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PROPERTIES OF MEROMORPHIC SOLUTIONS OF
q-DIFFERENCE EQUATIONS

XIAOGUANG QI, LIANZHONG YANG

Abstract. In this article, we utilize Nevanlinna value distribution theory to

study the solvability and the growth of meromorphic function f(z) that satisfies
some q-difference equations, which can be seen the q-difference analogues of

Painlevé I and II equations. This article extends earlier results by Chen et al

[2, 3].

1. Introduction

In this article, we use the basic notions in Nevanlinna theory of meromorphic
functions, as found in [13]. In addition, we use δ(f) and λ( 1

f ) to denote the order,
the exponent of convergence of poles of a meromorphic function f(z), respectively.

A century ago, Painlevé [10, 11], Fuchs [4] and Gambier [5] classified a large
class of second order differential equations in terms of a characteristic which is now
known as the Painlevé property. Painlevé and his colleagues looked at the class

w′′(z) = F (z, w,w′),

where F is rational in w and w′ and (locally) analytic in z, rejecting those equations
which did not have the Painlevé property. They singled out a list of 50 equations,
six of which could not be integrated in terms of known functions. These equations
are now known as the Painlevé equations. The first two of these equations are PI
and PII :

w′′ = 6w2 + z, w′′ = 2w2 + zw + α,

where α is a constant. On the other hand, the equation that are now traditionally
called the discrete Painlevé equations are special cases of QRT (Quispel-Robert-
Thompson) difference equations. The QRT difference equations was a starting point
in the discovery of the discrete Painlevé equations. As we all known, the discrete
PI and PII can be expressed in the form

yn+1 + yn−1 =
an+ b

yn
+ c, yn+1 + yn−1 =

(an+ b)yn + c

1− y2
n

.

2000 Mathematics Subject Classification. 39A05, 30D35.

Key words and phrases. Meromorphic functions; q-difference equation; growth; zero order.
c©2015 Texas State University - San Marcos.

Submitted August 19, 2014. Published March 10, 2015.

1



2 X. QI, L. YANG EJDE-2015/59

Recently, Halburd and Korhonen [8] used Nevanlinna theory to single out difference
equations in the form

w(z + 1) + w(z − 1) = R(z, w), (1.1)

where R(z, w) is rational in w and meromorphic in z. They obtained that if (1.1)
has an admissible meromorphic solution of finite order, then either w satisfies a
difference Riccati equation, or (1.1) can be transformed by a linear change in w to
some difference equations, which include the difference PI and PII equations

f(z + 1) + f(z − 1) =
az + b

f
+ c,

f(z + 1) + f(z − 1) =
(az + b)f + c

1− f2
.

(1.2)

Moreover, Chen et al [2, 3] investigated properties of finite-order transcendental
meromorphic solutions of (1.2). Closely related to difference expressions are q-
difference expressions, where the usual shift f(z + c) of a meromorphic function
will be replaced by the q-difference f(qz), q ∈ C \ {0}. The Nevanlinna theory of
q-difference expressions and its applications to q-difference equations have recently
been considered, see [1]. In addition, some results about solutions of zero order for
complex q-difference equations, can be found in the introduction in [1].

A natural question is: what is the result if we give q-difference analogues of (1.2).
Corresponding to this question, we consider the following two equations:

f(qz) + f(
z

q
) =

az + b

f
+ c, (1.3)

f(qz) + f(
z

q
) =

(az + b)f + c

1− f2
. (1.4)

Theorem 1.1. Let f(z) be a transcendental meromorphic solution with zero or-
der of equation (1.3), and a, b, c be three constants such that a, b cannot vanish
simultaneously. Then,

(i) f(z) has infinitely many poles.
(ii) If a 6= 0, then f(z) has infinitely many finite values.

(iii) If a = 0 and f(z) takes a finite value A finitely often, then A is a solution
of 2z2 − cz − b = 0.

Theorem 1.2. Let a, b, c and |q| 6= 1 be four constants,

(i) if a 6= 0, then equation (1.3) has no rational solution;
(ii) if a = 0, then the rational solutions of the equation (1.3) must satisfy

f(z) = B + P (z)
Q(z) , where P (z) and Q(z) are relatively prime polynomials

and satisfy degP < degQ and 2B2 − cB − b = 0.

