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MIXED INTERIOR AND BOUNDARY PEAK SOLUTIONS OF
THE NEUMANN PROBLEM FOR THE HÉNON EQUATION

IN R2

YIBIN ZHANG, HAITAO YANG

Abstract. Let Ω be a bounded domain in R2 with smooth boundary and

0 ∈ Ω, we study the Neumann problem for the Hénon equation

−∆u+ u = |x|2αup, u > 0 in Ω,

∂u

∂ν
= 0 on ∂Ω,

where ν denotes the outer unit normal vector to ∂Ω, −1 < α 6∈ N ∪ {0} and

p is a large exponent. In a constructive way, we show that, as p approaches

+∞, such a problem has a family of positive solutions with arbitrarily many
interior and boundary spikes involving the origin. The same techniques lead

also to a more general result on Hénon-type weights.

1. Introduction

In this article, we consider the Neumann problem
−∆u+ u = S(x)up in Ω,

u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in R2, S is a nonnegative function on Ω, p is
a large exponent and ν denotes the outer unit normal vector to ∂Ω.

It is well known that problem (1.1) with S ≡ 1 has a strong biological meaning
because it appears in the study of the stationary Keller-Segel system with the
logarithmic sensitivity function from chemotaxis (see [20,24]):

D1∆v − χ∇ · (v∇ logω) = 0 in Ω,
D2∆ω − aω + bv = 0 in Ω,
∂ω

∂ν
=
∂v

∂ν
= 0 on ∂Ω,

1
|Ω|

∫
Ω

v(x)dx = v̄ > 0 (prescribed),

(1.2)
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where Ω is a smooth bounded domain in RN (N ≥ 2) and the constants D1, D2, a,
b and χ are positive. Indeed, it is easy to check that solutions of (1.2) satisfy the
relation ∫

Ω

v|∇(log v − p logω)|2 = 0 where p = χ/D1,

so that v = λωp for some positive constant λ. Thus, setting ε2 = D2/a, γ =
(bλ/a)

1
p−1 and u = γω, we see that u satisfies the singularly perturbed elliptic

problem
−ε2∆u+ u = up in Ω,

u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω.

(1.3)

In the pioneering papers [21, 25, 26], Lin, Ni and Takagi proved that for ε > 0
sufficiently small and for p > 1 subcritical (more precisely, 1 < p < (N+2)/(N−2)
if N ≥ 3, and 1 < p < +∞ if N = 2), problem (1.3) has a least energy solution
which develops a spike layer at the most curved part of the boundary, i.e., the region
where the mean curvature attains its maximum. Since then, there have been many
works looking for higher energy solutions of (1.3) with multiple boundary peaks
as well as multiple interior peaks (see [9, 16, 17, 18, 22] and references therein). In
particular, it was established by Gui and Wei in [17] that for any two nonnegative
integers m, m̃ ≥ 0, m+m̃ ≥ 1, problem (1.3) has a solution with exactly m interior
spikes and m̃ boundary spikes provided that ε is small and p is subcritical. In
another direction, when N = 2 and ε is finite (without loss of generality, set ε = 1),
Musso and Wei in [23] considered another limit p→ +∞ and showed that for any
two nonnegative integers m, m̃ ≥ 0, m + m̃ ≥ 1, problem (1.1) with S ≡ 1 has
also a solution with m interior spikes and m̃ boundary spikes provided that the
exponent p is large.

We are still looking for solutions of problem (1.1) with multiple spikes both on
the boundary and in the interior as the exponent p tends to +∞. A characteristic
feature of this paper is the presence of the function S(x) in terms of the weight
|x|2α with −1 < α 6∈ N ∪ {0}, originally introduced by Hénon in [19] to study the
rotating stellar structures. More precisely, we consider the Neumann problem for
the Hénon equation

−∆u+ u = |x|2αup in Ω,
u > 0 in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.4)

where Ω is a smooth bounded domain in R2, 0 ∈ Ω, −1 < α 6∈ N ∪ {0}, p is a large
exponent and ν denotes the outer unit normal vector to ∂Ω. Indeed, the presence
of the Hénon-type weight can produce significant influence on the existence of a
solution as well as its asymptotic behavior. For this purpose, this paper is devoted
to constructing solutions to problem (1.4) with spike-layer profiles at points inside
Ω and on the boundary of Ω involving the origin when 0 ∈ Ω and p tends to +∞.
In particular, we recover the result in [23] when S ≡ 1.

For (1.4) we obtain the following result.

Theorem 1.1. Assume that Ω is a smooth bounded domain in R2 and 0 ∈ Ω.
Then for any m, m̃ ∈ N ∪ {0} and for p sufficiently large problem (1.4) has a
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positive solution up which concentrates at m+ m̃+ 1 different points of Ω; i.e., as
p→ +∞,

p|x|2αup+1
p ⇀ d1eδ0 + 8πe

m+1∑
i=2

δq̃i + 4πe
m+m̃+1∑
i=m+2

δq̃i

weakly in the sense of measure in Ω, for some points q̃2, . . . , q̃m+1 ∈ Ω and some
points q̃m+2, . . . , q̃m+m̃+1 ∈ ∂Ω, where d1 = 8π for 0 ∈ Ω, and d1 = 4π for 0 ∈ ∂Ω.
Furthermore, for any δ > 0 sufficiently small,

up → 0 uniformly in Ω \ ∪m+m̃+1
i=2 Bδ(q̃i) ∪Bδ(0),

sup
x∈Ω∩Bδ(0)

up(x)→
√
e, sup

x∈Ω∩Bδ(q̃i)
up(x)→

√
e,

as p→ +∞.

The above theorem is proved in a constructive way which also works for the more
general case involving the Hénon-type weight with mixed interior and boundary
source points as follows:

S(x) = c(x)
n+ñ∏
i=1

|x− qi|2αi , (1.5)

where n+ ñ ≥ 1, q1, . . . , qn ∈ Ω, qn+1, . . . , qn+ñ ∈ ∂Ω, −1 < α1, . . . , αn+ñ 6∈ N∪{0}
and c : Ω→ R is a continuous function satisfying infΩ c > 0, so that problem (1.1)
becomes

−∆u+ u = c(x)
n+ñ∏
i=1

|x− qi|2αiup in Ω,

u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω.

(1.6)

Let us first define the corresponding Green’s function for the Neumann problem

−∆xG(x, y) +G(x, y) = δy(x) in Ω,

∂G(x, y)
∂νx

= 0 on ∂Ω.
(1.7)

The regular part of G(x, y) is defined depending on whether y lies in the domain
or on its boundary as

H(x, y) =

{
G(x, y) + 1

2π log |x− y| fory ∈ Ω,
G(x, y) + 1

π log |x− y| for y ∈ ∂Ω.
(1.8)

In this way, H(·, y) is of class C1,β in Ω.
Next, for any nonnegative integers m and m̃, we introduce

J1 = {1, . . . , n}, J2 = {n+ 1, . . . , n+ ñ},
J3 = {n+ ñ+ 1, . . . , n+ ñ+m}, J4 = {n+ ñ+m+ 1, . . . , n+ ñ+m+ m̃}.

Furthermore, we set

αi = 0 for i ∈ J3 ∪ J4,

ci(x) =
S(x)

|x− qi|2αi
for i ∈ ∪4

l=1Jl,
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di =

{
8π(1 + αi) for i ∈ J1 ∪ J3,

4π(1 + αi) for i ∈ J2 ∪ J4.

Also we define

Γ1 = {q1, . . . , qn}, Γ2 = {qn+1, . . . , qn+ñ},
Λm̃m = (Ω \ Γ1)m × (∂Ω \ Γ2)m̃ \ 4m̃m,

where 4m̃m denotes the diagonal set.
Now, we fix n + ñ different source points qi, i ∈ J1 ∪ J2. For δ > 0 sufficiently

small but fixed we define a configuration space

Λm̃m(δ) =
{

(qn+ñ+1, . . . , qn+ñ+m+m̃) ∈ Λm̃m : dist(qi, ∂Ω) ≥ 2δ ∀i ∈ J3;

dist(qi, qj) ≥ 2δ foralli, j ∈ ∪4
l=1Jl, i 6= j

}
.

As a consequence, for points q = (qn+ñ+1, . . . , qn+ñ+m+m̃) ∈ Λm̃m(δ), if we set

ϕm̃m(q) =
∑

i∈J3∪J4

di

{
2 log ci(qi) + diH(qi, qi) +

∑
j∈J1∪J2

2djG(qi, qj)

+
∑

j∈J3∪J4, j 6=i

djG(qi, qj)
}
,

(1.9)

we have the following theorem for (1.6), which is the main result of this article.

Theorem 1.2. Assume that Ω is a smooth bounded domain in R2, n + ñ ≥ 1
and infΩ c > 0. Then for any m, m̃ ∈ N ∪ {0} and for p sufficiently large there
exist different points qpl ∈ Ω \ Γ1, l ∈ J3, and qpl ∈ ∂Ω \ Γ2, l ∈ J4, so that
(1.6) has a positive solution up which possesses exactly n + ñ + m + m̃ local max-
imum points involving q1, . . . , qn, qpn+ñ+1, . . . , q

p
n+ñ+m ∈ Ω, and qn+1, . . . , qn+ñ,

qpn+ñ+m+1, . . . , q
p
n+ñ+m+m̃ ∈ ∂Ω. Moreover, up has the following concentration

property:

pS(x)up+1
p ⇀ e

∑
l∈J1∪J2

dlδql + e
∑

l∈J3∪J4

dlδq̃l as p→ +∞,

where q̃ = (q̃n+ñ+1, . . . , q̃n+ñ+m+m̃) is a global minimum point of ϕm̃m in Λm̃m(δ) such
that for l ∈ J3 ∪ J4, dist(qpl , q̃l)→ 0 as p→ +∞. Furthermore,

up → 0 uniformly in Ω \ ∪l∈J1∪J2Bδ(ql) ∪ ∪l∈J3∪J4Bδ(q
p
l ),

and for the points ql, l ∈ J1 ∪ J2, and qpl , l ∈ J3 ∪ J4,

sup
x∈Ω∩Bδ(ql)

up(x)→
√
e, sup

x∈Ω∩Bδ(qpl )

up(x)→
√
e,

as p→ +∞.

