0(6(6) + Flra) + 0()as)

o, (333

bte) 1) < 5 ( (/ G(s, ) (8() (9(1C(5)) + Fi(ra)) + $(s))ds

Then, by (3.32), (3.33)), for the above g >0, let 69 = min{gl,gﬂ}, then for any
neN, t,t €[0,a@'] and |t — | < §g, we have

215 (t) — 21 ()]
=| [ 6t (s foanls) = (o) + 3) e s
+ Avalfu - 0)alt) + Bun(Fu + 00

= [T (Floonnls) — w9+ 1) + 00
—mam+w<>—&an+mwv
< [ i) - G@’N(ﬂ%hm@)*ﬂﬁr+%)+¢@ﬂﬁ

+A/ G(s,s) (9(v¢(s)) + h(r2)) + (s))ds|a(t) — a(t')|
—I—B/ G5, 8)(6() (g(1C(5)) + Ti(r2)) + 15(s))ds|b(t) — b(t')] < 2.

So, {1,152, is equicontinuous on [0,a’]. Since @’ > 0 is arbitrary, {z1,}22, is
locally equicontinuous on [0, +00).

Let 21, (4+00) = lim;— oo 1, (t). then by a simple calculation, we can see that
lims—, 400 15 (t) < +00, and so we obtain

‘xln - -Tln(+oo)|
|/ G) (£ (5, lein(s) = (&))" + ) + 0(s) ) ds|
+ A1 (fr +¥)[a(t) — a(oo)| + Bin(fn + ¥)[b(t) — b(00)].

By the similar method as for (3.32), we obtain that, for any £y > 0, there exists N
such that, when ¢t > N’, it follows

[0 =GN (16 armle) — ot} + 1) 06 )ts| < 3



20 Y. WANG EJDE-2015/81

Together with the continuity of a(t),b(t) on [0,400), we obtain that for the above
Zo > 0, there exists N such that, when t > N, we have |21, (t) — Z1n(+00)| <
Zp. Hence, the functions from {z1,}52; are equiconvergent at +oo, which implies
that {z1,}52, is relatively compact (by Lemma [2.5). Therefore, the sequence
{1 }52 has a subsequence being uniformly convergent on [0, +00). Without loss
of generality, we still assume that {x1,}52 itself uniformly converges to x; on
[0,400). Since {x1,}52, € K, we have z1, > 0. By (2.8]), we have

1 1 xl
Tin(t) = z1p, —|—;vn - n(
nlt) =21 (3) 0 —3) //2 /1/2 (<)

/ ds (s, [1n(e) = ()" +3) +9(s )) ds, te€(0,400).
1/2 1/2

p(s)
(3.34)
As {24,,(1/2)}52, is bounded, without loss of generality, we may assume z7,,(3) —
co as n — +o00. Then, by and the Lebesgue dominated convergence theorem,
we have

mlf) = xl(%) +eolt - %) B /1/2 s /1/2 p(;)(i;(g)dg

[ *(fLss [ra(s) —w(Q))F) + (<))
)\/1/2 d5/1/2 ds, t€(0,+00).

p(s)
By (3.35)), a direct computation shows that

(P2} (1)) + (f(t, [o1(t) —w()]") + (1)) =0, t € (0,+00).

On the other hand, let n — 400 in the following boundary conditions:

0r210(0) B Jim p(0)at, (1) = / e

(3.35)

oo lim xln()—i—ﬁg hm p Yk, (t / h(t)z1n(t
t——+o0

Therefore, we deduce that x1 is a solution of (2.8). Let Zy(¢) = x1(t) — w(t). By

(3-31) and the convergence of the sequence {z1,}2,, we have T1(t) > v((t) >
0, ¢t € [0,400). It then follows from Lemma that Z; is a positive solution of

(1.1). By the same method, we obtain Zs(t) > v((t) > 0, t € [0,+00). The proof
is completed. ([

Theorem 3.3. Assume that (H1)-(H3), (H5) hold. In addition, suppose that the
following conditions are satisfied:

(HT) There exists a constant Ry > ra, such that
h(Ry) = sup h(u) < ==,
u€[0,Ra+1] Lo
where ro is defined by (H5), Lo is defined by (H4).
(H8) There exists [z3,z4] C (0,400), such that

t,u
lim min M =400
u—+00 te[23,24} u

Then (1.1) has at least two positive solutions.
The proof of Theorem is similar to that of Theorem and so we omit it.
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Remark 3.4. In the proof of Theorems [3.2] and [3:3] we obtain the two positive
solutions of (|1.1)), under the condition that f(¢,u) has singularity on ¢ and on u. In
addition, the function f(t,u) is semipositive, which increases the difficulty in the

analysis.

