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MIXED INTERIOR AND BOUNDARY PEAK SOLUTIONS OF
THE NEUMANN PROBLEM FOR THE HENON EQUATION
IN R?

YIBIN ZHANG, HAITAO YANG

ABSTRACT. Let Q be a bounded domain in R2? with smooth boundary and
0 € Q, we study the Neumann problem for the Hénon equation
—Au+u=z[**uP, ©w>0 inQ,

a—u =0 on 909,

ov
where v denotes the outer unit normal vector to 99, —1 < a ¢ NU {0} and
p is a large exponent. In a constructive way, we show that, as p approaches
400, such a problem has a family of positive solutions with arbitrarily many
interior and boundary spikes involving the origin. The same techniques lead
also to a more general result on Hénon-type weights.

1. INTRODUCTION

In this article, we consider the Neumann problem
—Au+u=S(x)u? inQ,

>0 in §, (1.1)
% =0 on 99,

where € is a smooth bounded domain in R?, S is a nonnegative function on Q, p is
a large exponent and v denotes the outer unit normal vector to 2.

It is well known that problem with S = 1 has a strong biological meaning
because it appears in the study of the stationary Keller-Segel system with the
logarithmic sensitivity function from chemotaxis (see [20,24]):

Di1Av — xV - (vViegw) =0 in Q,
DyAw —aw+bv=0 in ,

w _Ov _ (1.2)
= 9 =0 on 99,

1
9] /Q v(x)dz =0 >0 (prescribed),
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where (2 is a smooth bounded domain in R (N > 2) and the constants Dy, Dy, a,
b and x are positive. Indeed, it is easy to check that solutions of (|1.2)) satisfy the
relation

/ v|V(logv — plogw)|> =0 where p = x/Dy,
Q

so that v = AwP for some positive constant A\. Thus, setting 2 = Dy/a, v =
(b/\/a)P%l and u = yw, we see that u satisfies the singularly perturbed elliptic
problem

—&2Au+u=uP inQ,

w>0 in ), (1.3)
ou
= 0 on 99.

In the pioneering papers [21,(25/26], Lin, Ni and Takagi proved that for £ > 0
sufficiently small and for p > 1 subcritical (more precisely, 1 < p < (N+2)/(N —2)
if N >3 and 1 < p < 400 if N = 2), problem has a least energy solution
which develops a spike layer at the most curved part of the boundary, i.e., the region
where the mean curvature attains its maximum. Since then, there have been many
works looking for higher energy solutions of with multiple boundary peaks
as well as multiple interior peaks (see [9,|16}|17,/18,22] and references therein). In
particular, it was established by Gui and Wei in [17] that for any two nonnegative
integers m, m > 0, m+m > 1, problem has a solution with exactly m interior
spikes and m boundary spikes provided that e is small and p is subcritical. In
another direction, when N = 2 and ¢ is finite (without loss of generality, set ¢ = 1),
Musso and Wei in [23] considered another limit p — 400 and showed that for any
two nonnegative integers m, m > 0, m + m > 1, problem with S = 1 has
also a solution with m interior spikes and m boundary spikes provided that the
exponent p is large.

We are still looking for solutions of problem with multiple spikes both on
the boundary and in the interior as the exponent p tends to +o0o0. A characteristic
feature of this paper is the presence of the function S(z) in terms of the weight
|z|?® with —1 < a € NU {0}, originally introduced by Hénon in [19] to study the
rotating stellar structures. More precisely, we consider the Neumann problem for
the Hénon equation

—Au+u = |z**u? inQ,

u>0 in §, (1.4)
% =0 on 99,

where (2 is a smooth bounded domain in R?, 0 € Q, —1 < a ¢ NU {0}, p is a large
exponent and v denotes the outer unit normal vector to 9. Indeed, the presence
of the Hénon-type weight can produce significant influence on the existence of a
solution as well as its asymptotic behavior. For this purpose, this paper is devoted
to constructing solutions to problem with spike-layer profiles at points inside
Q) and on the boundary of €2 involving the origin when 0 € Q and p tends to +oc.
In particular, we recover the result in [23] when S = 1.
For we obtain the following result.

Theorem 1.1. Assume that Q is a smooth bounded domain in R? and 0 € Q.
Then for any m,m € N U {0} and for p sufficiently large problem (1.4) has a
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positive solution u, which concentrates at m +m + 1 different points of Q; ie., as

P — +00,
m+1 m+m-+1

pla**ub™ — dyedy + 8me Z dg, + 4me Z g,
=2 i=m+2
weakly in the sense of measure in 0, for some points Go,...,Gms1 € 0 and some
DOINLS Gmt2, - - -y Gmamt1 € 0L, where dy = 8w for 0 € Q, and dy = 47 for 0 € 0N).
Furthermore, for any § > 0 sufficiently small,

u, — 0 uniformly in Q\ U5 Bs(g;) U Bs(0),
wp up(n) = vE s uple) — v
x€QNBs(0) z€QNBs(§:)

as p — +00.

The above theorem is proved in a constructive way which also works for the more
general case involving the Hénon-type weight with mixed interior and boundary
source points as follows:

n+n

S(x) = c(x) H |z — g%, (1.5)

where n+7 > 1, q1,...,qn € Q, @nt1, -1 Gntn € 0, =1 <, 0nii & NU{0}
and ¢ : £ — R is a continuous function satisfying infg ¢ > 0, so that problem (1.1)

becomes
n+n

—Au+u=c(x) H |z — q;|**u? in Q,
i=1
u>0 in §,

ou
Foi 0 on 0.

Let us first define the corresponding Green’s function for the Neumann problem
—A;G(z,y) + G(z,y) = dy(x) in Q,
1.7
0G(z,y) =0 on 0. (L.7)
v,

The regular part of G(z,y) is defined depending on whether y lies in the domain
or on its boundary as

H(I’,y) _{

(1.6)

G(z,y) + % log|z —y| fory € Q,

1.8
G(ﬂﬁ,y)+%log|x—y| for y € 0N. (1.8)

In this way, H(-,y) is of class C*# in Q.
Next, for any nonnegative integers m and m, we introduce

J=AL...,n}, Ja={n+1,...,n+n},
Js={n+n+1,....,n+n+m}, Jy={n+an+m+1,...;.n+n+m-+m}.
Furthermore, we set
a; =0 forie J3UJy,
S
ci(z) = (z)

= m for i € U?:ljh
K3
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d - 8r(1+ ) forie JUJs,
L dr(l+ ;) forie JyU Jy.

Also we define
Fl :{ql,“-;Qn}, F2:{Qn+1,-~~,%+ﬁ},
A= (Q\T1)™ x (92\ T2)™\ AT,

where A™ denotes the diagonal set.
Now, we fix n + n different source points ¢;, i € J; U Jo. For 6 > 0 sufficiently
small but fixed we define a configuration space

Az(é) = {(Qn-i-ﬁ-l-lv . 7qn+ﬁ+m+ﬁl) S Aﬁ : dlSt(ql,aQ) 2 20 Vi € Jg,
dist(g;,q;) > 29 foralli,j € Ui Jp, 0 # j}.

As a consequence, for points ¢ = (¢nint1,---,Iniatmim) € AT(5), if we set
PHOEEY dz‘{QIOgCi(qi) +dH(gq)+ Y, 2d;G(q, ;)
1€J3UJy jEJ1UJ2

(1.9)
+ de(qi,qJ‘)}7

JEJ3UJy, j#i

we have the following theorem for (|1.6]), which is the main result of this article.