Remark 1.3. The assumption infΩ c > 0 guarantees the existence of global min-
imum for the function ϕm̃m in Λm̃m(δ), which follows from properties of the Green’s
function. The proof is similar to [23, Lemma 6.1].

Remark 1.4. Assume that infΩ c > 0 and ∂Ω \ Γ2 has at least one circle, by
Ljusternik-Schnirelman theory, we can find another distinct solution satisfying The-
orem 1.2. The proof is similar to the one in [7].
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Note that Theorem 1.2 was partly proved in [23] only when S ≡ 1. Moreover,
comparing to the result of [23], this theorem provides a similar but more complex
concentration phenomenon involving the presence of mixed interior and boundary
peak solutions to (1.6). Indeed, Theorem 1.2 implies the existence of solutions for
(1.6) concentrating at points ql, l ∈ J1∪J2, and q̃l, l ∈ J3∪J4. Unlike concentration
set in [23] only contains no source points in the domain and on the boundary, our
concentration set also contains some interior source points ql, l ∈ J1, and boundary
source points ql, l ∈ J2. This in return implies that the presence of mixed interior
and boundary source points makes sure that some interior or boundary peak points
of solutions of (1.6) always locate at these source points. For this reson, if we
consider a very simple case of the Hénon-type weight defined in (1.5), where

S(x) = |x− 0|2α with 0 ∈ Ω and −1 < α 6∈ N ∪ {0}, (1.10)

then the corresponding problem (1.4) always admits a family of positive solutions
with arbitrarily many interior and boundary spikes involving the origin when p
tends to +∞, which implies the result in Theorem 1.1 hold. Besides, we also point
out the interesting result in [6] that solutions for the Liouville equation with the
Hénon-type weight only concentrate at interior points different from the location
of the sources.

Finally, it is necessary to mention the analogy existing between our results and
those known for the Dirichlet problem in R2:

−∆u = S(x)up in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(1.11)

Let us point out that (1.11) does not allow any solution with boundary spike-layer
profile to exist (see [15]), which shows that the Dirichlet boundary condition is far
more rigid than the Neumann boundary condition. For S ≡ 1, asymptotic behavior
of least energy solutions of (1.11) is well understood after the works [1, 14, 28, 29]:
pup+1 approaches a Dirac mass at the harmonic center of Ω when p tends to infinity.
Construction of solutions with this behavior has been achieved in [12], in which it
is shown that for S ≡ 1, problem (1.11) has solutions with m interior spikes if Ω is
not simply connected. As for the case of the Hénon-type weight

S(x) = c(x)
n∏
i=1

|x− qi|2αi , (1.12)

where n ≥ 1, q1, . . . , qn ∈ Ω, −1 < α1, . . . , αn 6∈ N ∪ {0} and c : Ω → R is a
continuous function such that c(qi) > 0 for all i = 1, . . . , n, related constructions
for problem (1.11) have also been performed in [5, 13], in which it is shown that
under a C0-stable critical point assumption there exists a family of positive solutions
with exactly n + m interior spikes involving source points q1, . . . , qn as p tends to
+∞.

The general strategy for proving our main results relies on a Lyapunov-Schmidt
reduction procedure, which has appeared in many of the other results mentioned
above, as in [8, 11, 12, 13, 23]. The sketch of this procedure is given as follows: in
Section 2 we describe exactly the ansatz for the solution that we are searching for.
Then we rewrite problem (1.6) in terms of a linearized operator for which a solv-
ability theory, subject to suitable orthogonality conditions, is performed through
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solving a linearized problem and an intermediate nonlinear problem in Section 3. In
Section 4 we reduce problem (1.6) to finding critical points of a finite-dimensional
function and give its asymptotic expansion. Finally, the proof of Theorem 1.2 is
contained in Section 5.

2. Ansatz

In this section we describe the approximate solution for (1.6) and then we esti-
mate the error of such approximation in appropriate norms.

We first fix n+ ñ distinct source points qi, i ∈ J1 ∪ J2, and for δ > 0 sufficiently
small but fixed we choose points q = (qn+ñ+1, . . . , qn+ñ+m+m̃) ∈ Λm̃m(δ). Moreover,
we set

εp = e−p/4, (2.1)
and consider positive numbers µi such that

δ < µi < δ−1 ∀i ∈ ∪4
l=1Jl. (2.2)

We define the function

ui(x) = log
8(1 + αi)2ε2

pµ
2
i

[ε2
pµ

2
i + |x− qi|2(1+αi)]2

, (2.3)

and a correction term as the solution of
−∆Hi +Hi = −ui in Ω,
∂Hi

∂ν
= −∂ui

∂ν
on ∂Ω.

(2.4)

Lemma 2.1. For any 0 < τ < 1/2 and for any i ∈ ∪4
l=1Jl, then we have

Hi(x) = diH(x, qi) +
1
2
p− log 8(1 + αi)2µ2

i +O(e−τ
p
4 ), (2.5)

uniformly in Ω, where H is the regular part of Green’s function defined by (1.8).

Proof. Note that, on the boundary, we have

∂Hi

∂ν
= −∂ui

∂ν
= 4(1 + αi)|x− qi|2αi

(x− qi) · ν(x)
ε2
pµ

2
i + |x− qi|2(1+αi)

.

Thus,

lim
p→∞

∂Hi

∂ν
= 4(1 + αi)

(x− qi) · ν(x)
|x− qi|2

∀x ∈ ∂Ω \ {qi}.

On the other hand, by (1.7)-(1.8), the regular part of Green’s function H(x, qi)
satisfies

−∆H(x, qi) +H(x, qi) =
4(1 + αi)

di
log |x− qi| in Ω,

∂H(x, qi)
∂ν

=
4(1 + αi)

di

(x− qi) · ν(x)
|x− qi|2

on ∂Ω.
(2.6)

So, if we set si(x) = Hi(x)− diH(x, qi)− 1
2p+ log 8(1 + αi)2µ2

i , we obtain

−∆si + si = log
1

|x− qi|4(1+αi)
− log

1
[ε2
pµ

2
i + |x− qi|2(1+αi)]2

in Ω,

∂si
∂ν

=
∂Hi

∂ν
− 4(1 + αi)

(x− qi) · ν(x)
|x− qi|2

on ∂Ω.
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A direct computation shows that for any β ∈ (1,+∞)∩ ( 2
1+αi

,+∞), there exists a
positive constant C such that∥∥∂Hi

∂ν
− 4(1 + αi)

(x− qi) · ν(x)
|x− qi|2

∥∥
Lβ(∂Ω)

≤ Ce−
1

4β(1+αi)
p
,∥∥ log

1
|x− qi|4(1+αi)

− log
1

[ε2
pµ

2
i + |x− qi|2(1+αi)]2

∥∥
Lβ(Ω)

≤ Cpe−
1

2β(1+αi)
p
.

By Lβ theory

‖si‖W 1+s,β(Ω) ≤ C(‖∆si‖Lβ(Ω) + ‖∂si
∂ν
‖Lβ(∂Ω)) ≤ Ce

− 1
4β(1+αi)

p

for 0 < s < 1/β. By Morrey embedding we obtain

‖si‖Cs̃(Ω) ≤ Ce
− 1

4β(1+αi)
p

for 0 < s̃ < 1
2 + 1

β . This proves the result (with τ = 1
β(1+αi)

). �

We now define the first ansatz as

Uq(x) =
n+ñ+m+m̃∑

i=1

1

γµ
2
p−1
i ci(qi)

1
p−1

[ui(x) +Hi(x)],

where

γ = p
p
p−1 ε

2
p−1
p = p

p
p−1 e−

p
2(p−1) .

We shall show later that Uq(x) is a good approximation for a solution of problem
(1.6) in a region far away from the points qi, but unfortunately it is not good
enough for our construction close to these points. Thus, we need to further adjust
this ansatz by adding two other terms to the expansion of the solution. To do this,
we set

U i(x) = log
8(1 + αi)2

[1 + |x|2(1+αi)]2
, (2.7)

ρi = ε
1

1+αi
p , vi = µ

1
1+αi
i , zi =

1
viρi

(x− qi). (2.8)

Define the functions ωji, j = 0, 1, as radial solutions of

∆ωji + |x|2αieU
i

ωji = |x|2αif ji in R2, (2.9)

and define

f0i(x) =
1
2
eU

i

(U i)2, (2.10)

f1i(x) = eU
i{
ω0iU i − 1

2
(ω0i)2 − 1

3
(U i)3 − 1

8
(U i)4 +

1
2
ω0i(U i)2

}
, (2.11)

with the property that

ωji = Cji log |x|+O(
1

|x|1+αi
) as |x| → +∞, (2.12)

for some constant Cji, which can be explicitly computed through the formula

Cji =
∫ +∞

0

r2αi+1 r
2(1+αi) − 1
r2(1+αi) + 1

f ji(r)dr.



8 Y. ZHANG, H. YANG EJDE-2015/76

The existence of ω0i and ω1i with such properties can be obtained as in [5, 12, 13].
In particular,

ω0i(x) =
1
2

(U i)2(x) + 6 log[1 + |x|2(1+αi)] +
2 log 8(1 + αi)2 − 10
|x|2(1+αi) + 1

+
|x|2(1+αi) − 1
|x|2(1+αi) + 1

{
2 log2[1 + |x|2(1+αi)]− 1

2
log2 8(1 + αi)2

+ 4
∫ +∞

|x|2(1+αi)

ds

s+ 1
log

s+ 1
s
− 8(1 + αi) log |x| log[1 + |x|2(1+αi)]

}
.

(2.13)
Moreover, it is easy to compute the value

C0i = 12(1 + αi)− 4(1 + αi) log 8(1 + αi)2. (2.14)

Now, we define the functions

ωji(x) = ωji
(x− qi
viρi

)
for j = 0, 1, (2.15)

and its new correction term as the solution of
−∆Hji +Hji = −ωji in Ω,
∂Hji

∂ν
= −∂ωji

∂ν
on ∂Ω.