Theorem 1.3. Let a, b, c be constants with ac 6= 0, and let f(z) be a transcendental
meromorphic solution with zero order of equation (1.4). Then f(z) has infinitely
many poles and infinitely many finite values.

Using similar methods as in the proof of Theorem 1.1, we can prove Theorem
1.3. Here, we omit the details.



EJDE-2015/59 PROPERTIES OF MEROMORPHIC SOLUTIONS 3

Theorem 1.4. Let a, b, c be constants with ac 6= 0 and |q| 6= 1. Suppose that a
rational function

f(z) =
P (z)
Q(z)

=
szm + pm−1z

m−1 + · · ·+ p0z

tzn + qn−1zm−1 + · · ·+ q0z

is a solution of (1.4), where P (z) and Q(z) are relatively prime polynomials, s 6=
0, pm−1, . . . , p0 and t 6= 0, qn−1, . . . q0 are constants. Then n = m+ 1 and s = − c

a t.

As for the next result from this point of view, see [12]. Several papers have
appeared in which the solutions of the following equation are studied

f(z + 1) + f(z − 1) = a(z)f(z)2 + b(z)f(z) + c(z). (1.5)

The reader is invited to see [9]. The following result can be seen as a q-difference
counterpart to (1.5).

Theorem 1.5. Let |q| 6= 1 and n ≥ 2, let f(z) be a meromorphic solution of

f(qz) + f(
z

q
) = a(z)f(z)n + b(z)f(z) + c(z) (1.6)

with meromorphic coefficients satisfying T (r, a) = S(r, f), T (r, b) = S(r, f) and
T (r, c) = S(r, f). Then f(z) is of positive order of growth.

We remark that Theorem 1.5 is not true, when n = 1. This can be seen by
considering f(z) = z + 1, f( 1

2z) = 1
2z + 1 and f(2z) = 2z + 1. Then f(z) is a

solution of f(2z) + f( z2 ) = 5
2f(z)− 1

2 .
Also we remark that the right hand side of the above equations are essentially

like the function A(z, f), where A(z, f) is a rational function of f(z). Reversing
the order of composition on the right hand side results in a functional q-difference
equation. The following theorem gives an example.

Theorem 1.6. Let q 6= 0 be a complex constant, and suppose f(z) be a transcen-
dental meromorphic function of the equation

A(qz, f(qz)) = f(p(z)), (1.7)

where p(z) is a polynomial of degree k ≥ 2, A(z, y) is a rational with meromorphic
coefficients of growth S(r, f) such that A(z, y) is irreducible in y. If degf A = n ≥ k,
then for any ε > 0

T (r, f) = O((log r)α+ε),

where α = logn
log k .

Some ideas in this paper come from [2, 9].

2. Some Lemmas

Lemma 2.1 ([1, Theorem 2.1]). Let f(z) be a non-constant zero order meromorphic
solution of

f(z)nP (z, f) = Q(z, f),
where P (z, f) and Q(z, f) are q-difference polynomials in f(z). If the degree of
Q(z, f) as a polynomial in f(z) and its q-shifts is at most n, then

m(r, P (z, f)) = o(T (r, f))

on a set of logarithmic density 1.
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Lemma 2.2 ([1, Theorem 2.2]). Let f(z) be a non-constant zero order meromorphic
solution of

H(z, f) = 0,

where H(z, f) is a q-difference polynomial in f(z). If H(z, a) 6≡ 0 for slowly moving
target a(z), then

m(
1

f − a
) = o(T (r, f))

on a set of logarithmic density 1.

Lemma 2.3 ([14, Theorems 1.1 and 1.3]). Let f(z) be a zero order meromorphic
function, and q ∈ C \ {0}. Then

T (r, f(qz)) = (1 + o(1))T (r, f(z)) (2.1)

N(r, f(qz)) = (1 + o(1))N(r, f(z)) (2.2)

on a set of lower logarithmic density 1.