Theorem 1.2. Assume that Q is a smooth bounded domain in R?, n+ 7 > 1
and infge > 0. Then for any m,m € NU {0} and for p sufficiently large there
ezist different points ¢f € Q\T'1, | € J5, and ¢/ € I\ T2, | € Jy, so that
has a positive solution u, which possesses exactly n 4+ 7 +m + m local maz-
imum points involving qi, ..., qn, q£+ﬁ+1, ey qﬁJrﬁer € Q, and qp11,-- -5 Gntns
qﬁ+ﬁ+m+1, ey q£+ﬁ+m+m € 0Q. Moreover, u, has the following concentration
property:

pS(z)ubtt —e Z didg, +e Z didg, asp — +oo,
leJiuJs leJ3UJy
where G = (Gniat1s-- - Gnrismim) 18 a global minimum point of @ in AT () such
that for 1 € J3 U Jy, dist(¢’, 1) — 0 as p — +o0. Furthermore,
u, — 0 uniformly in Q\ Uies,u0 Bs(q1) U Uiessu0. Bs(q)),
and for the points qi, l € Jy U Jo, and ¢, | € J3U Ja,

sup  wp(z) - Ve sup up(e) — Ve,
z€QNBs(q1) z€QNBs(q7)

as p — +00.

Remark 1.3. The assumption infgc > 0 guarantees the existence of global min-
imum for the function 7 in A”(§), which follows from properties of the Green’s
function. The proof is similar to |23, Lemma 6.1].

Remark 1.4. Assume that infgc > 0 and 0Q \ I'; has at least one circle, by
Ljusternik-Schnirelman theory, we can find another distinct solution satisfying The-
orem [I.2] The proof is similar to the one in [7].
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Note that Theorem [1.2| was partly proved in [23] only when S = 1. Moreover,
comparing to the result of [23], this theorem provides a similar but more complex
concentration phenomenon involving the presence of mixed interior and boundary
peak solutions to . Indeed, Theorem implies the existence of solutions for
(1.6) concentrating at points q;, [ € J1UJs, and g, I € J3UJ,. Unlike concentration
set in 23] only contains no source points in the domain and on the boundary, our
concentration set also contains some interior source points ¢q;, [ € Jy, and boundary
source points q;, [ € Jy. This in return implies that the presence of mixed interior
and boundary source points makes sure that some interior or boundary peak points
of solutions of always locate at these source points. For this reson, if we
consider a very simple case of the Hénon-type weight defined in , where

S(z) = |z —0** with0€ Qand —1 < a ¢ NU {0}, (1.10)

then the corresponding problem always admits a family of positive solutions
with arbitrarily many interior and boundary spikes involving the origin when p
tends to 400, which implies the result in Theorem hold. Besides, we also point
out the interesting result in [6] that solutions for the Liouville equation with the
Hénon-type weight only concentrate at interior points different from the location
of the sources.

Finally, it is necessary to mention the analogy existing between our results and
those known for the Dirichlet problem in R2:

—Au = S(z)u? in Q,
u>0 in (1.11)
u=0 on 0f.

Let us point out that does not allow any solution with boundary spike-layer
profile to exist (see [15]), which shows that the Dirichlet boundary condition is far
more rigid than the Neumann boundary condition. For S = 1, asymptotic behavior
of least energy solutions of is well understood after the works [1,/14L2829]:
puPt! approaches a Dirac mass at the harmonic center of 2 when p tends to infinity.
Construction of solutions with this behavior has been achieved in [12], in which it
is shown that for S = 1, problem has solutions with m interior spikes if € is
not simply connected. As for the case of the Hénon-type weight

S(z) = c(@) [ ] e — @il (1.12)
i=1

where n > 1, ¢1,...,q, € Q, -1 < a1,...,a, € NU{0} and ¢ : Q@ — Ris a
continuous function such that ¢(g;) > 0 for all ¢ = 1,...,n, related constructions
for problem have also been performed in [5,/13], in which it is shown that
under a C%-stable critical point assumption there exists a family of positive solutions
with exactly n 4+ m interior spikes involving source points q1, ..., ¢, as p tends to
+00.

The general strategy for proving our main results relies on a Lyapunov-Schmidt
reduction procedure, which has appeared in many of the other results mentioned
above, as in [8|11}]12,/13,[23]. The sketch of this procedure is given as follows: in
Section 2 we describe exactly the ansatz for the solution that we are searching for.
Then we rewrite problem ([1.6)) in terms of a linearized operator for which a solv-
ability theory, subject to suitable orthogonality conditions, is performed through
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solving a linearized problem and an intermediate nonlinear problem in Section 3. In
Section 4 we reduce problem to finding critical points of a finite-dimensional
function and give its asymptotic expansion. Finally, the proof of Theorem is
contained in Section 5.

2. ANSATZ

In this section we describe the approximate solution for (|1.6) and then we esti-
mate the error of such approximation in appropriate norms.
We first fix n + n distinct source points ¢;, ¢ € J; U J2, and for § > 0 sufficiently

small but fixed we choose points ¢ = (¢niist1;-- - Intitmim) € AT (5). Moreover,
we set
g, = e P4 (2.1)
and consider positive numbers pu; such that
S<pi <0t Vieul,J. (2.2)

We define the function
8(1+ a)?eip?

i) = 108 L g %)
and a correction term as the solution of
—AHZ‘ + Hz = —U; in Q,
0H,; Ou; (2.4)
=— Q.
v v on 9
Lemma 2.1. For any 0 < 7 < 1/2 and for any i € U;_,J;, then we have
1 »
Hi(w) = diH (2,07) + 5p — log8(1 + )% + O(e ™), (2.5)

uniformly in 0, where H is the regular part of Green’s function defined by (1.8)).
Proof. Note that, on the boundary, we have

OH, _ _ou, _ e—q)v)
= ——— = 4(1 i —q; 20 .
v v (14 ai)le — g 202 + |z — g;|2(1+e0)
Thus,
. 0H; (z —qi) -v(x)
I =41+ a;)~——"—5—= Vz €9\ {¢;}.
poo DU (1+ ) Iz — g2 z € 00\ {q;}

On the other hand, by (1.7)-(L.8), the regular part of Green’s function H(z,q;)

satisfies
41+ o)

—AH(z,q;) + H(z, q;) = Tl log |z —¢;| in,
! 2.6
DH(r,0) _ 40 +a0) (v —a) v(2) 20
= on 0f).
ov d; |z — qi|?
So, if we set s;(z) = H;(z) — d;H (2, ¢;) — 3p + log 8(1 + a;)*1i?, we obtain
1 .
B T P e e o vt ER
ds;  OH; (z —a) -v(z)
= —4(1 ) —— Q.
v ov (1+ai) |z — q;]? on 9
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A direct computation shows that for any 5 € (1, +00) N (
positive constant C' such that

2 .
Tran +00), there exists a

0H; (z—qi) v(z) 1,
_ N7 7 (I+a;)
15, — 41+ ) |z — g2 5 (an) < Ce™ P07,
1

_ ~ e P
| log |z — g;[A0+a0) log (€212 1 |& — g, 2(Fa0]2 HLﬁ(Q) < Cpe :

By L? theory

Bsi
v
for 0 < s < 1/8. By Morrey embedding we obtain

1
Isillwi+ss) < CUIAsiLo ) + |51 Lsag)) < Ce™ FOFan?

Isillos ) < Ce™ 70"

for 0 <3<+ % This proves the result (with 7 = m)

We now define the first ansatz as
n+n+m-+m 1
Uga)= —— 5 [ui(@) + Hi(2)),
Sl elg)
where
p_ 2 »_ __p
fy:ppflgﬁ =pr-Tle 20p-1),
We shall show later that Uy(x) is a good approximation for a solution of problem
(1.6) in a region far away from the points ¢;, but unfortunately it is not good
enough for our construction close to these points. Thus, we need to further adjust
this ansatz by adding two other terms to the expansion of the solution. To do this,
we set

U'(x) = log m (2.7)
THay THar 1
pi=c¢ep ' vi=py Zi:vipi(x_Qi)' (2.8)
Define the functions w’?, j = 0, 1, as radial solutions of
Aw’® 4 |z[221V Wit = |g|2% f77 in R?, (2.9)
and define
i) = 5 U, (210)
Fli(z) = eUi{wOiUi _ %(wm)z _ %(Ui)?; _ é(Ul)Zl + %wOi(Ui)Q} (2.11)
with the property that
wl® = Cj;log |z| + O(m%) as |z| — +oo, (2.12)

for some constant Cj;, which can be explicitly computed through the formula

+oo 2(14a;) _ 1 ..
C'i — 241 r J d .
J /0 r r2(ras) 1 1f (r)dr
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The existence of w% and w'?