(2.16)

Lemma 2.2. For any 0 < τ < 1
2 and for any i ∈ ∪4

l=1Jl, j = 0, 1, we have

Hji(x) = − diCji
4(1 + αi)

H(x, qi) +
Cji

1 + αi
logµi −

pCji
4(1 + αi)

+O(e−τ
p
4 ), (2.17)

uniformly in Ω, where H is the regular part of Green’s function defined by (1.8).

Proof. The proof is the same as Lemma 2.1. First, on the boundary, we have

lim
p→∞

∂Hji

∂ν
= −Cji

(x− qi) · ν(x)
|x− qi|2

∀x ∈ ∂Ω \ {qi}.

Define

s̃i(x) = Hji(x) +
diCji

4(1 + αi)
H(x, qi)−

Cji
1 + αi

logµi +
pCji

4(1 + αi)
,

by using (2.6), we get

−∆s̃i + s̃i = −ωji + Cji log |x− qi| −
Cji

1 + αi
logµi +

pCji
4(1 + αi)

in Ω,

∂s̃i
∂ν

=
∂Hji

∂ν
+ Cji

(x− qi) · ν(x)
|x− qi|2

on ∂Ω.

From (2.12) and (2.15), we can get that for any β ∈ (1,+∞) ∩ ( 2
1+αi

,+∞), there
exists a positive constant C such that∥∥∂Hji

∂ν
+ Cji

(x− qi) · ν(x)
|x− qi|2

∥∥
Lβ(∂Ω)

≤ Ce−
1

4β(1+αi)
p
,∥∥− ωji + Cji log |x− qi| −

Cji
1 + αi

logµi +
pCji

4(1 + αi)

∥∥
Lβ(Ω)

≤ Ce−
1

2β(1+αi)
p
.

This, and the same procedure as the proof of Lemma 2.1, easily implies that (2.17)
also holds. �
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Now, we define the first approximation of the solution for problem (1.6) as

Uq(x) =
n+ñ+m+m̃∑

i=1

1

γ µ
2
p−1
i ci(qi)

1
p−1

[
ui +Hi +

1
p

(ω0i +H0i) +
1
p2

(ω1i +H1i)
]
(x).

(2.18)
From Lemmas 2.1–2.2, away from the points qi, i ∈ ∪4

l=1Jl, one has

Uq(x) =
n+ñ+m+m̃∑

i=1

diG(x, qi)

γ µ
2
p−1
i ci(qi)

1
p−1

[
1− C0i

4p(1 + αi)
− C1i

4p2(1 + αi)
+O(ετp)

]
. (2.19)

Consider now the change of variables

v(y) = ε
2
p−1
p u(εpy) for y ∈ Ωε,

where Ωε = 1
εp

Ω, then problem (1.6) reduces to

−∆v + ε2
pv = S(εpy)vp in Ωε,
v > 0 in Ωε,

∂v

∂ν
= 0 on ∂Ωε.

(2.20)

Let us define the first approximation solution of (2.20) as

Vq(y) = ε
2
p−1
p Uq(εpy), (2.21)

where Uq is defined by (2.18). For |εpy− qi| < δ with δ sufficiently small but fixed,
by using Lemmas 2.1–2.2 and (2.19), we have

Vq(y)

=
1

p
p
p−1µ

2
p−1
i ci(qi)

1
p−1

[ui +Hi +
1
p

(ω0i +H0i) +
1
p2

(ω1i +H1i)]

+
∑
j 6=i

1

p
p
p−1µ

2
p−1
j cj(qj)

1
p−1

[uj +Hj +
1
p

(ω0j +H0j) +
1
p2

(ω1j +H1j)]

=
1

p
p
p−1µ

2
p−1
i ci(qi)

1
p−1

{[
U i(

x− qi
viρi

) +
1
2
p− logµ2

i

]
+
[
diH(x, qi) +

1
2
p

− log 8(1 + αi)2µ2
i

]
+

1
p

[
ω0i −

diC0i

4(1 + αi)
H(x, qi) +

C0i

1 + αi
logµi −

pC0i

4(1 + αi)
]

+
1
p2

[
ω1i −

diC1i

4(1 + αi)
H(x, qi) +

C1i

1 + αi
logµi −

pC1i

4(1 + αi)
]

+O(ετp)
}

+
∑
j 6=i

djG(x, qj)

p
p
p−1µ

2
p−1
j cj(qj)

1
p−1

[
1− C0j

4p(1 + αj)
− C1j

4p2(1 + αj)
+O(ετp)

]
=

1

p
p
p−1µ

2
p−1
i ci(qi)

1
p−1

{
p+ U i(

x− qi
viρi

) +
1
p
ω0i +

1
p2
ω1i +O(|x− qi|) +O(ετp)

− log 8(1 + αi)2µ4
i + di

[
1− C0i

4p(1 + αi)
− C1i

4p2(1 + αi)
]
H(qi, qi)

+
1

p(1 + αi)
(
C0i +

1
p
C1i

)(
logµi −

1
4
p
)
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+
∑
j 6=i

[ µ2
i ci(qi)

µ2
jcj(qj)

] 1
p−1 dj

[
1− C0j

4p(1 + αj)
− C1j

4p2(1 + αj)
]
G(qi, qj)

}
.

We now choose the parameters µi: we assume they are defined by the relation

log 8(1 + αi)2µ4
i = di

[
1− C0i

4p(1 + αi)
− C1i

4p2(1 + αi)
]
H(qi, qi)

+
1

p(1 + αi)
(
C0i +

1
p
C1i

)(
logµi −

1
4
p
)

+
∑
j 6=i

[ µ2
i ci(qi)

µ2
jcj(qj)

] 1
p−1 dj

[
1− C0j

4p(1 + αj)
− C1j

4p2(1 + αj)
]
G(qi, qj).

Taking into account the explicit expression (2.14) of the constant C0i, we observe
that µi bifurcates, as p tends to +∞, from the value

µ̄i = e−
3
4 e

1
4 [diH(qi,qi)+

P
j 6=i djG(qj ,qi)], (2.22)

solution of the equation

log 8(1 + αi)2µ4
i = diH(qi, qi)−

C0i

4(1 + αi)
+
∑
j 6=i

djG(qi, qj). (2.23)

Thus, µi is a perturbation of order 1
p of the value µ̄i, namely

µi = e−
3
4 e

1
4 [diH(qi,qi)+

P
j 6=i djG(qj ,qi)]

(
1 +O(

1
p

)
)
. (2.24)

From this choice of the parameters µi, we deduce that for |εpy − qi| < δ,

Vq(y) =
1

p
p
p−1µ

2
p−1
i ci(qi)

1
p−1

[
p+ U i(zi) +

1
p
ω0i(zi) +

1
p2
ω1i(zi) + θ(y)

]
, (2.25)

with
zi =

1
viρi

(εpy − qi), θ(y) = O(ρi|zi|) +O(ετp).

In the rest of this paper, we will seek solutions of problem (2.20) in the form
v = Vq +φ, where φ will represent a lower order correction. In terms of φ, problem
(2.20) becomes

L(φ) := −∆φ+ ε2
pφ−Wqφ = Rq +N(φ) in Ωε,
∂φ

∂ν
= 0 on ∂Ωε,

(2.26)

where
Wq = pS(εpy)V p−1

q , (2.27)
Rq is the “error term”

Rq = ∆Vq − ε2
pVq + S(εpy)V pq , (2.28)

and N(φ) stands for the “nonlinear term”

N(φ) = S(εpy)[(Vq + φ)p − V pq − pV p−1
q φ]. (2.29)

The main step in solving problem (2.26) for small φ is, under a suitable choice of
the points qi, that of a solvability theory for the linear operator L. In developing
this theory, we introduce a weighted L∞-space

C∗ = {h ∈ L∞(Ωε) : ‖h‖∗ < +∞},
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with the norm

‖h‖∗ = sup
y∈Ωε

|h(y)|

ε2
p +

∑
αi<0, i∈J1∪J2

(
εp
viρi

)2|zi|2αi
(1+|zi|)4+2α+2αi

+
∑
αi≥0, i∈∪4

l=1Jl

(
εp
viρi

)2

(1+|zi|)4+2α

,

(2.30)
where we fix −1 < α < α0 with α0 = min{αi : i ∈ ∪4

l=1Jl}. With respect to the
norm (2.30), the error term Rq defined in (2.28) can be estimated in the following
way.

Lemma 2.3. For δ > 0 sufficiently small but fixed, there exist C, D0 > 0 and
p0 > 1 such that

‖Rq‖∗ ≤ C/p4, (2.31)

Wq(y) ≤ D0

n+ñ+m+m̃∑
i=1

(
εp
viρi

)2|zi|2αieU
i(zi), (2.32)

for any q ∈ Λm̃m(δ) and p ≥ p0. Furthermore,

Wq(y) = (
εp
viρi

)2|zi|2αieU
i(zi)

[
1 +

ω0i − U i − 1
2 (U i)2

p
+O(

log4(2 + |zi|)
p2

)
]
, (2.33)

for any |zi| ≤ δ(viρi)−1/2, where zi = εpy−qi
viρi

.

Proof. Observe that by (2.4),

−∆(ui +Hi) + ε2
p(ui +Hi) = (

εp
viρi

)2|zi|2αieU
i(zi) in Ωε,

∂

∂ν
(ui +Hi) = 0 on ∂Ωε,

and by (2.9) and (2.16), for j = 0, 1,

−∆(ωji +Hji) + ε2
p(ωji +Hji) = (

εp
viρi

)2|zi|2αi(eU
i

ωji − f ji)(zi) in Ωε,

∂

∂ν
(ωji +Hji) = 0 on ∂Ωε,

which combined with the definition of Vq in (2.21) can deduce directly that

−∆Vq + ε2
pVq

=
n+ñ+m+m̃∑

i=1

( εp
viρi

)2|zi|2αi

p
p
p−1µ

2
p−1
i ci(qi)

1
p−1

[
eU

i

+
eU

i

ω0i − f0i

p
+
eU

i

ω1i − f1i

p2

]
(zi).