We recall some notation and a lemma from [8]. ω(z) has more than S(r, ω) poles
of a certain type, which means that the integrated counting function of these poles
is not of type S(r, ω). We use the notation D(z0, r) to denote an open disc of radius
r centered at z0 ∈ C. Also, ∞k denotes a pole of ω with multiplicity k. We now
recall the following lemma from [8, Lemma 3.1].

Lemma 2.4. Let ω(z) be a meromorphic function having more than S(r, ω) poles,
and let as (s = 1, 2, . . . , n) be small meromorphic functions with respect to ω. De-
note by mj the maximum order of zeros and poles of the functions as at zj . Then
for any ε > 0, there are at most S(r, ω) points zj such that

ω(zj) =∞kj ,

where mj ≥ εkj.

Lemma 2.5 ([6]). Let p(z) = akz
k + ak−1z

k−1 + · · · + a1z + a0, ak 6= 0, be a
non-constant polynomial of degree k and let f(z) be a transcendental meromorphic
function. Given 0 < % < |ak|, denote ζ = |ak| + % and η = |ak| − %. Then, given
ε > 0, we have

(1− ε)T (ηrk, f) ≤ T (r, f ◦ p) ≤ (1 + ε)T (ζrk, f)

for all r large enough.

Lemma 2.6 ([7]). Let ψ : [r0,∞)→ (0,∞) be positive and bounded in every finite
interval, and suppose that ψ(µrm) ≤ Aψ(r) +B holds for all r large enough, where
µ > 0, m > 1, A > 1 and B are real constants. Then

ψ(r) = O((log r)α),

where α = logA
logm .



EJDE-2015/59 PROPERTIES OF MEROMORPHIC SOLUTIONS 5

3. Proof of Theorem 1.1

(i) Suppose that f(z) is a zero order transcendental meromorphic solution of
(1.3). From (1.3), we obtain

fP (z, f) = Q(z, f),

where
P (z, f) = f(qz) + f(

z

q
), Q(z, f) = az + b+ cf(z). (3.1)

Applying Lemma 2.1, we obtain

m(r, P (z, f)) = o(T (r, f)) (3.2)

on a set of logarithmic density 1. Combining the Valiron-Mohon’ko theorem and
(1.3),

T (r, P (z, f)) = T (r, f) + S(r, f) (3.3)

follows. From Lemma 2.3, we obtain

N(r, P (z, f)) ≤ N(r, f(qz)) +N(r, f(
z

q
)) = 2(1 + o(1))N(r, f)

on a set of lower logarithmic density 1. This, together with (3.2) and (3.3), yields

2(1 + o(1))N(r, f) ≥ T (r, f) + S(r, f)

on a set of logarithmic density 1. Hence, f(z) has infinitely many poles.
(ii) For any finite value A, and set

g(z) = f(z)−A.

This, combining with (1.3), it follows that

g(qz) + g(
z

q
) + 2A =

az + b

g(z) +A
+ c.

Rewrite above equation in the form

H(z, g) = (g(qz) + g(
z

q
) + 2A)(g(z) +A)− c(g(z) +A)− az − b = 0. (3.4)

By the assumption that a 6= 0 and (3.4), we have

H(z, 0) = 2A2 − cA− b− az 6≡ 0.

Hence, applying Lemma 2.2, we obtain that

m(r,
1
g

) = o(T (r, g))

on a set of logarithmic density 1. That is,

N(r,
1

f −A
) = N(r,

1
g

) = T (r, g)(1 + o(1)) = T (r, f)(1 + o(1)) (3.5)

on a set of logarithmic density 1. The conclusion holds.
(iii) If a = 0 and A is not a solution of 2z2 − cz − b = 0; that is,

H(z, 0) = 2A2 − cA− b 6= 0.

Then, we obtain N(r, 1
f−A ) = T (r, f)(1 + o(1)) as well, using the same way as the

above argument. This contradicts the assumption, and the conclusion follows.
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4. Proof of Theorem 1.2

Suppose that f(z) is a rational solution of (1.3), and has poles z1, . . . zk. Thus,
f(z) can be represented in the form

f(z) =
k∑
i=1

( disi

(z − zi)si
+ · · ·+ dis1

(z − zi)

)
+B +B1z + · · ·+Bmz

m, (4.1)

where disi 6= 0, . . . dis1 , B, B1 . . . Bm are constants.
In the following, we prove that B1 = · · · = Bm = 0. Suppose, contrary to the

assertion, that Bm 6= 0, (m ≥ 1). For sufficiently large z, from (4.1), we know

f(z) = Bmz
m(1 + o(1)),

f(qz) = Bmz
mqm(1 + o(1)),

f(qz) = Bmz
m 1
qm

(1 + o(1)).