In particular,

with such properties can be obtained as in [5,/12}(13].

2log 8(1 + a;)* — 10
|z[2(0+a) 4 1

. 1 .
W () = S (U (@) + 6log[l + |2 +)] +

|I|2(1+ai) —

1 2 2(1tan] _ Ly 2 >
* W{Qlog [+ x| ] =5 log”8(1+ )

too ds s+1 v
’ 4~/| j20+ay) §+ 1 log s 8(1 + ;) log || log[1 + |x|2(1+al)}}’

(2.13)
Moreover, it is easy to compute the value
Coi = 12(1 + a;) — 4(1 + ;) log 8(1 + a;)?. (2.14)
Now, we define the functions
wji(x) = wji(u) for j =0,1, (2.15)
Vipi
and its new correction term as the solution of
—AHji + Hji = —Wj; in Q,

6Hﬂ 80}]‘2‘ (216)
=— Q.
v v on 9
Lemma 2.2. For any 0 <7 < % and for any i € U?ZlJl, 7 =0,1, we have
d;Cj; Cji pCj; _sp
Hi(z)=——"""_H ; ! - —— L Oe " 2.17
J (1‘) 4(1 +a2) (xaql) + 1 +ai Og [ 4(1 +al) + (6 4)7 ( )

uniformly in 0, where H is the regular part of Green’s function defined by (1.8)).

Proof. The proof is the same as Lemma First, on the boundary, we have

pllngoaaiyj - cjiW Vo € 00\ {¢:).
Define
41 4+ o)

Cji Cji
I Jog i + pLj

5i(z) = Hji(z) + Tt 0 +a)

by using (2.6), we get
—A8; + 8; = —wji + Cj;log |z — qi —

H(z,q;) —

&
1+
08;  OHj; (x —q) - v(z)
ov v T e — g2
From and (2.15), we can get that for any 8 € (1,+00) N (ﬁﬂroo), there
exists a positive constant C' such that

0H; L C (x —q;) v(z)

) C..
i ; bl -
@ og i +74(1+0¢i) n {2,

n Of).

S S
< Ce” wa+an?,

I B Tz — g HU’(BQ)
C'i pC-i 1
| = wji + Cjilogla — il - 1 +Jai log p; +- 4(1 +J04i) HLﬁ(Q) < Ce™ 20w ®,

This, and the same procedure as the proof of Lemma easily implies that ([2.17)
also holds. (]
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Now, we define the first approximation of the solution for problem (1.6)) as

n+n+m+m 1 1 1
Uy(z) = Z [ + Hi + ~(wo; + Hoi) + —5 (w1; + Hii)] (2).
=1 ypd ei(q) T b b
(2.18)
From Lemmas away from the points ¢;, i € Uj_,J;, one has

n+n+m-+m
d;G(z,q; Co; C1; -
G, q) 0L 0()]. (2.19)

[74p(1+ai) 4p2(1 4 oy)

Uqy(z) = 2 I
S e el
Consider now the change of variables

v(y) =ep tulepy) fory e Qe,
where Q. = ELQ, then problem (1.6 reduces to

—Av+ 512,11 = S(epy)v? in Q,

v>0 in Q., (2.20)
v
% =0 on 895
Let us define the first approximation solution of (2.20) as
2
Va(y) = g5 Uqlepy), (2.21)

where U, is defined by (2.18). For |e,y — ¢;| < ¢ with ¢ sufficiently small but fixed,
by using Lemmas and (2.19), we have

Va(y)
1 1 1
=, = —[ui + Hi + —(woi + Hoi) + — (wii + Hu;)]
pripl eig) Pt P P
1 1 1
+y = L[ujﬂLHj+];(WOJ‘JFHOJ')+]§(le+H1j)}
g#i prT g eg(gy) P
1 i T =g 1 1
= — {[U( )**P*logﬂﬂJF[diH(fU,lh)JF*p
T 1 Vi Pi 2 2
prrpf eilg)PT
1 d;Co; 0i pCoi
—log 8(1 + a;)* i | + = [woi — 2 i P T Ty
0 8(1+ )] + ¢ lwoi = gy H(wa) + 77 Hlog i = =7 ]
1 d;Cy; Cu; pC1;
Wi — 7~ H(, ¢ log pi — O(ep }
t o2 w1 0+ a) (2, 4i) + 777 los m T 1)] +0(p)
d;G i Co; Ci;
t p G a) L (1$a-)_42(1za-)+0(€;)}
g8 PP e (g5) P 0o !
1 i/ T =g 1 1 -
= 2 #{p-i-U (Tp)+§w0i+FWli_‘_O('x_qiD—’—O(EZ))
prTpl ei(g) P T o
Coi Cyi
—log 8(1 + a;)?pf + d;[1 — . - 1H (i, 4:)

dp(1 + o) B 4p2(1 + ;)

1 1 1
————(Coi + =C1;) (log s — =
+p(1+ai)( " 1) (log s = 7)
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S O O o)

el A1) Ap(1+aj)  4p*(1+ oy
We now choose the parameters p;: we assume they are defined by the relation
log 8(L + a)*pf = di1 - 4}?(10?: o) 4]92((51—:- ai)}H(q“qi)
+ ﬁ(cm + }Cu‘)(log i — ip)
(i) 1 L Co; Chj
+; :ZCJ (g5) - Blitay) 1+ ) O )

Taking into account the explicit expression (2.14)) of the constant Cp,;, we observe
that p; bifurcates, as p tends to +oo, from the value

[ = e i etldiH (0,002 4 4;G(a.0)] (2.22)

solution of the equation

4(1 +
Thus, p; is a perturbation of order % of the value fi;, namely
W =e 4 e ildiH(gi,q)+3 2 d;G(a5,4:)] (1 + O(l)) ) (2.24)
p

From this choice of the parameters u;, we deduce that for |e,y — ¢;| < 6,

1
Valy) = » 25 1
prrpl ei(g) P

o+ U'(z) + %wm(zi) + %w“(zi) o), (2.25)

with

Zi =

1p, (e —41), 0(y) = Olprlal) + O(e]).

1M
In the rest of this paper, we will seek solutions of problem (2.20) in the form
v =V, + ¢, where ¢ will represent a lower order correction. In terms of ¢, problem

(2.20)) becomes

L(¢) == —-A¢ + 5;,2;(;5 - Wy =R, + N(¢) in Q.

2.26
% =0 on 0f,, ( )
ov
where
W, = pS(spy)Kf_l, (2.27)
R, is the “error term”
Ry = AV, —e2Vy + S(epy) V2, (2.28)
and N(¢) stands for the “nonlinear term”
N(¢) = S(epy)[(Vg + ¢)" — VP = pVP~' 4. (2:29)

The main step in solving problem (2.26]) for small ¢ is, under a suitable choice of
the points g;, that of a solvability theory for the linear operator L. In developing
this theory, we introduce a weighted L*°-space

Co={he L) : ||l < +oo},
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with the norm

|h(y)|
y EAEES T
VELe €8 43 0 <0,icnUT T e + 20,20, iUt 5, THAT2=
(2.30)
where we fix —1 < @ < ap with ap = min{q; : @ € U?ZIJI}. With respect to the
norm , the error term R, defined in can be estimated in the following

way.