(2.34)

From the definition (2.7) of U i and the asymptotic behavior (2.12) of ωji, j = 0, 1,
we obtain that in a region far away from the points qi, namely for |x− qi| > δ; i.e.
|zi| > δ(viρi)−1 for all i,

U i(zi) = −p+O(1), ωji(zi) =
Cji

4(1 + αi)
p+O(1),

and so [
eU

i

+
eU

i

ω0i − f0i

p
+
eU

i

ω1i − f1i

p2

]
(zi) = O(p2e−p). (2.35)

This, together with (2.19) and (2.21) imply

Rq = O(pe−p) +O(p−p−1). (2.36)
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Let us now fix the index i and the region |zi| ≤ δ(viρi)−1/2. From (2.25) we obtain

S(εpy)V pq =
( εp
viρi

)2|zi|2αi

p
p
p−1µ

2
p−1
i ci(qi)

1
p−1

(1 +O(ρi|zi|))
[
1 +

U i(zi)
p

+
ω0i(zi)
p2

+
ω1i(zi)
p3

+
θ(y)
p

]p
.

(2.37)

By the Taylor expansions of the exponential and logarithmic function, we have for
|zi| ≤ δ(viρi)−1/2,(

1 +
a

p
+

b

p2
+

c

p3

)p
= ea

[
1 +

1
p

(
b− a2

2
)

+
1
p2

(
c− ab+

a3

3
+
b2

2
+
a4

8
− a2b

2
)

+O(
log6(|zi|+ 1)

p3
)
]
,

(2.38)

provided −5(1 + αi) log(|zi|+ 2) ≤ a(zi) ≤ C and |b(zi)|+ |c(zi)| ≤ C log(|zi|+ 2).
Thus, for |zi| ≤ δ(viρi)−1/2,

S(εpy)V pq =
( εp
viρi

)2|zi|2αi

p
p
p−1µ

2
p−1
i ci(qi)

1
p−1

[
eU

i

+
eU

i

ω0i − f0i

p
+
eU

i

ω1i − f1i

p2

]
(zi)

+ (
εp
viρi

)2|zi|2αieU
i(zi)O

( log6(|zi|+ 2)
p4

+ ετp + p2ρi|zi|
)
.

(2.39)

Joining together (2.34), (2.35) and (2.39), in this region we obtain

Rq = (
εp
viρi

)2|zi|2αieU
i(zi)O(

log6(|zi|+ 2)
p4

+ ετp + p2ρi|zi|) +O(pe−p). (2.40)

On the other hand, if δ(viρi)−1/2 ≤ |zi| ≤ δ(viρi)−1, we have

−∆Vq + ε2
pVq = O(p(

εp
viρi

)2|zi|2αieU
i(zi)) +O(pe−p), (2.41)

and by (2.37),

S(εpy)V pq = O(
1
p

(
εp
viρi

)2|zi|2αieU
i(zi)), (2.42)

since (1 + s
p )s ≤ es. Thus, in this region

Rq = O(p(
εp
viρi

)2|zi|2αieU
i(zi)) +O(pe−p). (2.43)

So, estimate (2.31) can be easily derived from (2.36), (2.40) and (2.43).
Finally, to prove the estimate over Wq(y) = pS(εpy)V p−1

q , we first notice a slight
modification of formula (2.38)(

1 +
a

p
+

b

p2
+

c

p3

)p−1

= ea
[
1 +

1
p

(
b− a− a2

2
)

+ +O(
log4(|zi|+ 2)

p2
)
]
.

Thus, for |zi| ≤ δ(viρi)−1/2, by (2.25),

Wq(y) = pS(εpy)V p−1
q

=
ci(εpy)|εpy − qi|2αi

µ2
i ci(qi)

[
1 +

U i

p
+
ω0i

p2
+
ω1i

p3
+O(

ρi|zi|+ ετp
p

)
]p−1
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= (
εp
viρi

)2|zi|2αieU
i(zi)

[
1 +

ω0i − U i − 1
2 (U i)2

p
+O(

log4(2 + |zi|)
p2

)
]
.

In addition, if |zi| ≥ δ(viρi)−1 for all i, we obtain that Wq(y) = O(p1−p), and if
δ(viρi)−1/2 < |zi| < δ(viρi)−1, Wq(y) = O(( εp

viρi
)2|zi|2αieU

i(zi)), which completes
the proof. �

Remark 2.4. As for Wq, let us point out that if |zi| ≤ δ(viρi)−1 for some i,

pS(εpy)
(
Vq +O(

1
p3

)
)p−2

= O
(

(
εp
viρi

)2|zi|2αieU
i(zi)

)
.

Since this estimate is true if |zi| > δ(viρi)−1 for all i ∈ ∪4
l=1Jl, we have

pS(εpy)
(
Vq +O(

1
p3

)
)p−2

≤ C
n+ñ+m+m̃∑

i=1

(
εp
viρi

)2|zi|2αieU
i(zi). (2.44)

3. The linearized problem and the nonlinear problem

In this section we shall study first the following linear problem: given h of class
C∗ and points q ∈ Λm̃m(δ), we find a function φ, scalars cij , i ∈ J3, j = 1, 2, and
ci1, i ∈ J4, such that

L(φ) = h+
∑

i∈J3∪J4

ci1χi Zi1 +
∑
i∈J3

ci2χi Zi2 in Ωε,

∂φ

∂ν
= 0 on ∂Ωε,∫

Ωε

χiZijφ = 0 ∀i ∈ J3, j = 1, 2; i ∈ J4, j = 1,

(3.1)

where χi and Zij are defined as follows.

Li(φ) = ∆φ+
8(1 + αi)2|z|2αi
[1 + |z|2(1+αi)]2

φ ∀i ∈ ∪4
l=1Jl, zi1 =

4 Re(z)
|z|2 + 1

∀i ∈ J3 ∪ J4,

zi0 =
1
µi

|z|2(1+αi) − 1
|z|2(1+αi) + 1

∀i ∈ ∪4
l=1Jl zi2 =

4 Im(z)
|z|2 + 1

∀i ∈ J3 ∪ J4.

It is well known that any bounded solution to Li(φ) = 0 in R2 is a linear combination
of zi0, zi1 and zi2 for i ∈ J3 ∪ J4 (see [2, 3]), or proportional to zi0 for i ∈ J1 ∪ J2

(see [4, 10, 13]). Then for i ∈ J2 ∪ J4, any bounded solution to Li(φ) = 0 in R2
+

and ∂
∂z2

φ(z1, 0) = 0 on ∂R2
+ is a linear combination of zi0 and zi1 if i ∈ J4, or

proportional to zi0 if i ∈ J2.
For each point qi ∈ ∂Ω with i ∈ J2 ∪ J4, we have to strengthen the boundary.

Let us assume that qi = 0 and the unit outward normal at qi is (0,−1). Let G(x1)
be the defining function for the boundary ∂Ω in a neighborhood Bδ(qi) of qi, that
is, Ω ∩ Bδ(qi) = {(x1, x2) ∈ Bδ(qi) : x2 > G(x1)}. Then let Fi : Bδ(qi) ∩ Ω → R2

be defined by Fi = (Fi1, Fi2), where

Fi1 = x1 +
x2 −G(x1)

1 + |G′(x1)|2
G′(x1) and Fi2 = x2 −G(x1).
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We consider z̃i = F εi (y) = 1
viρi

Fi(εpy) and its inverse y = F̃ εi (z̃i) = 1
εp
F−1
i (viρiz̃i).

Set

z̃i(y) :=

{
zi(y) ∀i ∈ J1 ∪ J3,

F εi (y) ∀i ∈ J2 ∪ J4.

Furthermore, set

Zi0(y) := zi0(z̃i) ∀i ∈ ∪4
l=1Jl, Zi1(y) := zi1(z̃i) ∀i ∈ J3 ∪ J4,

Zi2(y) := zi2(z̃i) ∀i ∈ J3, χi(y) := χ(|z̃i|) ∀i ∈ ∪4
l=1Jl,

where χ(r) is a smooth, non-increasing cut-off function such that for a large but
fixed number R0 > 0, χ(r) = 1 if r ≤ R0, and χ(r) = 0 if r ≥ R0 + 1. It is
important to note that Fi, i ∈ J2 ∪ J4, preserves the Neumann boundary condition
and

∆yZi0 +Wi0Zi0 =

{
0 ∀ i ∈ J1 ∪ J3,

O( ε2p
viρi

|zi|2αi
(1+|zi|)3+4αi

) ∀i ∈ J2 ∪ J4,
(3.2)

where

Wi0 :=
( εp
viρi

)2 8(1 + αi)2|zi|2αi
[1 + |zi|2(1+αi)]2

.

The main result of this section is the following:

Proposition 3.1. There exist C > 0 and p0 > 1 such that for any p ≥ p0, h ∈ C∗
and q ∈ Λm̃m(δ), there exists a unique solution φ ∈ L∞(Ωε), scalars cij , i ∈ J3,
j = 1, 2, and ci1, i ∈ J4, to (3.1). Moreover, such solution satisfies

‖φ‖∞ ≤ Cp‖h‖∗. (3.3)

The proof will be divided into a series of lemmas which we state and prove next.

Lemma 3.2. For p large enough, there exist R1 > 0, and

ψ : Ωε \ ∪n+ñ+m+m̃
i=1 Bi,R1 7−→ R

positive and uniformly bounded so that

L(ψ) ≥
∑

i∈∪4
l=1Jl

(
εp
viρi

)2 1
|zi|4+2α

+ ε2
p in Ωε \ ∪n+ñ+m+m̃

i=1 Bi,R1 ,

∂

∂ν
ψ ≥

∑
i∈J2∪J4

εp
viρi

1
|zi|3+2α

+ εp on ∂Ωε \ ∪i∈J2∪J4Bi,R1 ,

(3.4)

where −1 < α < α0 and Bi,R1 = {y ∈ Ωε : |zi| < R1}.

