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EXISTENCE AND STABILITY OF ALMOST PERIODIC
SOLUTIONS TO DIFFERENTIAL EQUATIONS WITH

PIECEWISE CONSTANT ARGUMENTS

SAMUEL CASTILLO, MANUEL PINTO

Abstract. This work concerns the existence of almost periodic solutions for

certain differential equations with piecewise constant arguments. The coef-
ficients of these equations are almost periodic and the equation can be seen

as perturbations of a linear equation satisfying an exponential dichotomy on
a difference equation. The stability of that solution on a semi-axis is also

studied.

1. Introduction

Let N, Z, R, C be the sets of natural, integer, real and complex numbers, re-
spectively. Denote by | · | the Euclidean norm for every finite dimensional space on
R. Fix a real valued sequence (tn)+∞

n=−∞, such that tn < tn+1 and tn → ±∞ as
n → ±∞. For p ∈ Z, let γp : R → R be functions such that γp/Jn = tn−p for all
n ∈ Z, where Jn = [tn, tn+1[, for all n ∈ Z.

We are interested in the existence of almost periodic solution of the following
linear differential equations with piecewise constant arguments (DEPCA)

y′(t) = A(t)y(t) +B(t)y(γ0(t)) + f(t), t ∈ R (1.1)

and
y′(t) = A(t)y(t) +B(t)y(γ0(t)) + F (t, yγ(t)), t ∈ R, (1.2)

where
yγ(t) = (y(γp1(t)), y(γp2(t)), . . . , y(γp`(t))), (1.3)

where p1, p2, . . . , p` ∈ N ∪ {0}. Equations (1.1) and (1.2) are seen as perturbation
of the linear equation

z′(t) = A(t)z(t) +B(t)z(γ0(t)), (1.4)

where the matrices A,B : R → Mq(C) and f : R → Cq are locally integrable
functions, and F : R×W ⊆ R× (Cq)` → Cq is a continuous function.

For our study, the following additional assumptions are made.
(H1) A and B are almost periodic functions.
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(H2)
(
t
(k)
n )+∞

n=−∞, where t(k)
n = tn+k − tn for all k ∈ Z, is equipotentially almost

periodic for all k ∈ Z.
(H3) (H2) holds and for all ε > 0,

T (f, ε) =
{
τ ∈ R : |f(t+ τ)− f(t)| ≤ ε, ∀t ∈ R−

(
∪n∈Z]tn − ε, tn + ε[

)}
is relatively dense and there is δε > 0 such that |f(t′ + τ ′) − f(t′)| ≤ ε if
τ ′ ∈ R : |τ ′| ≤ δε and t′, t′ + τ ′ is in some of the intervals [tn, tn+1].

(H4) F is uniformly almost periodic on W and there is L > 0 such that

|F (t, x1, . . . , x`)− F (t, y1, . . . , y`)| ≤ L
∑̀
j=1

|xj − yj |, (1.5)

for all t ∈ R and (x1, . . . , x`), (y1, . . . , y`) ∈W .

A kind of exponential dichotomy is imposed on a part of the linear equation 1.4,
which will be made explicit in the following section.

This work is motivated by the results in Fink [20, Theorems 7.7, 8.1 and 11.31].
Some extensions for piecewise constant argument can be found in [3, 22, 36]. Ex-
istence of almost periodic solutions for the impulsive case can be found in [30, 24].
Our focus is to see the almost periodic solutions for (1.1) and (1.2) in terms of the
solutions of the difference equation from the Cauchy operator of the linear part
(1.4), on the points tn for all n ∈ N, in the style of [22]. Other recent results are
found in [6, 16, 31].

This work is different from Akhmet works [3, 6] since our emphasis is on the
behavior of solutions on the points tn. This work is different from the works by
Hong-Yuan [22] and Yuan [36] since a more general yγ is considered.

Let X be a fundamental matrix of the linear homogeneous system

x′ = A(t)x (1.6)

and X(t, s) = X(t)X(s)−1. Now we follows [4] to say what is the Cauchy matrix
for (1.4).