1Al = sup

Lemma 2.3. For § > 0 sufficiently small but fized, there exist C, Dy > 0 and
po > 1 such that

|Rqll+ < C/p*, (2.31)
n+n+m-+m c )
Wy(y) < Do Z (ﬁ)z|zi|2ai€U'('zi)v (2.32)
i=1 i
for any q € AT () and p > po. Furthermore,
0i i 1(7Ti)2 4
£  Ui(s w” = U = 2(U") log™(2 + |zi])
W (y) = (Z2)2 (5200 U ) ] 4 2 L0 . (233
() %M)ll [ » ( e )], (2:33)
for any |z < 6(vip;) =2, where z; = i

Proof. Observe that by (2.4]),
—A(u; + H;) + sﬁ(ui + H;) = (i)z\zﬂzaiem(’zi) in Q.,

0
a(ul + Hl) =0 on 895,

and by (29) and (216), for j = 0,1,

€

)2 lzif? (VW — 1) (z) in Q.

1M

0
7(0]3‘1‘ + H]z) =0 on 895,

ov
which combined with the definition of V; in (2.21)) can deduce directly that
— AV, + eV,
ntitmm e )2, |20 ; Ut 0i _ r0i Ut il 2.34
_ Z (Uipi) | ‘ [6U e” w f +€ w - f ZZ) ( )

=1 propl ()P

From the definition (2.7) of U and the asymptotic behavior (2.12)) of w’?, j =0, 1,
we obtain that in a region far away from the points g;, namely for |z — g;| > d; i.e.
|zi] > §(vip;)~! for all 4,
, g C..
Ul(z;) = —p+0(), w'iz)=—"-"L-"p+0(),
(1) = —p+0O(1) (2:) Mtan” (1)
and so

einm‘ . fOz’ einli . flz’

[eUi + 5 [(z:) = O(p*e™P). (2.35)

p p
This, together with (2.19) and (2.21) imply
R, =O0(pe )+ 0(pP1). (2.36)
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Let us now fix the index i and the region |z;| < d(v;p;)~'/2. From (2.25)) we obtain

Sy = — s o 1+ T
Pl tea) 7 g (2.37)
WO z)  wt(z)  B(y)e
+ p2 + B + » }

By the Taylor expansions of the exponential and logarithmic function, we have for
|25 < 8(vipi) /2,
a b c\P
(1+2+5+5)
p P p?
2 1 aS b2 a4 2b

1 a
[1+p(b—?)+p2( ab+§+5+§f7) (2.38)

+0( )]s

provided —5(1 4 ;) log(|zi| +2) < a(z;) < C and [b(z;)] + |e(z)| < Clog(|zi| + 2).
Thus, for |2] < d(vipi) V2,
20 00 i f ol i
(W ) |2 1 [eUi N U Woi — f0 N eUlwli - f1
PP uF T (g 7T P 3 (2:39)

: log®(|zi| + 2
+ (EL)Q‘Zi'QaieU (21)0( og (‘Z4| + )
vip; P

1M

log®(|z;| + 1)
3

S(gpy)vqp =

+e, + p?pilzil).-

Joining together (2.34), (2.35]) and (2.39), in this region we obtain

R, = <1j"pi>2|zi|2aie“<2i>0<l°g6(';;”) g+ pPpilal) + Ope ). (240)
On the other hand, if 6(vip;) =% < |2 < 6(vip;) ™!, we have
— AV, +eV,=0(p (vzpl) 2520V 5)) 1+ O(pe), (2.41)
and by ,
S(epVy = O (2] fforel ), (242)

since (1 + ;)3 < e®. Thus, in this region

Ry = O(p(-2 eV &) 1 O(pe 7). (2.43)

1M

So, estimate (2.31]) can be easily derived from (2.36)), (2.40) and (2.43]).

Finally, to prove the estimate over W (y) = pS(epy) qu’l, we first notice a slight
modification of formula (2.38])
b c\p-1
(1 ot )
Thus, for |zl\ < 5(vipi)_1/2, by (2.25)),
Waq(y) = pS(epy)Ve™

— ci(gpy)‘epy - Qi‘zal Uz Oi 11 + O(pz‘zz| + 6 )]
pici(a:) p

o 1 a?
:e[1+5(b7a73)++0( pe
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. 0i _ pri _ L(priy2 4 )
= (i)2|zi|2ai€U (#1) [1 + w 2( ) + O(IOg (2 + |2)

Vipi P p?

)]

In addition, if |2;] > §(vip;)~" for all i, we obtain that W,(y) = O(p'~?), and if
S(oips) 2 < [z < 8(uip) ", Wyly) = O((22)?]zi el (), which completes

the proof. O

Remark 2.4. As for W, let us point out that if |z;| < &(v;p;) ™! for some i,

= O(( 2zl ).

(23

-2

1 \?
pS(e) (Vi + 0L 5))
Since this estimate is true if |z;| > d(vip;)~! for all i € UL, .J;, we have
n+n+m-+m
Ep

pSen (Vo) e Y

2z 2V o), 2.44
wp) 1A (2.44)

i=1

3. THE LINEARIZED PROBLEM AND THE NONLINEAR PROBLEM

In this section we shall study first the following linear problem: given h of class
C. and points ¢ € A"(5), we find a function ¢, scalars ¢;;, ¢ € J3, j = 1,2, and
ci1, 1 € Jy, such that

L(¢) =h+ Z Ci1 X Zi1 + Z Ci2 X Zio in Q67

i€ J3UJy i€Js
@ =0 on 09,, (3.1)
ov
/ XiZiyb=0 Vi€ s j=12 i€y j=1,
Q.

where x; and Z;; are defined as follows.

e ARe(s)
Li(¢) = Ad + 0+ ‘Z|2(1+ai)]2¢ Vi€ Ui, 2= P+l Vie JsUJy,
1 [Pt — 1 _ 4Im(z) .
Zi0 — Em V'L S Ul:l‘]l Zig = |Z‘2 n 1 VZ c Jg U J4.

It is well known that any bounded solution to L;(¢) = 0 in R? is a linear combination
of z;0, zi1 and z;5 for i € J3 U Jy (see [2,[3]), or proportional to z;o for i € J; U Jo
(see [4,/10L[13]). Then for i € J, U Jy, any bounded solution to L;(¢) = 0 in R
and %gb(zl,()) =0 on 6]1%3_ is a linear combination of z;g and z;; if i € Jy, or
proportional to z;g if ¢ € Js.

For each point g; € 02 with i € Jy U Jy, we have to strengthen the boundary.
Let us assume that ¢; = 0 and the unit outward normal at ¢; is (0, —1). Let G(x1)
be the defining function for the boundary 92 in a neighborhood Bj(g;) of g;, that
is, QN Bs(q;) = {(z1,22) € Bs(¢;) : @3 > G(z1)}. Then let F; : Bs(q;) N Q — R?
be defined by Fz = (Fila Fig), where

T — G(l‘l)

Fp=a + 2200
L=t TG )P

G'(r1) and Fj =19 — G(11).
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We consider %; = Ff(y) = —1 Fy(c,y) and its inverse y = FF (%) = 2 F (vipizi).

? VipPi Ep T
Set

~ Zz(y) Vi € Jp U Js,
Zi(y) =4 .
Fi (y) Vi € Jo U Jy.