Proof. Following the proof of [4, Lemma 3.4], we take

g1i(y) =
(bri)2(1+α) − 1
(bri)2(1+α) + 1

, for i ∈ ∪4
l=1Jl, Rb ≤ ri ≤ δ(viρi)−1,

where b > 0, ri = |zi| and Rb = 1
b3

1
2(1+α) . Then for Rb ≤ ri ≤ δ(viρi)−1,

−∆g1i(y) + ε2
pg1i(y) >

( εp
viρi

)2
b−2(1+α) 4(1 + α)2

r2α+4
i

,

and by (2.32),

Wq(y) ≤ C1

( εp
viρi

)2 1
r2αi+4
i

.
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So, if b > 0 is sufficiently small so that 4(1 + α)2b−2(1+α) > C1 + 1, we have

L(g1i)(y) >
( εp
viρi

)2 1
r2α+4
i

, (3.5)

and for i ∈ J2 ∪ J4,

| ∂
∂ν
g1i(y)| ≤ εp

viρi

C2δ

r3+2α
i

. (3.6)

We also take

g2i(y) = 1− 1
r3+2α
i

Im(zi) for i ∈ J2 ∪ J4, Rb ≤ ri ≤ δ(viρi)−1.

Then

L(g2i)(y) ≥ (
εp
viρi

)2
{

(1 + 2α)(3 + 2α)
1

r5+2α
i

Im(zi)− C1
1

r4+2αi
i

}
, (3.7)

∂

∂ν
g2i(y) ≥ εp

viρi

C3

r3+2α
i

. (3.8)

Consider now

g3i(y) = k1g1i(y) + g2i(y) for i ∈ J2 ∪ J4, Rb ≤ ri ≤ δ(viρi)−1,

where k1 is chosen larger and δ is chosen smaller if necessary. It is easy to check
that |g3i(y)| ≤ C4 and

|∇g3i(y)| = O(
εp
viρi

1
r3+2α
i

).

By (3.5)-(3.8), we find

L(g3i)(y) > (
εp
viρi

)2 1
r4+2α
i

, (3.9)

∂

∂ν
g3i(y) >

εp
viρi

C5

r3+2α
i

. (3.10)

Let ηi(y) = η(viρiri), where η = η(t) is a smooth cut-off function in R2 such that
η = 1 if t ≤ 1

2δ, η = 0 if t ≥ δ. Obviously, for δ(2viρi)−1 ≤ ri ≤ δ(viρi)−1,
|∇ηi(y)| ≤ C6εp and |∆ηi(y)| ≤ C6ε

2
p. Besides, let g0(y) = g̃(εpy), where g̃ is a

bounded positive solution of

−∆g̃ + g̃ = 1 in Ω,
∂g̃

∂ν
= 1 on ∂Ω,

so that −∆g0 + ε2
pg0 = ε2

p in Ωε, ∂
∂ν g0 = εp on ∂Ωε. Moreover, g0(y) is uniformly

bounded on Ωε, i.e. |g0(y)| ≤ C7. Thus, for numbers k2, k3 and R1 such that
k2 > max{2, C−1

5 }, k3 > 2+k2C6+k2C4C6 and R1 = max{Rb, (k3C1C7)
1

2(αi−α) | i ∈
∪4
l=1Jl}. The function

ψ(y) =
∑

i∈J1∪J3

k2ηi(y)g1i(y) +
∑

i∈J2∪J4

k2ηi(y)g3i(y) + k3g0(y)

meets the requirements. The rest of the proof is similar to that of [4, Lemma 3.4],
so we omit it. �
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Lemma 3.3. There exist C > 0 and p0 > 1 such that for all p > p0, points
q ∈ Λm̃m(δ), h ∈ C∗, and φ the solution to

L(φ) = −∆φ+ ε2
pφ−Wqφ = h in Ωε,

∂φ

∂ν
= 0 on ∂Ωε,

(3.11)

under the orthogonality conditions∫
Ωε

χi Zi0φ = 0 ∀i ∈ J1 ∪ J2,∫
Ωε

χiZijφ = 0 ∀i ∈ J3, j = 0, 1, 2; i ∈ J4, j = 0, 1,
(3.12)

one has
‖φ‖∞ ≤ C‖h‖∗. (3.13)

Proof. First we consider the “inner norm”

‖φ‖R = sup
y∈Ωε∩(∪n+ñ+m+m̃

i=1 Bi,R)

|φ(y)|,

we claim that there is a constant C > 0 such that

‖φ‖∞ ≤ C(‖φ‖R1 + ‖h‖∗), (3.14)

with R1 given by Lemma 3.2. Set

φ̃ = C1ψ(y)(‖φ‖R1 + ‖h‖∗) ∀y ∈ Ωε \ ∪n+ñ+m+m̃
i=1 Bi,R1 ,

where ψ is the positive, uniformly bounded barrier constructed by Lemma 3.2 and
C1 > 0 is chosen larger if necessary. Then for y ∈ Ωε \ ∪n+ñ+m+m̃

i=1 Bi,R1 ,

L(φ̃± φ)(y) ≥ C1 ‖h‖∗
{ ∑
i∈∪4

l=1Jl

(
εp
viρi

)2|εpy − qi
viρi

|−(4+2α) + ε2
p

}
± h(y)

≥ |h(y)| ± h(y) ≥ 0,

for y ∈ ∂Ωε \ ∪n+ñ+m+m̃
i=1 Bi,R1 ,

∂

∂ν
(φ̃± φ)(y) ≥ 0,

and for y ∈ Ωε ∩ (∪n+ñ+m+m̃
i=1 ∂Bi,R1),

(φ̃± φ)(y) > ‖φ‖R1 ± φ(y) ≥ |φ(y)| ± φ(y) ≥ 0.

From the maximum principle (see [27]), it follows that −φ̃(y) ≤ φ(y) ≤ φ̃(y) on
Ωε \ ∪n+ñ+m+m̃

i=1 Bi,R1 , which implies that (3.14) holds.
Let us prove the a priori estimate (3.13) by contradiction. We assume the

existence of sequences pj → +∞, functions hj with ‖hj‖∗ → 0, points qj =
(qjn+ñ+1, . . . , q

j
n+ñ+m+m̃) ∈ Λm̃m(δ), solutions φj with ‖φj‖∞ = 1 such that (3.11)-

(3.12) holds. From estimate (3.14), supΩε∩Bi,R1
|φj | ≥ κ > 0 for some i and

κ. To simplify the notation, let us set p = pj , εp = εpj and qi = qji . Set
φ̂j(z) = φj( viρiεp

z + qi
εp

) and ĥj(z) = hj( viρiεp
z + qi

εp
). While qi ∈ Ω, i ∈ J1 ∪ J3, by

(2.33), φ̂j satisfies

−∆φ̂j + (viρi)2φ̂j −
8(1 + αi)2|z|2αi
[1 + |z|2(1+αi)]2

[1 +O(
1
p

) ]φ̂j = (
viρi
εp

)2 ĥj ,
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for z ∈ BR1(0). Obviously, for any β ∈ [1,− 1
α ], ( viρiεp

)2ĥj → 0 in Lβ(BR1(0)). Since
8(1+αi)

2|z|2αi
[1+|z|2(1+αi)]2 is bounded in Lβ(BR1(0)) and ‖φ̂j‖∞ = 1, elliptic regularity theory

readily implies that φ̂j converges uniformly over compact subsets near the origin
to a bounded nontrivial solution φ̂ of Li(φ̂) = 0 in R2. Then φ̂ is proportional
to zi0 for i ∈ J1, or a linear combination of zi0, zi1 and zi2 for i ∈ J3. However,
our assumed orthogonality conditions (3.12) on i and φj , pass to limit and yield∫
χzi0φ̂dz = 0 for i ∈ J1, or

∫
χzilφ̂dz = 0 for i ∈ J3, l = 0, 1, 2, which implies

φ̂ ≡ 0. This is absurd because φ̂ is nontrivial.
While qi ∈ ∂Ω, i ∈ J2 ∪ J4, φ̂j satisfies

−∆φ̂j + (viρi)2φ̂j −
8(1 + αi)2|z|2αi
[1 + |z|2(1+αi)]2

[1 +O(
1
p

)]φ̂j =
(viρi
εp

)2
ĥj in BR1(0) ∩ Ωviρi ,

∂

∂ν
φ̂j = 0 on BR1(0) ∩ ∂Ωviρi ,

where Ωviρi = 1
viρi

(Ω − {qi}). Obviously, for any β ∈ [1,− 1
α ], ( viρiεp

)2ĥj → 0

in Lβ(BR1(0) ∩ Ωviρi). Since 8(1+αi)
2|z|2αi

[1+|z|2(1+αi)]2 is bounded in Lβ(BR1(0) ∩ Ωviρi) and

‖φ̂j‖∞ = 1, elliptic regularity theory readily implies that φ̂j converges uniformly
on BR1(0) ∩ Ωviρi to a bounded nontrivial solution φ̂ of Li(φ̂) = 0 in R2

+ and
∂
∂z2

φ̂(z1, 0) = 0 on ∂R2
+. Then φ̂ is proportional to zi0 for i ∈ J2, or a linear

combination of zi0 and zi1 for i ∈ J4. However, our assumed orthogonality condi-
tions (3.12) on i and φj , pass to limit and easily yield

∫
χzi0φ̂ = 0 for i ∈ J2, or∫

χzilφ̂dz = 0 for i ∈ J4, l = 0, 1, which implies φ̂ ≡ 0. This is also absurd because
φ̂ is nontrivial, which completes the proof. �

Lemma 3.4. There exist C > 0 and p0 > 1 such that for any p > p0, points
q ∈ Λm̃m(δ), h ∈ C∗, and solution φ of (3.11) with∫

Ωε

χiZijφ = 0 ∀i ∈ J3, j = 1, 2; i ∈ J4, j = 1, (3.15)

one has
‖φ‖∞ ≤ Cp‖h‖∗. (3.16)

Proof. Let R > R0 + 1 be large and fixed. For i ∈ ∪4
l=1Jl, denote

ai0 =
1

µi[H(qi, qi)− 1
di

4(1 + αi) log(viρiR)]
,

Ẑi0(y) = Zi0(y)− 1
µi

+ ai0G(qi, εpy).