For n ∈ Z and t ∈ Jn such that t ≥ s, let Zn(t) = X(t, tn)Jn(t), where Jn(t) =
I +

∫ t
tn
X(tn, u)B(u)du and assume that

Jn(t) is invertible, for all n ∈ Z and t ∈ [tn, tn+1]. (1.7)

Let
H(n) = Zn(tn+1), (1.8)

for all n ∈ Z. For τ ∈ R, let k(τ) ∈ Z such that τ ∈ Jk(τ). Consider t > s such that
k(t) > k(s). Then, we define

Z(t, s) = Zk(t)(t)[H(k(t)−1)H(k(t)−2) · · ·H(k(s)+1)]H(k(s))−1Zk(s)(s)−1. (1.9)

If t ≤ s, by condition (1.7), Z(t, s) = Z(s, t)−1 is well defined. So, Z(t, s) is the
Cauchy matrix for (1.4). (see [2, 3, 27, 32, 34, 35]).

Consider the difference equation

φ(n+ 1) = H(n)φ(n). (1.10)

Notice that if z : R→ C, then φ(n) = z(tn) is a solution of (1.10) if z is a solution
of (1.4).



EJDE-2015/58 EXISTENCE AND STABILITY OF ALMOST PERIODIC SOLUTIONS 3

It will be prove that H = (H(n))+∞
n=−∞ in (1.8) is almost periodic and that the

sequence h = (h(n))+∞
n=−∞, defined by

h(n) =
∫ tn+1

tn

X(tn+1, u)f(u)du, (1.11)

for all n ∈ Z, is almost periodic. Based on the exponential dichotomy of (1.10) and
the almost periodicity of H and h, it will be proved that the bounded solution c of
the discrete system

c(n+ 1) = H(n)c(n) + h(n), (1.12)
is almost periodic and the correspondence h 7→ c is Lipschitz continuous. Then
it will be proved that the inhomogeneous linear DEPCAG (1.1) has an analogous
almost periodic solution. The dependence of the almost periodic solution can be
seen in terms of the almost periodic solution of the discrete part for (1.1) and (1.2),
the linear continuous dependence of the almost periodic solution y of (1.1) in terms
of f and the same kind of dependence of c of the almost periodic solution of (1.12)
in terms of h.

By assuming that L in (1.5) is small enough, an almost periodic solution for
(1.2) is obtained in terms of the solution of a difference equation. Finally, it will be
proved that the almost periodic solution of (1.2) is exponentially stable as t→ +∞
with respect the solutions of (1.2) for t ≥ 0. The exponential stability is proved by
using a Gronwall inequality on the mentioned difference equation.

This work is organized as follows: Section 2 provides the main definitions, as-
sumptions and facts that will be used. In the Section 3, the existence of almost
periodic solutions for (1.1) is studied. In Section 4, that study is extended for (1.2)
and deals with asymptotic stability for (1.2) as t → +∞. An example is given in
the last section.

2. Preliminaries

(H6) Assume that (1.10) has an exponential dichotomy.
This assumption is equivalent to assume that there is a projection Π : Cq → Cq
and positive constants ρ,K with ρ < 1 such that

|G(n, k)| ≤ Kρ±(n−k), (2.1)

for all n, k ∈ Z : ±(n− k) ≤ 0, where

G(n, k) =

{
Φ(n)ΠΦ(k + 1)−1, if n > k

−Φ(n)(I −Π)Φ(k + 1)−1, if n ≤ k
(2.2)

and Φ is a fundamental matrix for the system (1.10). In particular it will be said
that system (1.10) is exponentially stable as n → +∞ if it has an exponential
dichotomy with Π = I.

This definition of dichotomy definition has been adapted from that given by
Papashinopulos [23] for (1.4) when γ = [·]. It is an exponential dichotomy for
(1.10) which is not obvious to be extended for (1.4) in terms of Z(t, s) except for
cases where the projection for exponential dichotomy commutes with A(t) and B(t).
Authors did not find any reference containing a definition of exponential dichotomy
for (1.4).