Furthermore, set
Z; (y) = Zi()(éi) Vi € U?:1Jl7 Z; (y) = le(él) Vi € J3 U Jy,

Zin(y) == 2i2(Z) Vi€ 3, xi(y) =x(Z]) Vi€ U,

where x(r) is a smooth, non-increasing cut-off function such that for a large but
fixed number Ry > 0, x(r) = 1 if r < Ry, and x(r) = 0if r > Ry + 1. It is
important to note that F;, ¢ € Jo U Jy, preserves the Neumann boundary condition
and

0 Vie Ji U Js,
Ay Zio +WinZio = 2 |2 . (3.2)
O(WW) Vi € JQUJ4,

where
20(7;

€p )2 8(1+ ay)?|2
vipi” [+ 220 Fe0]2
The main result of this section is the following:

WiO = (

Proposition 3.1. There ezxist C > 0 and py > 1 such that for any p > po, h € C,
and q € AT(0), there exists a unique solution ¢ € L*°(Q.), scalars c¢;j, i € Js,
i=1,2, and c;1, 1 € Jg, to (3.1). Moreover, such solution satisfies

[8lloc < CpllA]l- (3.3)
The proof will be divided into a series of lemmas which we state and prove next.
Lemma 3.2. For p large enough, there exist Ry > 0, and
P Q N\ U, p o R
positive and uniformly bounded so that

€ 1 ) _ -
L(y) > Z (Uz;i )? Iz [+2a + 8?, in Q\UPZ B, gy,

ieUi_ Ji

0 Ep 1
IR vipn TpEa T 0n 09\ Uienus Biny,
i€ J2UJy

where —1 < a < ag and B; g, = {y € Q¢ : |2z1| < R1}.
Proof. Following the proof of [4, Lemma 3.4], we take

(b’l“i)Q(H_a) —1

(bry)20Fe) 117 for i € Uiy Ji, Ry < i < 6(vipi) ™",

91:(y) =

where b > 0, 7; = |z;| and Ry, = %32<11+a>. Then for Ry < r; < §(vip;)~ L,
€p 2. 4l +a 2

—Ag1i(y) +512,91i(y) > (%) 2t (,r2a+4) J

i

and by (2.32),
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So, if b > 0 is sufficiently small so that 4(1 + )26~ 20+ > €} + 1, we have

€p 2 1
L(gy; L | - .
(91 )(y) > (Uipi) T?a+47 (3 5)
and for ¢ € Jy U Jy,
0 Ep 025
5911(9)\ < vip; T?+2a' (3.6)

We also take

1
g2i(y) =1 — 3i%a Im(z;) fori€ JoUJy, Ry <r; <6(vips) "

K3

Then
€ 1 1
LQhﬂ(y)Ei&%;)Q{Un+2aﬂ3—+2a);§§EInﬂzﬁ-—CH;ZI%a}, (3.7)
0 3 Cg
—go;(y) > —B ) .
aygm(y) = vipi T$+2a (3.8)

Consider now
93i(y) = k1g1i(y) + g2:(y)  fori € Jo U Jy, Ry <1 < S(vips) ™",

where ki is chosen larger and ¢ is chosen smaller if necessary. It is easy to check
that ‘ggz(y)| < 04 and

€ 1
Vgs; =0(—=2 —-).
| g3 (y) (Uip'i Ti3+2a)
By (85)-(3:8), we find
€p o 1
L(g3i)(y) > (Kpi) (A (3.9)
0 g, C
5931‘(3/) > L 3+52a- (3.10)

Vi Pi r;
Let 0;(y) = n(vipir;), where n = n(t) is a smooth cut-off function in R? such that
n=1ift < %5, n = 0if t > 4. Obviously, for §(2v;p;)~ 1 < 7 < S(vips) ™1,
IVni(y)| < Ceep and |An;(y)| < Ceel. Besides, let go(y) = g(epy), where § is a
bounded positive solution of
“Aj+g=1 inQ,
96
99 _ 1 on 99,

v
so that —Agg + sﬁgo = 812) in Q, %go = ¢, on 0. Moreover, go(y) is uniformly
bounded on Q., ie. |go(y)| < C;. Thus, for numbers ks, k3 and R; such that

ko > max{2, Cgl}, k3 > 24+ koCs+koCsCs and Ry = maX{Rb, (k30107) 2(0‘1‘1*") |Z S
Ui, Ji}. The function

Yy)= Y kam@gu)+ D komi(y)gsi(y) + kago(y)
i€ iU i€ 30U

meets the requirements. The rest of the proof is similar to that of [4, Lemma 3.4],
so we omit it. (]
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Lemma 3.3. There exist C > 0 and pg > 1 such that for all p > pg, points
q € A™(6), h € C,, and ¢ the solution to
L(¢g) = —A¢ + 512;¢ - Wyp=h inf,
D¢ (3.11)

W =0 on 0.,

under the orthogonality conditions

/ XiZio¢ =0 Vie J UJs,
2 (3.12)
[ xzso=0 vien j=oLzica =01

one has

[6llec < CllA]- (3.13)
Proof. First we consider the “inner norm”

ollr = sup [¢(y)],

yeQN(U ™ B, )
we claim that there is a constant C' > 0 such that

[¢lle < CUIllR: + IAl4), (3.14)
with Ry given by Lemma Set

¢ =Croo)(Iolr, +IIR].) ¥y € QUL By gy

where 1 is the positive, uniformly bounded barrier constructed by Lemma [3.2) and
Cy > 0 is chosen larger if necessary. Then for y € Q. \ U™ B, g |

Lo 2 Culhl{ 35 (EPIZ RO el £ hiy)

iUt Vi P4 Vi Pi
> [h(y)| £ h(y) =0,

for y € 00 \ U B; B

o -~

Yo+ >

2 @xam=o
and for y € Q. N (UM 9B; ),

(£ ) () > 6llr, £ dy) > [d(y)| + ¢(y) > 0.
From the maximum principle (see [27]), it follows that —(ﬁ(y) < Py) < &(y) on

Q. \ Uttt p, o which implies that (3.14) holds.

Let us prove the a priori estimate (3.13) by contradiction. We assume the
existence of sequences p; — 400, functions h; with ||h;|l. — 0, points ¢/ =
(@ mig1s e Cosipmanm) € A(0), solutions ¢; with ||¢;]loc = 1 such that (3.11)-
(3.12)) holds. From estimate (3.14)), SUPG, B, 5, |¢;| > & > 0 for some i and
k. To simplify the notation, let us set p = p;, €, = ¢, and ¢ = ql. Set
oi(z) = ¢j(”i—fiz + g—p) and h;(z) = hj(”;—g"z + g—y) While ¢; € Q, i € J; U J3, by

1S3

(2.33), éj satisfies

—Ag; + (vipi)° 5 —

8(1 4 a;)?|z|? 1., ViPivg
-~ 1 _ L= (222 .
[1+ ‘z|2(1+0¢i)]2[ +O(p)]¢] ( Ep ) hja
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for z € Bg, (0). Obviously, for any 3 € [1, —1], (%)zﬁj — 0in L?(Bg, (0)). Since

e

80tai® 2" 4o hounded in LP(Bg,(0)) and ||¢;]lsc = 1, elliptic regularity th
[1+‘Z|2(1+ai)]2 R1 jlloo = Ly p g y eory

readily implies that (]Abj converges uniformly over compact subsets near the origin
to a bounded nontrivial solution qg of Lz(é) = 0 in R2. Then ¢ is proportional
to z;0 for ¢ € Jy, or a linear combination of z;g, z;1 and z;5 for i € J3. However,
our assumed orthogonality conditions on ¢ and ¢;, pass to limit and yield
fxzioquz =0 for i € Jy, or fxzilgzgdz =0 for i € J3, 1 = 0,1,2, which implies
(/3 = (0. This is absurd because (]3 is nontrivial.