(4.2)

From (1.3), we have

f(z)(f(qz) + f(
z

q
)) = az + b+ cf(z). (4.3)

This and (4.2) imply that

(qm +
1
qm

)B2
mz

2m(1 + o(1)) = az + b+ cBmz
m(1 + o(1)),

Since Bm 6= 0 and |q| 6= 1, we see the above equation is a contradiction for suffi-
ciently large z. Therefore, B1 = · · · = Bm = 0.

Case 1. a 6= 0. If B 6= 0, then from (3.5), we have

f(qz) = f(z) = f(
1
q
z) = B + o(1),

for sufficiently large z. Substituting the above equation into (4.3), we conclude that

(B + o(1))(2B + o(1)) = az + b+ c(B + o(1)),

which is a contradiction to the assumption that a 6= 0. Thus, B = B1 = · · · =
Bm = 0. Hence, we obtain

f(z) =
P (z)
Q(z)

, (4.4)

where P (z), Q(z) are polynomials such that degP < degQ. Combining (4.4) and
(1.3),

P (qz)P (z)Q(
z

q
) + P (z)P (

z

q
)Q(qz)

= (az + b)Q(qz)Q(z)Q(
z

q
) + cP (z)Q(qz)Q(

z

q
).

(4.5)

Observing the above equation, we see that the degree of both sides of (4.5) are not
equal. This is impossible. Hence, if a 6= 0, then (1.3) has no rational solution.

Case 2. a = 0. From the above argument, we know that

f(z) =
P1(z)
Q1(z)

+B,
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where P1(z), Q1(z) are polynomials such that degP1 < degQ2. Moreover, we have

f(qz) = f(z) = f(
1
q
z) = B + o(1),

for sufficiently large z. Combining above equation and (1.3), we obtain that 2B2−
cB − b = 0. The conclusion holds.

5. Proof of Theorem 1.4

Assume that f(z) is a rational solution of (1.4), and has poles z1, . . . zk. Hence,
f(z) can be expressed as the following the form:

f(z) =
k∑
i=1

( bisi

(z − zi)si
+ · · ·+ bis1

(z − zi)

)
+D +D1z + · · ·+Djz

j , (5.1)

where bisi
6= 0, . . . bis1 , D, D1 . . . Dj are constants. Using a similar method as in

the proof of Theorem 1.2, we have D1 = · · · = Dj = 0 as well. If D 6= 0, then from
(5.1), we have

f(qz) = f(z) = f(
1
q
z) = D + o(1),

for sufficiently large z. Combining the above equation and (1.4),

(az + b)(D + o(1)) = −(D2 + o(1))(2D + o(1)) + (2D + o(1))− c
follows. From the assumption that a 6= 0 and D 6= 0, we obtain a contradiction.
Therefore, D = 0. Furthermore, f(z) can be expressed as

f(z) =
P (z)
Q(z)

, (5.2)

where

P (z) = szm + pm−1z
m−1 + · · ·+ p0z,

Q(z) = tzn + qn−1z
m−1 + · · ·+ q0z.

Substituting (5.2) into (1.4), we obtain

cQ(qz)Q(
z

q
)Q(z)2 + (az + b)Q(qz)Q(

z

q
)P (z)Q(z)

= P (qz)Q(
z

q
)Q(z)2 − P (qz)Q(

z

q
)P (z)2 + P (

z

q
)Q(qz)Q(z)2

− P (
z

q
)Q(qz)P (z)2.