We start with a classical notion. A function x is a solution of

x′(t) = f̃(t, xγ(t)), (2.3)
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where xγ is defined in (1.3), if
(a) x is continuous on R;
(b) the derivative x′ of x exists except possibly at the points t = tn with n ∈ Z,

where every one-sided derivative exist;
(c) x is a solution of (2.3) except possibly at the points t = tn with n ∈ Z.

If E is a finite dimensional space on R, D ⊆ R and g : D → E, then |g|∞ =
supt∈D |g(t)|. A set E ⊆ R is called relatively dense if there exists a positive real
number l such that E ∩ [m,m+ l] 6= φ for all m ∈ R. For A ⊆ R an additive group
and (E, | · |) a finite dimensional linear space g : A→ E is called almost periodic if it
is continuous the set of translations T (g, ε), defined by the set of all τ ∈ A such that
|g(t+ τ)− g(t)| ≤ ε for all t ∈ A, is relatively dense for all ε > 0 (see [20, Definition
1.10]). There will be considered the cases A = R (almost periodic functions) and
A = Z (almost periodic sequences). We can notice by following [24, page 201] that
(H3), is a definition of almost periodicity for piecewise continuous functions. An
alternative definition of almost periodicity for continuous functions was given by
Salomon Bochner [8] (see Fink [20, page 14] for more detailed reference): A function
f is almost periodic if every sequence (f(tn + t))+∞

n=1 of translations of f has a
subsequence that converges uniformly for t ∈ R. A function F : R×W ⊆ R×E→ Eq
is uniformly almost periodic on W, if the set T (F, ε,W ) which denotes the set of
all τ ∈ R such that |F (t + τ, w)− F (t, w)| ≤ ε for all (t, w) ∈ R×W , is relatively
dense for every ε > 0.

Next, some notation is given. Let AP(A,E) be the set of the almost periodic
functions from A to E. The set (AP(A,Cq), | · |∞) is a Banach space.

We say that
(
t
(k)
n

)+∞
n=−∞ is equipotentially almost periodic, for all k ∈ Z if the set

∩k∈N
{
T ∈ Z : |t(k)

T+n − t
(k)
n | ≤ ε, for all n ∈ Z

}
is relatively dense for all ε > 0.

Since A, B are almost periodic, A, B are bounded. Since
(
t
(k)
n

)+∞
n=−∞ is equipo-

tentially almost periodic for all k ∈ Z, every sequence
(
t
(k)
n

)+∞
n=−∞ is almost periodic

for all k ∈ Z. So, the sequences
(
t
(k)
n

)+∞
n=−∞ are bounded for all k ∈ Z (see [24,

Theorem 67]) and there exists the positive real number

θ = sup
n∈Z

(tn+1 − tn). (2.4)

Since

|Z(t, s)| ≤ e|A|∞(tn+1−tn)
(

1 + e|A|∞(tn+1−tn)|B|∞(tn+1 − tn)
)
,

for all t, s ∈ Jn, it follows that Z(t, s) is bounded. By following [4, 27], we have
that y : R→ Cq given by

y(t) = Zk(t)(t)×
( +∞∑
k=−∞

G(k(t), k)
∫ tk+1

tk

X(tk+1, u)f(u)du
)

+
∫ t

γ0(t)

X(t, u)f(u)du,

(2.5)

where t ∈ R, will be the unique bounded solution of (1.1) which satisfies (H3) (see
Theorem 2 below). Moreover, by taking limits t → γ0(t)+ and t → γ0(t)−, we
obtain that y is continuous on every tn and therefore y is almost periodic.
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For ε > 0, let Γε be the set of r ∈ R such that there is k ∈ Z with

sup
n∈Z
|t(k)
n − r| ≤ ε. (2.6)

Denote by Pr(ε) the set of all k ∈ Z satisfying (2.6). Let

Pε = ∪r∈ΓεPr(ε).

We need the following lemmas.