Let η1 and η2 be radial smooth cut-off functions in R2 such that

0 ≤ η1 ≤ 1; |∇η1| ≤ C in R2; η1 ≡ 1 in BR(0); η1 ≡ 0 in R2 \BR+1(0);

0 ≤ η2 ≤ 1; |∇η2| ≤ C in R2; η2 ≡ 1 in Bκ
4 δ

(0); η2 ≡ 0 in R2 \Bκ
3 δ

(0),

where 0 < κ ≤ 1 will be chosen later on. Set

η1i(y) = η1(|z̃i(y)|), η2i(y) = η2(viρi|z̃i(y)|),

Z̃i0(y) = η1iZi0 + (1− η1i)η2iẐi0.
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Now define

φ̃ = φ+
n+ñ+m+m̃∑

i=1

eiZ̃i0, (3.17)

where ei is chosen such that for any i ∈ ∪4
l=1Jl,

ei

∫
Ωε

χi|Zi0|2 +
∫

Ωε

χiZi0φ = 0,

Note that ∂
∂ν Z̃i0 = 0 for any i ∈ J2 ∪ J4, which arises from ∂

∂z2
zi0(z1, 0) = 0 and Fi

preserves the Neumann boundary condition. Thus

L(φ̃) = h+
n+ñ+m+m̃∑

i=1

ei L(Z̃i0) in Ωε,

∂φ̃

∂ν
= 0 on ∂Ωε,

(3.18)

and φ̃ satisfies the orthogonality conditions (3.12). By (3.13), it implies that

‖φ̃‖∞ ≤ C
{
‖h‖∗ +

n+ñ+m+m̃∑
i=1

|ei| · ‖L(Z̃i0)‖∗
}
. (3.19)

Multiplying (3.18) by Z̃i0, i ∈ ∪4
l=1Jl, and integrating by parts, it follows that

〈L(Z̃i0), φ̃〉 = 〈Z̃i0, h〉+ ei〈L(Z̃i0), Z̃i0〉, (3.20)

where 〈f, g〉 =
∫

Ωε
fg. Then for i ∈ ∪4

l=1Jl, by (3.19)-(3.20),

|ei〈L(Z̃i0), Z̃i0〉| ≤ C‖h‖∗(1 + ‖L(Z̃i0)‖∗) + C‖L(Z̃i0)‖∗
n+ñ+m+m̃∑

i=1

|ej | · ‖L(Z̃j0)‖∗.

Let us claim that for any i ∈ ∪4
l=1Jl,

‖L(Z̃i0)‖∗ = O(
1
p

), (3.21)

〈L(Z̃i0), Z̃i0〉 = −C
p

{
1 +O(

logR
R2(1+αi)

)
}
. (3.22)

Once these estimates are proven, it easily follows that

|ei| ≤ Cp ‖h‖∗. (3.23)

This, together with (3.17), (3.19) and (3.21), implies estimate (3.16) for φ.
Proof of (3.21). For sake of simplicity, we only prove estimate (3.21) for any
i ∈ J2 ∪ J4. Since ∇Fi(qi) = Id, it follows that

zi =
εpy − qi
viρi

=
εpF̃

ε
i (z̃i)− qi
viρi

= z̃i{1 +O(viρiz̃i)}, (3.24)

z̃i = F εi (y) =
Fi(viρizi + qi)

viρi
= zi{1 +O(viρizi)}, (3.25)

∆y = (
εp
viρi

)2{∆z̃i +O(ρi|z̃i|)∇2
z̃i +O(ρi)∇z̃i}. (3.26)
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So, κ ≤ 1 can be chosen such that if |z̃i| ≤ 1
3κδ(viρi)

−1, then |zi| ≤ δ(viρi)−1. Note
that

L(Z̃i0) = η1iLZi0 + (1− η1i)η2iLẐi0 + 2∇η1i∇Zi0 + Zi0∆η1i

+ 2∇Ẑi0∇[(1− η1i)η2i] + Ẑi0∆[(1− η1i)η2i].
(3.27)

For ri := |z̃i| ≤ R+ 1, by (2.33), (3.2) and (3.24),

L(Zi0) = (Wq −Wi0)Zi0 +O(
ε2
p

viρi

|zi|2αi
(1 + |zi|)3+4αi

)− ε2
pZi0,

which implies

‖η1iL(Zi0)‖∗ = O(
1
p

). (3.28)

Note that for ri ≥ R, by (3.24)-(3.25),

|Zi0 −
1
µi
| ≤ C(1 + |z̃i|)−2(1+αi) = O(|zi|−2(1+αi)), (3.29)

|ai0G(qi, εpy)− 1
µi
| ≤

C(1 + log |zi|R )
H(qi, qi)− 1

di
4(1 + αi) log(viρiR)

= O(
1 + log |zi|R

p
).

(3.30)

For R ≤ ri ≤ 1
3κδ(viρi)

−1, by (3.2),

L(Ẑi0) = Wq[ai0G(qi, εpy)− 1
µi

] + [Wq−Wi0]Zi0− ε2
p(Zi0−

1
µi

) +O(
ε2
p

viρi|zi|3+2αi
),

which, together with (2.32), (3.29) and (3.30), easily indicates that

‖(1− η1i)η2iL(Ẑi0)‖∗ = O(
1
p

). (3.31)

For R ≤ ri ≤ R+ 1,

Zi0 − Ẑi0 =
1
µi
− ai0G(qi, εpy) =

H(qi, qi)−H(qi, εpy) + 4(1+αi)
di

log |zi|R
µi[H(qi, qi)− 4(1+αi)

di
log(viρiR)]

, (3.32)

which, together with (3.26), implies that

(Zi0 − Ẑi0)∆η1i = O(
1
p

)(
εp
viρi

)2{η′′1 (ri) +
1
ri
η′1(ri) +O(ρi)}, (3.33)

∇η1i∇(Zi0 − Ẑi0) = −(
εp
viρi

)2 η′1
µi log(viρiR)

1
ri
{1 +O(

1
p

)}. (3.34)

Thus,

‖2∇η1i∇(Zi0 − Ẑi0) + (Zi0 − Ẑi0)∆η1i‖∗ = O(
1
p

). (3.35)

For 1
4κδ(viρi)

−1 ≤ ri ≤ 1
3κδ(viρi)

−1, it follows that Ẑi0 = O( 1
p ) and ∇Ẑi0 = O( εpp ).

Then

‖Ẑi0∆η2i + 2∇Ẑi0∇η2i‖∗ = O(
1
p

). (3.36)

Joining (3.27), (3.28), (3.31), (3.35) and (3.36), we obtain that (3.21) holds for
i ∈ J2 ∪ J4.
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Proof of (3.22). Note that for any i ∈ ∪4
l=1Jl, 〈L(Z̃i0), Z̃i0〉 = I +K, where

I =
∫

Ωε

Z̃i0{η1iLZi0 + (1− η1i)η2iLẐi0}

=
∫

Ωε

η2
2i

{
Zi0 + (1− η1i)[ai0G(qi, εpy)− 1

µi
]
}{

(Wq −Wi0)Zi0 + (∆Zi0

+Wi0Zi0) + (1− η1i)Wq[ai0G(qi, εpy)− 1
µi

]− ε2
p(Zi0 −

1
µi

+
1
µi
η1i)

}
,

and

K =
∫

Ωε

Z̃i0{Zi0∆η1i + Ẑi0∆[(1− η1i)η2i] + 2∇Zi0∇η1i + 2∇Ẑi0∇[(1− η1i)η2i]}.

For R ≤ ri = |z̃i| ≤ 1
3κδ(viρi)

−1, by (2.32), (3.24), (3.25) and (3.30),∫
Ωε

η2
2i(1− η1i){Zi0 + (1− η1i)[ai0G(qi, εpy)− 1

µi
]}Wq[ai0G(qi, εpy)− 1

µi
]

= O(
logR

pR2(1+αi)
).

By (3.2) and (3.30),∫
Ωε

η2
2i{Zi0 + (1− η1i)[ai0G(qi, εpy)− 1

µi
]}(∆Zi0 +Wi0Zi0) = O(ρi + ε2

p).

By (3.29)-(3.30),

ε2
p

∫
Ωε

η2
2i{Zi0 + (1− η1i)[ai0G(qi, εpy)− 1

µi
]}(Zi0 −

1
µi

) = O(ρ2
i + ε2

p).

Furthermore,

I =
∫

Ωε

η2
2i(Wq −Wi0)Z2

i0dy +O(
logR

pR2(1+αi)
) +O(ρi + ε2

p). (3.37)

By (2.13), a straightforward but tedious computation shows that∫
R2

(
εp
viρi

)2|zi|2αieU
i(zi)

ω0i − U i − 1
2 (U i)2

p
z2
i0(zi)dy = −8π(αi + 1)

pµ2
i

, (3.38)∫
|zi|≥δ(viρi)−1/2

(
εp
viρi

)2|zi|2αieU
i(zi)

ω0i − U i − 1
2 (U i)2

p
z2
i0(zi)dy = O(

1
p
ε

1
2
p ). (3.39)

By (3.24)-(3.25), it easily follows that for |zi| ≤ δ(viρi)−1/2,

Zi0(y) = zi0(z̃i) = zi0(zi)[1 +O(ρi|zi|)]. (3.40)

This, together with (2.33) and (3.38)-(3.40), easily indicates that∫
|zi|≤δ(viρi)−1/2

η2
2i(Wq −Wi0)Z2

i0 =

{
− 8π(αi+1)

pµ2
i

+O( 1
p2 ) ∀ i ∈ J1 ∪ J3,

− 4π(αi+1)
pµ2
i

+O( 1
p2 ) ∀ i ∈ J2 ∪ J4.