While g; € 09, i € Jo U Jy, (ﬁj satisfies

- s 8(1+ ay)?|z]P
2
—A¢j + (vipi)~pj — [1+ [z[20+a0)]2

]A”Lj n BR1 (0) n Q'Uipi’

Lo uipiy2
140G, - (42)

q -
$¢] =0 on BR1 (0) N aQU”J“

€

in L?(Bg, (0) N Qy,p,). Since 80tai®l2** 4o b ounded in LP(Bg,(0) N Qy,,,) and

[+zPFe0]e

where §,,,, = ﬁpl(ﬂ — {@:}). Obviously, for any g € [1,—1], (“’i—;’i)ﬁzj — 0

||¢EJ||OO = 1, elliptic regularity theory readily implies that ¢Ej converges uniformly
on Bg, (0) N Q,,,, to a bounded nontrivial solution ¢ of L;($) = 0 in R2 and
%é(zl,O) = 0 on 5‘R3_. Then g% is proportional to z;g for ¢« € Js, or a linear
combination of z;g and z;; for i € J;. However, our assumed orthogonality condi-
tions on i and ¢;, pass to limit and easily yield fxzioé =0 for i € Jo, or
f Xzilquz =0 for ¢ € Jy, { = 0,1, which implies (;AS = 0. This is also absurd because
qg is nontrivial, which completes the proof. [

Lemma 3.4. There exist C' > 0 and pg > 1 such that for any p > pg, points
q € A"(9), h € Cy, and solution ¢ of (3.11) with

/ XiZij¢ =0 VieJs, j=1,2,4€ Jy, j=1, (3.15)
Q.
one has
[#lloe < Cpllh]. (3.16)
Proof. Let R > Ry + 1 be large and fixed. For i € Ui, J;, denote
1
a0 =

pilH (g, 4:) — 3-4(1 + o) log(vipi R)]’
~ 1
Zio(y) = Zio(y) — " + aioG(gi, €py).-
1
Let 11 and 72 be radial smooth cut-off functions in R? such that
0<m <1; |Vm|<CinR?* 5 =1inBg(0); n =0inR?\ Bgy1(0);
0<m<1; |[Vnp|<CinR*% ny=1inBss(0); n2=0in R*\ Bxs(0),
where 0 < k < 1 will be chosen later on. Set
mi(y) =mZWD), miy) = ne(vipilZ:(y)]),
Zio(y) = miZio + (1 — 7711‘)7722‘21‘0
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Now define
n+n+m-+m

b=+ > e, (3.17)

i=1

where e; is chosen such that for any i € Uj_, J;,
€i/ xilZiol? +/ XiZio¢ =0,
Q. Q.

Note that B%ZO =0 for any ¢ € Jo U Jy, which arises from 5%221‘0(21, 0) =0 and F;
preserves the Neumann boundary condition. Thus

n+n+m-+m

Lg)=h+ > eL(Zo) inQ,
=l (3.18)
0
a—f =0 on 0.,
and ¢ satisfies the orthogonality conditions (3-12). By (3.13)), it implies that
N n+n+m-+m _
I6lloe < CLlIRI+ D leal - IL(Zio) |l }- (3.19)
i=1
Multiplying (3.18)) by Z-O, i € UL, J;, and integrating by parts, it follows that
(L(Zin), 8) = (Zio, h) + e(L(Zio), Zio), (3.20)
where (f,g) = fﬂe fg. Then for i € Uf_, J;, by (3.19)-(3.20)),
- _ _ N n+n+m+m N
lei(L(Zio), Zio)| < ClIhll«(1+ IL(Zio)ll.) + CIL(Zio)ll« -~ D> lesl - 1L(Zo)ll»-
i=1
Let us claim that for any i € U?ZIJZ,
~ 1
IL(Zio)ll+ = 0(5), (3:21)
~ .~ C log R
(L(Zio), Zio) = *5{1 + O(w)} (3:22)
Once these estimates are proven, it easily follows that
les| < Cp|lhl].. (3.23)

This, together with (3.17)), (3.19) and (3.21)), implies estimate (3.16)) for ¢.
Proof of (3.21). For sake of simplicity, we only prove estimate (3.21) for any

i € Jo U Jy. Since VF;(q;) = Id, it follows that

— 4 Fiz) —aq . .
zi = gpzipiq — Zijpi % - zZ{1+ O(vipizi)}, (3.24)
= Fr) = PUPEED) 1 Ofuipin) (3.25)

Ay = (-2 (A + O(pil2)VE, + O(pi) V=, ). (3.26)

1M



EJDE-2015/76 MIXED INTERIOR AND BOUNDARY PEAK SOLUTIONS 19

So, £ < 1 can be chosen such that if |Z;| < $k6(vip;) ™!, then |z;] < 6(vip;)~'. Note
that

L(Zo) =miLZio+ (1 — 7)1¢)772¢LZ0 +2VniVZio + ZipAm;

~ _ (3.27)
+2VZio V(1 = mui)nzil + ZioA(1 = ni)nail-
For r; := |%| < R+ 1, by (2.33), (3.2)) and (3.24),
2 20
B 2
L(Zo) = (W, — W;0)Z; O —————— ) — 2 Z;0,
(Zio) = (Wy 0)Zio + (vzpz (1+|Zz|)3+4°“) EpZio
which implies
1
miL(Zio) ||« = 0(};)- (3.28)
Note that for r; > R, by ([3.24)-(3.25)),
1
1Zi0 = -1 < OO+ 2D 20T = Ol 7>0Fe0), (3.29)
1 C(1 + log 21l 1+ log il
|ai0G(Qi75py) - *| < 1 = O( )
i~ H(gi,qi) — ;401 + i) log(vipi R) p
(3.30)
For R<r; < 3 HJ (vipi) L, by (3.2} .,
L(Zi) = WylasoGlaisegy) — )+ (W, ~ WialZoo — (g~ 1) 4 0(— 2
i0 a;0G\Gqi; EpY 11: i0 p\Zi0 11 Uipi|zi|3+2ai >
which, together with (2.32), (3.29) and (3.30), easily indicates that
~ 1
(1 = mi)n2iL(Zio) |« = O(};) (3.31)
For R<r; <R+1,
~ 1 H(qi, qi) — H(gi,epy) + 2052 log 2l
Zio — Zio = — — a;0G(qi, epy) = 4f1+a y . (3.32)
Hi wil H (g3, qi) — ! IOg(UszR)]
which, together with (3.26)), implies that
~ 1. ¢ 1
(Zio = Zio)Ami = OC) (=) (ri) + o (ri) + O(pi)} (3.33)
M 1
iz - o) =~ Loy (33)
vipi” pilog(vipiR) i
Thus,
~ ~ 1

or i/{é(vipi)_l <r < %mé(vipi)_l, it follows that Z;o = O(%) and VZ; = O(%”).
Then
~ ~ 1

Joining (3.27), (3.28), (3.31), (3.35) and (3.36]), we obtain that (3.21) holds for
i€ JyU Jy.
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Proof of (3.22). Note that for any i € Ui, Ji, (L(Zio), Zio) = I + K, where

I= / Zio{"hiLZiO +(1- 771i)772¢L2i0}

=

1
= / 7721{210 + (1 = m14)[aioG(qi, epy) — ;}}{(W Wio) Zio + (AZio

e (3

1 1 1
+ WioZio) + (1 — mi) WylainG(gi, €py) — /7] —e3(Zio— — + ;7711)}7

% %

and

K= / Z‘O{ZioAnli + Z‘OA[(l — mi)n2i] + 2V ZioVnui + 2VZ‘0V[(1 — N1i)N2i) }-
Qe
ForR§r2—|zz|< Lrd(vipi)~1, by (2.32)), (3.24), (3.25) and (3.30),

/ (L — mi){Zio + (1 — m)asoG(ai. £py) — E”Wq (a0G (i 2py) — 51

3

Qe

1
—of og R

pR2(1+ai) )
By (33) and (5:30),

1
/ Bl Zi + (1= ) oGl ) = 1A Zi0 + W Zo) = Olpi + &3).
Q.

By (29)-(E30)

1 1
8127/ mi{Zio + (1= ma)lainGlas, 5py) — ;]}(Zio - =) =00} +¢p).
Q. : -
Furthermore,
1% log R
2 9 ,
I:/QE N3 (Wq — LLiO)Ziody+O(W)+O(pi+5p). (3.37)

By (2.13)), a straightforward but tedious computation shows that

; 07 _ Ui _ 1 Ui 2 . 1
/ (i)2|2‘|2(17‘,eU (27)(.{) 2( ) 2 (Zl)dy = —787((041 + ) (338)
R

Zi - ’
2 vipi P w0 pu3

07 7 1 7
€ i Wt =U = 5(UY) 1
/ (Bl e =) 2z (z)dy = O
|zi| 28 (vipi)=1/2 ViPi p p

2). (3.39)

= ol

By (3.24)-(3.25), it easily follows that for |z;| < §(vip;)~ /2,
Zio(y) = zio(Z) = zio(2:)[L + O(pilzil)]- (3.40)
This, together with (2.33)) and ([3.38)-(]3.40)), easily indicates that

/ (W - W) 22 = ~erlent) L O(L) Vie JyUJs,
il <o(py1z 24T V0 _in{os) “ )1 O(L) Vie U .