Lemma 2.1 ([24, Lemma 23]). Assume that (H2) holds. Let ε > 0, Γ ⊆ Γε, Γ 6= φ
and P ⊆ ∪r∈ΓPr(ε) be such that P ∩ Pr(ε) 6= φ for all r ∈ Γ. Then the set Γ is
relatively dense if and only if P is relatively dense.

Lemma 2.2 ([24, Lemma 25]). The following statements are equivalent.
(a) (H2) holds;
(b) The set Pε is relatively dense for any ε > 0;
(c) The set Γε is relatively dense for any ε > 0.

Lemma 2.3 ([24, Lemma 29]). Assume that f satisfies (H3). Then Γε ∩ T (f, ε) is
relatively dense.

By mean standard arguments, we can prove the following result.

Lemma 2.4. (a) If f1, f2 are functions satisfying (H3), then given ε > 0,
Γε ∩ T (f1, ε) ∩ T (f2, ε) is relatively dense.

(b) If (g1(n))+∞
n=−∞ and (g2(n))+∞

n=−∞ are almost periodic solutions, then given
ε > 0, Pε ∩ T (g1, ε) ∩ T (g2, ε) is relatively dense.

For the following results, we recall that q is the dimension of equation (1.4).
Notice that they depends only on the assumptions (H1) and (H3).

Lemma 2.5. Let θ be as in (2.4), K0 = exp(|A|∞θ), K1 = supn∈Z exp
(
|A|∞|t(p)n+1−

τ |
)

and K2 = K0K1. Then
(a) |X(t, s)| ≤ √qK0, for all t, s ∈ R such that |s− t| ≤ θ;
(b) If τ > 0, p ∈ N and u ∈ [tn, tn+1] then

|X(tn+p+1, u+ τ)−X(tn+1, u)|

≤ √q · [K1|A|∞|t(p)n − τ |+K2|A(·+ τ)−A(·)|∞|tn+1 − tn|]
× exp (|A|∞(tn+1 − tn)) ;

(c) If τ > 0, p ∈ N and t ∈ [tn, tn+1] then

|X(t+ τ, tn+p)−X(t, tn)|

≤ √q · [K1|t(p)n − τ |+K2|A(·+ τ)−A(·)|∞]|t(p)n+1 − τ − (tn+1 − tn)|

× exp
(
|A|∞

(
|t(p)n − τ |+ θ

))
;

(d) If τ > 0 and t, s ∈ R : |t− s| ≤ θ then

|X(t+ τ, s+ τ)−X(t, s)| ≤ √qK0|A(·+ τ)−A(·)|∞;

(e) If τ > 0, p ∈ N and u ∈ [tn, tn+1] then

|X(tn+p+1, tn+p)−X(tn+1, tn)|
≤ K2|X(u+ τ, tn+p)−X(u, tn)|+√qK0|X(tn+p+1, u+ τ)−X(tn+p, u)|.
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Proof. Part (a) follows immediately. To prove (b), assume without loss of generality
that tn+p+1 − τ ≥ tn+1. Note that for u ∈ [tn, tn+1],

∆n(u) =
∫ tn+p+1−τ

tn+1

X(tn+p+1, ξ + τ)A(ξ + τ)dξ

+
∫ tn+1

u

X(tn+p+1, ξ + τ)[A(ξ + τ)−A(ξ)]dξ +
∫ tn+1

u

∆n(ξ)A(ξ)dξ,

where ∆n(u) = X(tn+p+1, u+ τ)−X(tn+1, u). Then

|∆n(u)| ≤
∫ tn+p+1−τ

tn+1

|X(tn+p+1, ξ + τ)||A(ξ + τ)|dξ

+
∫ tn+1

tn

|X(tn+p+1, ξ + τ)||A(ξ + τ)−A(ξ)|dξ

+
∫ tn+1

u

|∆n(ξ)||A(ξ)|dξ.