(3.41)

Also by (2.32),∫
|zi|≥δ(viρi)−1/2

η2
2i(Wq −Wi0)Z2

i0 =
∫
|zi|≥δ(viρi)−1/2

O(
1

|zi|4+2αi
) = O(εp). (3.42)
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So, by (3.37), (3.41) and (3.42), it follows that

I =

{
− 8π(αi+1)

pµ2
i

+O( logR
pR2(1+αi)

) ∀ i ∈ J1 ∪ J3,

− 4π(αi+1)
pµ2
i

+O( logR
pR2(1+αi)

) ∀ i ∈ J2 ∪ J4.
(3.43)

Let us give the estimate of K. Integrating by parts the first two terms of K,

K =
∫

Ωε

Z̃i0∇Zi0∇η1i − Zi0∇Z̃i0∇η1i + Z̃i0∇Ẑi0∇[(1− η1i)η2i]

− Ẑi0∇Z̃i0∇[(1− η1i)η2i]
= K1 +K2,

where

K1 =
∫
R≤|z̃i|≤R+1

Z̃i0∇Zi0∇η1i − Zi0∇Z̃i0∇η1i − Z̃i0∇Ẑi0∇η1i + Ẑi0∇Z̃i0∇η1i

=
∫
R≤|z̃i|≤R+1

Zi0∇(Zi0 − Ẑi0)∇η1i + (Ẑi0 − Zi0)∇(Zi0 − Ẑi0)∇η1i

− (Zi0 − Ẑi0)∇Ẑi0∇η1i − (Zi0 − Ẑi0)2|∇η1i|2,

and

K2 =
∫

κδ
4viρi

≤|z̃i|≤ κδ
3viρi

(Z̃i0∇Ẑi0 − Ẑi0∇Z̃i0)∇η2i = −
∫

Ωε

|Ẑi0|2|∇η2i|2 = O(
1
p2

).

Note that for R ≤ |z̃i| ≤ R + 1, by (3.24)-(3.25), |∇Ẑi0| = εp
viρi
{O( 1

R2(1+αi)+1 ) +
O( 1

pR )}. By (3.32) and (3.34), it follows that∫
R≤|z̃i|≤R+1

(Zi0 − Ẑi0)2|∇η1i|2dy = O(
1
p2

),∫
R≤|z̃i|≤R+1

(Ẑi0 − Zi0)∇(Zi0 − Ẑi0)∇η1idy = O(
1
p2

),∫
R≤|z̃i|≤R+1

(Zi0 − Ẑi0)∇Ẑi0∇η1idy = O(
1
p
· 1
R2(1+αi)+1

).

Thus

K = K1 +K2 =
∫
R≤|z̃i|≤R+1

Zi0∇(Zi0 − Ẑi0)∇η1idy +O(
1
p
· 1
R2(1+αi)+1

),

which, together with (3.24), (3.25) and (3.34), implies that

K =

{
− 2π
µ2
i | log(viρiR)|{1 +O( 1

R2(1+αi)
)} ∀i ∈ J1 ∪ J3,

− π
µ2
i | log(viρiR)|{1 +O( 1

R2(1+αi)
)} ∀i ∈ J2 ∪ J4.

(3.44)

As a consequence, estimate (3.22) can be derived from (3.43)-(3.44). �

Proof of Proposition 3.1. Let us prove (3.3) by contradiction. Assume that as pl →
+∞,

‖φl‖∞ = 1, pl‖hl‖∗ → 0, pl

( ∑
i∈J3∪J4

|cli1|+
∑
i∈J3

|cli2|
)
≥ κ > 0. (3.45)
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For convenience, we omit the dependence on l. By (3.16),

‖φ‖∞ ≤ Cp
{
‖h‖∗ +

∑
i∈J3∪J4

|ci1|+
∑
i∈J3

|ci2|
}
. (3.46)

Testing equation (3.1) against η2iZij with i ∈ J3, j = 1, 2, or i ∈ J4, j = 1, and
integrating by parts, it implies that

|cij | ≤ C
{
|〈φ, L(η2iZij)〉|+ |〈h, η2iZij〉|

}
. (3.47)

By (3.26), it follows that for |z̃i| ≤ 1
3κδ(viρi)

−1,

L(η2iZij) = η2(viρiz̃i)zij(z̃i)
{
Wq − (

εp
viρi

)2 8(1 + αi)2|z̃i|2αi
[1 + |z̃i|2(1+αi)]2

}
+
( εp
viρi

)2{
O(ρi|z̃i|)∇2

z̃izij +O(ρi)∇z̃izij +O(ρ2
i )zij

}
(z̃i).

Note that |zij | = O((1 + |z̃|)−1−αi), |∇z̃izij | = O((1 + |z̃|)−2−αi) and |∇2
z̃i
zij | =

O((1 + |z̃|)−3−αi). This combined (2.32)-(2.33) and (3.24)-(3.25) implies that for
|z̃i| ≤ 1

2δ(viρi)
−1/2,

L(η2iZij)

=
( εp
viρi

)2|z̃i|2αizij(z̃i)eUi(z̃i){ [ω0i − U i − 1
2 (U i)2](|z̃i|)
p

+O(
log4(2 + |z̃i|)

p2
)
}

+ (
εp
viρi

)2
{
O(

|z̃i|2αi
(1 + |z̃i|)5(1+αi)

) +O(
ρi

(1 + |z̃i|)2+αi
) +O(

ρ2
i

(1 + |z̃i|)1+αi
)
}
,

and for 1
2δ(viρi)

−1/2 ≤ |z̃i| ≤ 1
3κδ(viρi)

−1,

L(η2iZij) = (
εp
viρi

)2O(
1

(1 + |z̃i|)5+3αi
+

ρi
(1 + |z̃i|)2+αi

+
ρ2
i

(1 + |z̃i|)1+αi
).

This implies that for any i ∈ J3, j = 1, 2, or i ∈ J4, j = 1,

〈φ,L(η2iZij)〉 =
1
p
Eij(φ̂i) +O(

‖φ‖∞
p2

), (3.48)

where

φ̂i(z̃i) =

{
φ( viρizi+qiεp

) ∀i ∈ J3,

φ(F̃ εi (z̃i)) ∀i ∈ J4,

and for i ∈ J3,

Ei1(φ̂i) =
∫
B(0, 12 δ(viρi)

−1/2)

32 Re(zi)[ω0i − U i − 1
2 (U i)2]

[1 + |zi|2]3
φ̂idzi,

Ei2(φ̂i) =
∫
B(0, 12 δ(viρi)

−1/2)

32 Im(zi)[ω0i − U i − 1
2 (U i)2]

[1 + |zi|2]3
φ̂idzi,

and for i ∈ J4, by (3.24)-(3.25),

Ei1(φ̂i) =
∫

R2
+∩B(0, 12 δ(viρi)

−1/2)

32 Re(z̃i)[ω0i − U i − 1
2 (U i)2]

[1 + |z̃i|2]3
φ̂i det[DF̃i(z̃i)]dz̃i

=
∫

R2
+∩B(0, 12 δ(viρi)

−1/2)

32 Re(z̃i)[ω0i − U i − 1
2 (U i)2]

[1 + |z̃i|2]3
φ̂idz̃i +O(εp‖φ‖∞).
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Also

〈h, η2iZij〉 = O(‖h‖∗) = o(
1
p

). (3.49)

Substituting (3.48)-(3.49) in (3.47), it follows that

|cij | = O(‖h‖∗) +O(
|φ‖∞
p

). (3.50)

Furthermore, |cij | = O( 1
p ). Thus, similar to the blowup analysis in the proof of

Lemma 3.3, it follows that there exists the constant Ci, i ∈ J3 ∪ J4, such that

φ̂i(z̃i)→ Ci
|z̃i|2 − 1
|z̃i|2 + 1

uniformly in C0
loc(R2).

From Lebesgue’s theorem and the radial properties of ω0i and U i, it follows that
for i ∈ J3,

Ei1(φ̂i)→ Ci

∫
R2

32(|zi|2 − 1) Re(zi)
[1 + |zi|2]4

[ω0i − U i − (U i)2

2
]dzi = 0,

Ei2(φ̂i)→ Ci

∫
R2

32(|zi|2 − 1) Im(zi)
[1 + |zi|2]4

[ω0i − U i − (U i)2

2
]dzi = 0,

and for i ∈ J4,

Ei1(φ̂i)→ Ci

∫
R2

+

32(|z̃i|2 − 1) Re(z̃i)
[1 + |z̃i|2]4

[ω0i − U i − (U i)2

2
]dz̃i = 0,

which together with (3.48) implies 〈φ, L(η2iZij)〉 = o( 1
p ). Then by (3.47)-(3.49),

it implies that p(
∑
i∈J3∪J4

|ci1| +
∑
i∈J3
|ci2|) = o(1), which contradicts with the

assumption (3.45), and so estimate (3.3) is established. Moreover, by (3.50), it also
implies that

|cij | ≤ C‖h‖∗, (3.51)

which implies that there exists a unique trivial solution to problem (3.1) with h ≡ 0.
Thus, from Fredholm’s alternative, there exists a unique solution φ, scalars cij ,
i ∈ J3, j = 1, 2, and ci1, i ∈ J4, of problem (3.1) for any h ∈ C∗, which completes
the proof. �

Remark 3.5. Given h ∈ L∞(Ωε) with ‖h‖∗ < ∞, let φ be the solution to (3.1)
given by Proposition 3.1. Multiplying the first equation in (3.1) by φ and integrating
by parts, we obtain

‖φ‖2H1 :=
∫

Ωε

|∇φ|2 + ε2
pφ

2 =
∫

Ωε

Wqφ
2 +

∫
Ωε

hφ.

Moreover, using Lemma 2.3, we can prove that∣∣ ∫
Ωε

Wqφ
2
∣∣ ≤ C‖φ‖2∞,

and therefore

‖φ‖H1 ≤ C(‖h‖∗ + ‖φ‖∞).



24 Y. ZHANG, H. YANG EJDE-2015/76

Now, we solve the intermediate nonlinear problem: for any points q ∈ Λm̃m(δ), we
find a function φ, scalars cij , i ∈ J3, j = 1, 2, and ci1, i ∈ J4, such that

L(φ) = Rq +N(φ) +
∑

i∈J3∪J4

ci1χiZi1 +
∑
i∈J3

ci2χiZi2 in Ωε,

∂

∂ν
φ = 0 on ∂Ωε,∫

Ωε

χiZijφ = 0 ∀i ∈ J3, j = 1, 2; i ∈ J4, j = 1.