Note that by Theorems and the positive solutions z; of (1.1)) satisfy

x;(t) > v((t) > 0, for any t € [0,4+00), i = 1,2.

4. EXAMPLE

Consider the following boundary-value problem

(1 + )% (1)) + f(t,x(t)) =0, t€(0,+00),

x®%}§$“+¢yfaﬁiémuiiwﬂﬂﬁ’
Hﬁ;xﬁ>+ﬂﬁgﬂ*tff@>Am(liﬂsﬂﬂﬁ

By calculations, we obtain: ay = ag =1 = o =1, p(t) = (1+t)2, a(t) =2 —

T Tt ol
Nat= [ —X gt ==
A (*) A (1+1)3 5 < 100

p— /000 g(t)b(t)dt = % >0, p— /000 h(t)a(t)dt = 13 > 0,

a= b el =1t 5= >0
So condition (H1) holds. Take
%+ 10530 W<,
s 3~ ez T %> 1 <wu < 8a,
Ft,u) = 1 T80 + 2700 — 2580 + 15 8a < u < b,

2
(1412 ) @roosvTshe |\ /757 4 5400
CIMEOEISD) T b << 151

\/ﬁ—i—fﬂlOO—&-\/1m—|—ﬁ7 u> 151,
where a = 2.5, b = 22.5, we can suppose g(u) = ﬁ’ o(t) = ¢(t) = (1-&1‘,)2’
2 w<l,
3u 1 3
6a—2 T 2~ T6a—2° 1 <u < 8a,
2098w 12700 — 3958, 8a < u < b,
h(u) =

2T0VISu | \/T5T 4 5400
_ISI@TOEVISY) /=, b <u < 151,

V151 + 5400 + u — b, u > 151,
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/OOO / (s, ) ((s) + b(s))ds :193.

So conditions (H2) and ( 3) hold. For

Since

A L] fogr@®yat  p- fo g(t)b(t)dt| 36 % ?_g
fo )dt [ hmbtyde | T 161 |- 1] T 322
1 fo — Jo° h(t)a(t)dt] _ 36 % ? _ 221
fo )dt fo (t)a(t)dt 161 |- 2|7 322
choose d = 7, then n = ¢ fooo o(s)ds =T7/3,v=1/2, so 4ny~1 = 18.67. For
y Jo g p— f ( )o(t)dt| _ 36 | 3 % _5
fo dt Jo h(£)b(t)dt 161 -3 5| 161
5_ 1 fo p— f ht)a()dt 36 % % _ 51
fo dt Jo g®at)dt |~ 161 |-3 5| 161
T(t )+ Aa(t) + Bb(t) 009  0.11
t) = — 043+ 227
¢(t) > =043+ 10 (e
we obtain

Ly = 2 (1 + Aa(o0) + Bb(0) / G(s,9) (@) (3C(5)) + () ) s
:4.39/0 G(ss)(()( (s)) + ())ds<634
L2:2(1+Aa ) + Bb(0 / )ds = 3.17.

Choosing r1 = 19, we have

h(r) = sup h(u) =2 <~

— =6.31.
u€[0,20] L

Take rg = 150 > 1, [21,22] = [1,2] C (0, +00), then

l= Ha(zl)b(zQ)/ G(s,s)ds = 0.85,

5= 418 (a(z1)b(22) + Aa(z1) + Bb(z3)) = 0.15,
150
F(t,u) > 300 > %2 = S = 17648, (tw) € [1,2) x [225,151),
_ hw) _ VIB1 45400 + Vau—b
lim —~%* = lim = 0.
u——+o00 U u——+o00 u

So all conditions of Theorem are satisfied; Therefore, (1.1) has at least two
positive solutions.
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