(5.3)

As ac 6= 0, by comparing the degrees of all terms of (5.3), we obtain that n = m+1.
From (5.2) and (1.4), it follows that

P (qz)
Q(qz)

+
P ( zq )

Q( zq )
=

(az + b)P (z)Q(z) + cQ(z)2

Q(z)2 − P (z)2
. (5.4)

From this and n = m+ 1, we conclude that

P (qz)
Q(qz)

+
P ( zq )

Q( zq )
→ 0,

and
(az + b)P (z)Q(z) + cQ(z)2

Q(z)2 − P (z)2
=

(ast+ ct2)z2n(1 + o(1))
s2z2n(1 + o(1))
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for sufficiently large z. Comparing the two above equations, we know ast+ ct2 = 0,
that is, s = − c

a t.

6. Proof of Theorem 1.5

Let f(z) be a meromorphic solution of (1.6). Suppose, contrary to the assertion,
that σ(f) = 0. If n > 2, then the conclusion holds by Lemma 2.3, clearly. Now we
consider the case n = 2. Writing (1.6) in the form

af2 = f(qz) + f(
z

q
)− bf − c.

By Lemma 2.1, we obtain that

m(r, f) = o(T (r, f))

on a set of logarithmic density 1. Hence, f(z) has more than S(r, f) poles counting
multiplicities. We use zj to denote points in the pole sequence. Lemma 2.4 implies
that there are more than S(r, f) points such that the multiplicity of f(zj) = ∞ is
kj , where εkj > mj . Here mj refers to a, b, c. Denoting the sequence of such poles
by z1,j , we take this sequence as our starting point. For ε < 1/2, by (1.6), we have
at least one of the points qz1,j , z1,j/q is a pole of f of multiplicity k2,j > (2−ε)k1,j .
By Lemma 2.4, we obtain that f(z) has more than S(r, f) such points z2,j such that
the multiplicity of f(z2,j) = ∞ is k2,j , where εk2,j > m2,j . Then we only choose
one of these points and denote it by z2,j . Continuing to the next phase. By (1.6),
we have that z3,j = qz2,j or z3,j = z2,j

q is a pole of f of multiplicity k3,j , where

k3,j ≥ (2− ε)k2,j > (2− ε)2k1,j .

By induction, we can choose a sequence zn of poles of f(z), the multiplicity of which
is kn, and kn ≥ (2− ε)n−1k1,j ≥ (2− ε)n−1.

Case a. If |q| > 1, then by a simple geometric observation, we obtain

zn ∈ B(0, |q|n|z1|) = B(0, |q|nr1) = B(0, rn).

Therefore,

n(rn, f) ≥ (
3
2

)n−1 = (
3
2

)
log rn−log r1−log |q|

log |q| .

So, we obtain λ( 1
f ) = log 3

2
log |q| > 0, contradicting our hypothesis σ(f) = 0. Hence

σ(f) > 0.
Case b. If |q| < 1, then by a simple geometric observation, it follows

zn ∈ B(0, |1
q
|n|z1|) = B(0, |1

q
|nr1) = B(0, rn).

Using the same argument as Case a, we can get the conclusion as well.

7. Proof of Theorem 1.6

We first replace z by z/q in equation (1.7), then applying the Valiron-Mohon’ko
theorem to the left hand side of (1.7), and combining Lemma 2.5, we obtain that

nT (r, f) + S(r, f) = T (r,A) = T (r, f(p(
z

q
))) ≥ (1− ε)T (µrk, f).

Since we may assume r to be large enough to satisfy

n(1 + ε)T (r, f) ≥ (1− ε)T (µrk, f)
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outside of a possible exceptional set of finite linear measure. We conclude that, for
every λ > 1, there exists an r0 > 0 such that

n(1 + ε)T (λr, f) ≥ (1− ε)T (µrk, f) (7.1)

holds for all r ≥ r0. Denoting t = λr, then (7.1) can be written as

T (
µ

λk
tk, f) ≤ n(1 + ε)

1− ε
T (t, f).

Thus, we apply Lemma 2.6 to conclude that

α =
log n(1 + ε)/(1− ε)

log k
=

log n
log k

+ o(1).
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Proc. London Math. Soc. 94 (2007), 443-474.

[9] I. Laine, C. C. Yang; Clunie theorem for difference and q-difference polynomials, J. London.

Math. Soc. 76 (2007), 556-566.
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