So, by Gronwall’s inequality the result follows.
Similarly, assume without loss of generality that tn+1 ≥ tn+p − τ . If ∆∗n(t) =

X(t+ τ, tn+p)−X(t, tn), then

|∆∗n(t)| ≤
∣∣ ∫ tn

tn+p−τ
|A(ξ)||X(ξ + τ, tn+p)|dξ

∣∣
+
∫ tn+1

tn+p−τ
|A(ξ + τ)−A(ξ)||X(ξ + τ, tn+p)|dξ +

∫ t

tn

|A(ξ)||∆∗n(ξ)|dξ,

for t ∈ [tn, tn+1]. So, by Gronwall’s inequality, (c) is obtained. To prove part (d),
proceed as in the proof of [22, Proposition 8]. To prove (e), note that

X(tn+p+1, tn+p)−X(tn+1, tn) = X(tn+p+1, u+ τ)[X(u+ τ, tn+p)−X(u, tn)]

+ [X(tn+p+1, u+ τ)−X(tn+p, u)]X(u, tn)

and apply the previous results. �

By Lemma 2.5, the following result is obtained.

Lemma 2.6. Consider θ defined in (2.4). Let ε > 0, τ ∈ Γε∩T (A, ε) and p ∈ Pτ (ε).
Then there is K ′ > 0 such that for all n ∈ Z,

(a) |X(tn+p+1, u+ τ)−X(tn+1, u)| ≤ K ′ε, for all u ∈ [tn, tn+1];
(b) |X(t+ τ, tn+p)−X(t, tn)| ≤ K ′ε, for all t ∈ [tn, tn+1];
(c) |X(t+ τ, s+ τ)−X(t, s)| ≤ K ′ε, for all s, t ∈ R : |t− s| ≤ θ;
(d) |X(tn+p+1, tn+p)−X(tn+1, tn)| ≤ K ′ε.

Notice that the existence of p ∈ Pτ (ε) is given by Lemma 2.2 and the existence
of τ ∈ Γε ∩ T (A, ε) is given by Lemma 2.3.

Lemma 2.7. The sequence H = (H(n))+∞
n=−∞ given by (1.8) and the sequence

h = (h(n))+∞
n=−∞ given by (1.11) are almost periodic.

Proof. Firstly, notice that H(n) = X(tn+1, tn) + ψ(n), for all n ∈ Z, where

ψ(n) =
∫ tn+1

tn

X(tn+1, u)B(u)du.
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From Lemma 2.6 (d), it is not hard to see that (X(tn+1, tn))+∞
n=−∞ is almost pe-

riodic. ψ is also almost periodic. In fact, let ε > 0. From Lemma 2.4, Γ =
T (A, ε)∩T (B, ε)∩Γε is relatively dense. Let p ∈ P = ∪τ∈ΓPτ (ε), so there is τ ∈ Γ
such that p ∈ Pτ (ε). Then, for all n ∈ Z it is obtained

ψ(n+ p)− ψ(n)

=
∫ tn+p+1

tn+p

X(tn+p+1, u)B(u)du−
∫ tn+1

tn

X(tn+1, u)B(u)du

=
∫ tn+p+1

tn+p

X(tn+p+1, u)B(u)du−
∫ tn+p+1

tn+τ

X(tn+p+1, u)B(u)du

+
∫ tn+p+1

tn+τ

X(tn+p+1, u)B(u)du−
∫ tn+1

tn

X(tn+p+1, u+ τ)B(u+ τ)du

+
∫ tn+1

tn

X(tn+p+1, u+ τ)B(u+ τ)du−
∫ tn+1

tn

X(tn+1, u)B(u)du,

=
∫ tn+τ

tn+p

X(tn+p+1, u)B(u)du+
∫ tn+p+1

tn+1+τ

X(tn+p+1, u)B(u)du

+
∫ tn+1

tn

[X(tn+p+1, u+ τ)B(u+ τ)−X(tn+1, u)B(u)]du.