Plt
Also by (2:32),
1

/ Wz = [  Olrimgr) = Oley). (3.42)
|2i|28(vips)~1/2 5|28 (vipr)-1/2 |l

bS]

(3.41)

bS]
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So, by (3.37), (3.41) and (3.42)), it follows that
I:{Sﬁﬁ”+m g Ry Wie J;UJ;,

pR2(Fa))

,mwm+0%%iﬂ Vie JyUJy

(3.43)

Pz

Let us give the estimate of K. Integrating by parts the first two terms of K,
K= / ZioV ZioVi — ZioV ZioNmi + ZioV ZioV[(1 — 1))
Qe

- AiOVZiOV[(l — 1i)72i]
- Kl + K27

where

K, = / Zi0N ZioN'mi — ZioN ZioN'nwi — ZioV Zio Vi + ZioV Zio Vi
R<|3|<R+1

= / ZioV (Zio — Z‘o)vmz‘ + (22‘0 — Zi0)V (Zio — Z\io)vnu
R<|%;|<R+1
- (ZiO - Zio)VZiovﬁli - (ZiO - 2¢0)2|V771i|2,
and

o o R 1
" / BV Zi0 — BV Fun) Vs = —/ | Ziol*| V2l * = O(=).
- <)5 | <5t ) |

dvip;

Note that for R < |%| < R+ 1, by @.24)-(.25), |V Zio| = 22O (gardaner) +
O(I%R)}. By (3.32)) and (3.34)), it follows that

1
"2

/ (Zio — Zio2IVmnilPdy = O( ),
R<|Z|<R+1 P

~ ~ 1
/ (Zio — Zi0)V(Zio — Zio)Viidy = O(—),
R<|%i|<R+1 p

~ ~ 1 1
S B0 2 V2V = O, i)
Thus
K=K + Ky = / ZioV(Zio — Z’O)Vﬁlz‘dy + O(1 : é),
R<|5|<R+1 p RAHadtt

which, together with (3.24)), (3.25) and (3.34)), implies that

K- —m{lﬁ-O(ﬁ)} Vi € Jy U Js,
_m{]."_o(m)} VZE JQUJ4

As a consequence, estimate (3.22)) can be derived from (3.43])-(3.44]). |

Proof of Proposition[3.] Let us prove (3.3)) by contradiction. Assume that as p; —
+00,

(3.44)

oo =1, mlltalle — 0, pi( 30 Jeil+ S lekl) 2n> 0. (3.45)

i€ J3UJy i€Js
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For convenience, we omit the dependence on I. By (3.16]),
9o < Co{llll+ D lenl+ Y lewl}. (3.46)
i€J3UJ4 ieJs

Testing equation (3.1) against 72;Z;; with i € J3, j = 1,2, or i € Jy, j = 1, and
integrating by parts, it implies that

leis| < C{I(S, L Zi))| + |4k, m2iZij)|}- (3.47)
By (3.26), it follows that for |Z;| < 2k (vip;) ™,

Ep 2 8(1 4 )%z >
vipy” 14 |22 He)]2

T (%)Q{O(pllgl‘) zU + O(pz)vzlz” + O( Z”} Zz

L(n2iZij) = n2(vipiZi)zij(Z:) {Wq —

Note that |z;;] = O((1 + |2])71 %), |Vz 2] = O((1 + |Z])727%) and |V§zlj| =

O((1 + |2])737%i). This combined (2.32))-(2.33) and (3.24)-(3.25) implies that for

%] < $6(vips) 12,

L(n2iZ;j5)
i 1 iN21(| 5 4 ~
_ (25 2an, (s UG g9 — U = 3 (U)7](1E]) log*(2 + |%])
= Zi zZiilz;)e +0
(Uipi) |Zi] J( ) { » ( e )}
p_y2 |22 Pi p;
- (”UiPz‘) { ((1+|5¢D5(1+°‘i))+ ((1+|gi|)2+ai)+ ((1+|§i|)1+o¢i)}’

and for %5(vipi)*1/2 <z < %/ﬁé(vipi)*l,

1S3 1 4 2
i)2 S 5t3a; l~)2 ;T /311 -
vipi” (L [P (L [z )2 e (L [F]) e

This implies that for any ¢ € J3, j =1,2,0ri € Jy, j =1,
1 ||¢||oo

L(n2iZij) = (

(¢, L(n2:Zi5)) = , Eij(¢:) + O(F—52), (3.48)
where
. gb(i“ipf”q") Vi € Js,
bilF) =9 - = 7
d(F(Z:)) Vi€ Ja,
and for i € Js,
. 32Re(z;)[w% — U — L(UN?] .
Ei1(¢i) :/ ( )[ 2( ) ]qﬁldzl,
B(0,46(vips)~1/2) [1+]2 | }
. 32Tm(z)[w% — U — L(UH?] .
Ei2(¢i) :/ ( )[ 2( ) ]@dzl,
B(0,48(vipi)~1/2) [1+ IZZI }
and for i € Jy, by (3.24)-(3.25),
. 32R Vi _yt - LU s
Eii (i) :/ o)l 2 (U }qi)i det[DF;(%;)]dz;
R2 NB(0,15(vipi)—1/2) 1+ ]2 | ]

_/ 32Re(%) W - U* — L(U)?]
R2NB(0,18(vipi)—1/2) [1+ ][

$idz; + O(ep@lloc)-
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Also
1
(hy 123235} = O([[Rl+) = o). (3.49)
Substituting (3.48])-(3.49) in (3.47)), it follows that
|10
leisl = O(lIAll.) + O(==). (3.50)
Furthermore, |¢;;| = O(%). Thus, similar to the blowup analysis in the proof of

Lemma [3.3] it follows that there exists the constant C;, i € J5 U Jy, such that

. z: 12 —1
®i(%) — Ci:fIQH uniformly in Cp _(R?).
Zq

From Lebesgue’s theorem and the radial properties of w® and U?, it follows that
for i € J3,

e , 32(|zi|” — 1) Re(z) | o _rri U")? L
Ell((bZ) Ci - [1 + ‘Zi|2]4 [w U B ]dzz =0,
A s ) 32(Jz* = D Im(z) o i (U’)? o
Ei(¢:) Ci - [1+ |22 [w U T]dzz =0,

and for i € Jy,

32(|2i‘2 — 1) Re(éi
w2 L+ AP

which together with (3.48) implies (¢, L(n2:Z;;)) = o(%). Then by (3.47)-(3.49),
it implies that p(>_,c 7., leitl + 2 i, lei2]) = o(1), which contradicts with the

assumption (3.45)), and so estimate (3.3)) is established. Moreover, by (3.50), it also
implies that

Ei(d;) — C; )[wOi — U — @]d@ =0,

[cigl < ClIAll-, (3.51)

which implies that there exists a unique trivial solution to problem with h = 0.
Thus, from Fredholm’s alternative, there exists a unique solution ¢, scalars c;;,
1€ Js,7=1,2, and ¢;1, ¢ € Jy, of problem for any h € C,, which completes
the proof. O

Remark 3.5. Given h € L>®(£2.) with ||h|. < oo, let ¢ be the solution to (3.1)

given by Proposition Multiplying the first equation in (3.1)) by ¢ and integrating
by parts, we obtain

6l = [ 1V6P w23t = [ Wi+ [ ho.
Q. Q. Q.
Moreover, using Lemma [2.3] we can prove that
|| Wil < clol,

and therefore

@l < CAUIR + [[6lloo)-
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Now, we solve the intermediate nonlinear problem: for any points ¢ € A™(4), we
find a function ¢, scalars ¢;;, i € J3, j = 1,2, and ¢;1, ¢ € Jy, such that

L(¢) =Ry + N(¢)+ > caxiZa+ Y cioXiZiz inQ,
i€J3UJdy i€Js3

agygb =0 on 09, (3.52)

/ XiZij¢:O Vieds, j=1,2; 1€ Jy, j=1.