(3.52)

Proposition 3.6. There exist C > 0 and p0 > 1 such that for any p > p0 and
q ∈ Λm̃m(δ), problem (3.52) admits a unique solution φ ∈ L∞(Ωε), scalars cij, i ∈ J3,
j = 1, 2, and ci1, i ∈ J4, such that

‖φ‖∞ ≤ C/p3, ‖φ‖H1 ≤ C/p3. |cij | ≤ C/p4. (3.53)

The proof of the above proposition can be done along the lines of those of [23,
Lemma 4.1]; we omit it here.

Remark 3.7. Using the fixed point characterization of the solution φ = φ(q) to
(3.52), the Implicit Function Theorem and Remark 3.5, we can easily verify that
φ(q) is differentiable with respect to q ∈ Λm̃m(δ), in L∞(Ωε) and H1(Ωε).

Remark 3.8. The function Vq + φ, with φ given by Proposition 3.6, is positive
in Ωε. In fact, we observe first that p|φ| → 0 uniformly over compacts of Ωε. In
addition, from (2.25) we argue that, in the region close to some point qi, Vq + φ is
positive. Outside this region, we may conclude the same from (2.19) and (2.21).

4. Variational reduction

After problem (3.52) has been solved, we find a solution of (2.26) with m+m̃ ≥ 1,
and hence for (1.6) if q ∈ Λm̃m(δ) satisfies

cij(q) = 0 ∀i ∈ J3, j = 1, 2; i ∈ J4, j = 1. (4.1)

To solve it we consider the energy functional of (1.6),

Jp(u) =
1
2

∫
Ω

(|∇u|2 + u2)dx− 1
p+ 1

∫
Ω

S(x)up+1dx, (4.2)

and its finite-dimensional restriction

Fp(q) = Jp(Uq + φ̃) ∀q ∈ Λm̃m(δ), (4.3)

where Uq is defined in (2.18) and

φ̃(q)(x) = ε
− 2
p−1

p φ(q)(ε−1
p x). (4.4)

The following proposition tells us that critical points of Fp correspond to solutions
of (4.1).

Proposition 4.1. The functional Fp is of class C1. Moreover, for p large enough,
if DqFp(q) = 0, then q satisfies (4.1).

Proof. A direct consequence of the results in Remark 3.7 is the fact that Fp(q) is a
C1-function of q since the map q → φ is a C1-map in H1(Ωε). Define

Ip(v) =
1
2

∫
Ωε

(|∇v|2 + ε2
pv

2)dy − 1
p+ 1

∫
Ωε

S(εpy)vp+1dy. (4.5)
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Then, making a change of variable, we have

ε
4
p−1
p Fp(q) = Ip(Vq + φ). (4.6)

Since DqFp(q) = 0, we have that

0 = DIp(Vq + φ)[DqVq +Dqφ]

=
∑
i,j

cij

∫
Ωε

χiZij(DqVq +Dqφ)

=
∑
i,j

cij

∫
Ωε

χiZijDqVq − φDq[χiZij ],

(4.7)

because
∫

Ωε
χiZijφ = 0. By the expression of Vq in (2.21), a direct computation

shows that for any l ∈ J3, s = 1, 2, and l ∈ J4, s = 1,

∂(ql)sVq =
1

εpµl

p
p
p−1µ

2
p−1
l cl(ql)

1
p−1

{ 4(zl)s
1 + |zl|2

−
∂(zl)sω

0l

p
−
∂(zl)sω

1l

p2

}
+O(

ετp
p

).

Consequently, (4.7) can be written as, for each l ∈ J3, s = 1, 2, and l ∈ J4, s = 1,[ µlAl

p
p
p−1µ

2
p−1
l cl(ql)

1
p−1

∫ R0+1

0

χ(r)
16r3

( 1 + r2)2
dr
]
cls +

∑
i,j

cijO(
1
p2

) = 0, (4.8)

where Al = π for l ∈ J3, and Al = 1
2π for l ∈ J4. This is a strictly diagonal

dominant system for p sufficiently large. We thus get that cls = 0 for any l ∈ J3,
s = 1, 2, or l ∈ J4, s = 1. �

Next, we need to give the expansion of Fp in terms of ϕm̃m defined in (1.9) as p
goes to +∞.

Proposition 4.2. There exist constants k1, k2 and k3 > 0 depending only on the
points qi, i ∈ J1 ∪ J2, such that

Fp(q) =
k1

p
− 2k1

p2
log p+

k2

p2
− k3

p2
ϕm̃m(q) +O(

log2 p

p3
), (4.9)

uniformly for all points q ∈ Λm̃m(δ).

Proof. Multiplying the first equation in (3.52) by Vq + φ and integrating by parts,
we obtain∫

Ωε

|∇(Vq + φ)|2 + ε2
p(Vq + φ)2 =

∫
Ωε

S(εpy)(Vq + φ)p+1 +
∑
i,j

cij

∫
Ωε

χiZijVq.

Since Vq is a bounded function, by (3.53) we obtain that∫
Ωε

|∇(Vq + φ)|2 + ε2
p(Vq + φ)2 =

∫
Ωε

S(εpy)(Vq + φ)p+1 +O(
1
p4

),

uniformly for q ∈ Λm̃m(δ). Hence, by (4.5) and (4.6) we have

Fp(q) = (
1
2
− 1
p+ 1

)ε
− 4
p−1

p

∫
Ωε

|∇(Vq + φ)|2 + ε2
p(Vq + φ)2 +O(

1
p4

). (4.10)

We expand the term
∫

Ωε
|∇Vq|2 + ε2

pV
2
q : in view of (2.25) and (2.34) we obtain∫

Ωε

|∇Vq|2 + ε2
pV

2
q
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=
∫

Ωε

Vq(−∆Vq + ε2
pVq)

=
∑

i∈∪4
l=1Jl

1

p
2p
p−1µ

4
p−1
i ci(qi)

2
p−1

∫
|zi|≤δ(viρi)−1

|zi|2αi

×
{
eU

i

+
eU

i

ω0i − f0i

p
+
eU

i

ω1i − f1i

p2

}{
p+ U i +

1
p
ω0i +

1
p2
ω1i
}
dzi +O(

1
p3

)

=
∑

i∈∪4
l=1Jl

Ai

p
2p
p−1µ

4
p−1
i ci(qi)

2
p−1

∫
R2

{
p|zi|2αieU

i

+ |zi|2αi [U i −
(U i)2

2
+ ω0i]eU

i
}

+O(
1
p3

)

=
∑

i∈∪4
l=1Jl

{1
p

[1− 2 log p
p
− 2
p

log ci(qi)]di −
4
p2
di logµi +

1
p2
Aiei

}
+O(

log2 p

p3
),

where Ai = 1 for i ∈ J1 ∪ J3, Ai = 1
2 for i ∈ J2 ∪ J4, and the last equality is due to

the following relations:

p−
2p
p−1 =

1
p2
− 2
p3

log p+O(
log2 p

p4
),

µ
− 4
p−1

i = 1− 4
p

logµi +O(
1
p2

),

ci(qi)−
2
p−1 = 1− 2

p
log ci(qi) +O(

1
p2

),

ei =
∫

R2
|zi|2αi [U i −

1
2

(U i)2 + ω0i]eU
i

∀i ∈ ∪4
l=1Jl.

From the expansion of µi in (2.24), we have∫
Ωε

|∇Vq|2 + ε2
pV

2
q

=
∑

i∈∪4
l=1Jl

{
(1− 2 log p

p
+

3
p

)
di
p

+
Aiei
p2
− di
p2

[
2 log ci(qi)

+ diH(qi, qi) +
∑
j 6=i

djG(qi, qj)
]}

+O(
log2 p

p3
)

= − 1
p2
ϕm̃m(q) +

∑
i∈∪4

l=1Jl

{
(1− 2 log p

p
+

3
p

)
di
p

+
Aiei
p2

}
−

∑
i∈J1∪J2

di
p2

{
2 log ci(qi) + diH(qi, qi) +

∑
j∈J1∪J2, j 6=i

djG(qi, qj)
}

+O(
log2 p

p3
),

(4.11)
uniformly for q ∈ Λm̃m(δ). In particular,

‖Vq‖2H1 =
∫

Ωε

|∇Vq|2 + ε2
pV

2
q = O(

1
p

). (4.12)
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Furthermore, by (3.53) and (4.12), we obtain

2
∫

Ωε

[∇Vq∇φ+ ε2
pVqφ] +

∫
Ωε

[|∇φ|2 + ε2
pφ

2] = O(
1
p7/2

). (4.13)

Also
ε
− 4
p−1

p = e
p
p−1 = e+

e

p
+O(

1
p2

). (4.14)

Thus, inserting (4.11), (4.13) and (4.14) in (4.10), we obtain that (4.9) holds. �

Proof of Theorem 1.2. First of all, from Proposition 4.1, we can provide a solution
to problem (1.6) if we adjust q ∈ Λm̃m(δ) so that it is a critical point of Fp(q) defined
by (4.3). This is equivalent to finding a critical point of

F̃p(q) :=
1
k3

(
k1p− 2k1 log p+ k2 − p2Fp(q)

)
,

for suitable constants k1, k2 and k3. On the other hand, from Proposition 4.2, we
have

F̃p(q) = ϕm̃m(q) +O(
log2 p

p
), (4.15)

uniformly for all points q ∈ Λm̃m(δ) as p→∞, where ϕm̃m is given by (1.9).
Next, as in [23, Lemma 6.1], we have

min
q∈∂Λm̃m(δ)

ϕm̃m(q)→ +∞ as δ → 0. (4.16)

Thus, for δ small enough, ϕm̃m has a global minimum M in Λm̃m(δ). This, together
with (4.15), implies that F̃p(q) has also a global minimum point qp ∈ Λm̃m(δ) such
that ϕm̃m(qp)→M as p→∞. Moreover, up to a subsequence, there exists a global
minimum point q̃ of ϕm̃m in Λm̃m(δ) such that qp → q̃ as p → ∞. The function
up = Uqp + φ̃(qp), where φ̃(qp) is defined in (4.4), is therefore a solution to (1.6)
with the qualitative properties stated in the theorem. �
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