Qe
Proposition 3.6. There exist C' > 0 and pg > 1 such that for any p > py and
q € A(8), problem ([3.52) admits a unique solution ¢ € L>(S2.), scalars ¢;;, i € J3,
i=1,2, and ¢;1, i € J4, such that

Il < C/P% Ndlm < C/p°. eyl < O/p*. (3.53)
The proof of the above proposition can be done along the lines of those of [23,

Lemma 4.1]; we omit it here.

Remark 3.7. Using the fixed point characterization of the solution ¢ = ¢(q) to
(3.52), the Implicit Function Theorem and Remark we can easily verify that
#(q) is differentiable with respect to ¢ € A™(4), in L>(Q.) and H* ().

Remark 3.8. The function V, + ¢, with ¢ given by Proposition is positive
in Q.. In fact, we observe first that p|¢| — 0 uniformly over compacts of Q.. In
addition, from we argue that, in the region close to some point g;, V4 4 ¢ is
positive. Outside this region, we may conclude the same from and .

4. VARIATIONAL REDUCTION

After problem (3.52)) has been solved, we find a solution of (2.26]) with m+m > 1,
1.6)

and hence for ( if ¢ € A(9) satisfies
cij(q) =0 Vieds, j=12;1€ Jy, j=1. (41)
To solve it we consider the energy functional of (|1.6)),
1 1
Jp(u) = 3 /Q(|Vu|2 +u?)dx — P /Q S(z)uPtdr, (4.2)
and its finite-dimensional restriction
Fy(q) = Jp(Ug + ¢) Vg € A (0), (4.3)
where U, is defined in (2.18) and
- 2
$(a)(z) =ep " d(q) (e @) (4.4)

The following proposition tells us that critical points of F}, correspond to solutions
of (EI).

Proposition 4.1. The functional F), is of class C'. Moreover, for p large enough,
if DgF,(q) =0, then q satisfies (4.1)).

Proof. A direct consequence of the results in Remark is the fact that Fj,(q) is a
C!-function of ¢ since the map ¢ — ¢ is a Cl-map in H'(€2.). Define

1 1
I,(v) = 5/Q (IVo]* + e2v*)dy — ﬁ/g S(epy)vPTdy. (4.5)
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Then, making a change of variable, we have
_4
ep Fpla) = L(Vy + ¢). (4.6)
Since Dy F,(q) = 0, we have that
0= DI,(Vyg + ¢)[DgVy + Dy

= Zcij / XiZij(DqVq + Dq¢)
i,j Qa (4.7)

= Zcij/Q XiZijDqVy — ¢ Dqg[x:Z:;],
0 :

because fQ XiZij¢ = 0. By the expression of V; in (2.21)), a direct computation
shows that for any [ € J3, s =1,2, and [ € Jy, s =1,

1

4(z ) . wOl a R eT

Aa.Va = e zpm { -i(- |lz) 2 ( l; - Z;S } + O( ;p)
T !

Consequently, (4.7)) can be written as, for each | € J3, s =1,2, and | € Jy, s =1,
Ro+1 3
mAz 167 1
=[x e+ Y es0Gg) =0 4y
P p a(q) T 0 i b

where 4; = 7 for | € Js, and Ay = iw for | € Jy. This is a strictly diagonal
dominant system for p sufficiently large. We thus get that ¢;s = 0 for any | € Js,
s=1,2,orle sy s=1. (]

Next, we need to give the expansion of F), in terms of ¢ defined in (1.9) as p
goes to +o00.

Proposition 4.2. There exist constants ki, ko and ks > 0 depending only on the
points q;, © € J1 U Ja, such that
ki 2k kg

ks - long
F, :———1 — — —=pm(q) +0 , 4.9
»(q) P p2 i (q) +O( P ) (4.9)

uniformly for all points ¢ € A(6).

Proof. Multiplying the first equation in (3.52) by V; + ¢ and integrating by parts,
we obtain

/ IV(Vy+ d)* +e5(Vy + ¢)? / S(epy)( V+¢p+1+z%/ XiZi;Vy.
Q.
Since V, is a bounded function, by (3.53) we obtain that

L/|<v+¢W+f<v+¢ /’s%yaf+@“4+o%>
uniformly ;or q € A7'(5). Hence, by ([4.5)) and we have

B0 =G e [ waf+wﬁ+60f+m +0(p). (@10
We expand the term fQE [VVy? 4+ 2V2: in view of ( and (| we obtain

2 p+1
/‘W%P+£W

€
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— [ vi-av,+2v)
Qe

1
- / e
€Ul Jy pp IM Cz(%) |zi|<6(vipi)~

1
—)

) _ f0¢ 1z
x{eUl—l—e it }{p+U’+ wOl—i— Sw' Yz + O(

p p
- ¥ — / el \zz«|2°“[Ui—< 1}

iEUL 1Jl pp 1M

+O(1§)

21 I
- > {pl— ng—floga(qn]dz dlogm L e} +0( j P,

p
zEUl 11

where A; =1fori e JyUJ3, A; = % for i € Jo U Jy, and the last equality is due to
the following relations:

2p_ 1 2 log? p

g
p Pl :ﬁ—ﬁlong—O( P

),
__4 4 1
py T =1=—logp; +O0(—),
p p
__2 2 1
ci(gi) 7T =1- Elog@(fh) + O(F)a
| ) R
ei= [ |alY U — (UY? + eV Vieu, .
R2 2

From the expansion of p; in (2.24)), we have

| v ey

=

= Y {a-ZeEr b Ak G e

UL |y p pp p p
log? p
+diH(QiaQi)+Zde(Qian):|}+O( & Py
J#i »’
1 2logp 3.di A
=—sem@+ > {0- 52 4 Sy
P SIS/ p p p
di 10g2p
_ j{zlogcl-(qi)jtdiﬂ(qi,qi)ju > de(qi,qj)}+o( Dy,
i€J1UJ2 p JET\UJa, j#i p

uniformly for ¢ € A™(§). In particular,

1
Walls = [ 1Vl + 52 =0 ), (1.12)

=
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Furthermore, by (3.53) and (4.12)), we obtain

1
2 [ (VVVoreViol+ [ IVeP 4o =0z @y
Also
87‘”El =7 T —e+E—|—O(i) (4.14)
’ pop '

Thus, inserting (4.11)), (4.13) and (4.14) in (4.10), we obtain that (4.9) holds. O

Proof of Theorem[1.3 First of all, from Proposition we can provide a solution
to problem (1.6)) if we adjust ¢ € A7 (d) so that it is a critical point of F,(g) defined
by (4.3)). This is equivalent to finding a critical point of

~ 1
Fy(q) = s (kip — 2k1 logp + ko — p*F,(q)) ,

for suitable constants k1, ko and k3. On the other hand, from Proposition we
have

- i log” p
Fp(a) = m(a) + O( » ) (4.15)
uniformly for all points ¢ € A7'(§) as p — oo, where ™ is given by (L.9).
Next, as in Lemma 6.1], we have
min _¢(q) — +oo as § — 0. (4.16)

qEIAT(9)

Thus, for § small enough,fpﬁ has a global minimum M in A”'(§). This, together
with (4.15)), implies that F,(g) has also a global minimum point ¢? € A”(§) such

that ™ (gP) — M as p — co. Moreover, up to a subsequence, there exists a global

minimum point § of ™ in A™(§) such that ¢° — § as p — oo. The function

up = Ugpp + gg(qp), where é(qp) is defined in (4.4), is therefore a solution to (|1.6))
with the qualitative properties stated in the theorem. (I
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