By Lemmas 2.5 and 2.6, there are positive constants M and K ′ such that

|ψ(n+ p)− ψ(n)| ≤ |t(p)n − τ |M + |t(p)n+1 − τ |M +K ′ε ≤ [2M +K ′]ε

for all n ∈ Z. So, p ∈ T (ψ, [2M + K ′]ε). Since p was taken arbitrarily in P ,
P ⊆ T (ψ, [2M +K ′]ε). By Lemma 2.1, P is relatively dense. So, T (ψ, [2M +K ′]ε)
is relatively dense. Since ε > 0 is arbitrary, ψ is almost periodic. Therefore,
H = (H(n))+∞

n=−∞ is almost periodic.
In the similar way, h is almost periodic. �

3. Inhomogeneous linear DEPCAG

To study the existence of an almost periodic solution of (1.1), recall that f ∈
AP(R,Cq).

By the variation constants formula [4, 27],

y(t) = Z(t, k(t))c(k(t)) +
∫ t

γ0(t)

X(t, u)f(u)du, (3.1)

is obtained, for all t ∈ R, where c is solution of the discrete system (1.12). By
taking t→ t−n+1, it is obtained a solution y for (1.1) such that y(tn) = c(n) for all
n ∈ Z. It will be proved that y is almost periodic.

If c is the bounded solution of equation (1.12) then

c(n) =
+∞∑

k=−∞

G(n, k)h(k), (3.2)

where the Green matrix G(n, k) is given by (2.2) and h is given by (1.11).
From (3.1) and (3.2), y is the bounded solution of (1.1) and satisfies (2.5). This

relation shows y as a bounded linear function of f .
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By using the equivalent definition of almost periodicity due to Bochner, two
important facts are obtained.

Lemma 3.1 ([22, Proposition 7] and [37]). A sequence x = (x(n))+∞
n=−∞ is almost

periodic if and only if for any integer sequences (k′j)
+∞
j=1 and (`′j)

+∞
j=1 there are sub-

sequences k = (kj)+∞
j=1 and ` = (`j)+∞

j=1 of (k′j)
+∞
n=1 and (`′j)

+∞
n=1 respectively, such

that
TkT`x = Tk+`x,

uniformly on Z, where k + ` = (kj + `j)+∞
j=1, Tmx(n) = limj→+∞ x(n + mj) and

m = (mj)+∞
j=1 ∈ {k, `, k + `}, for all n ∈ Z.

Theorem 3.2. Assume that hypotheses (H1), (H3) and (H6) are satisfied. If c is
given by (3.2), then c is the unique almost periodic solution of the linear inhomo-
geneous difference system (1.12). Moreover,

|c|∞ ≤
2K

1− ρ
|h|∞. (3.3)

Proof. By Lemmas 2.7 and 3.1, for any integer sequences (k′j)
+∞
j=1 and (`′j)

+∞
j=1 there

are subsequences k = (kj)+∞
j=1 and ` = (`j)+∞

j=1 of (k′j)
+∞
n=1 and (`′j)

+∞
n=1 respectively,

such that Tk+`H = TkT`H and Tk+`h = TkT`h, uniformly on Z.
Now, notice that c given by (3.2) is the only solution of (1.12) which is bounded.

Moreover, z = Tk+`c and z = TkT`c are bounded solutions of

z(n+ 1) = Tk+`H(n)z(n) + Tk+`h(n),

z(n+ 1) = TkT`H(n)z(n) + TkT`h(n),

respectively. By uniqueness Tk+`c = TkT`c. So, c = (c(n))+∞
n=−∞ is an almost

periodic sequence. Since c is given by (3.2), it is the only bounded solution of
(1.12) and satisfies (3.3). �

Theorem 3.3. Consider θ defined in (2.4). Assume that hypotheses (H1), (H3)
and (H6) are satisfied. Then (1.1) has a unique almost periodic solution. Moreover,

|y|∞ ≤ K3|f |∞, (3.4)

where K3 = [
√
qK0(1 + |B|∞θ) 2K

1−ρ + 1]
√
qK0θ.

Proof. Let ε > 0. By Lemma 2.4, there is τ ∈ T (A, ε) ∩ T (B, ε) ∩ T (f, ε) and
p ∈ Pε ∩ T (c, ε). Let y be the solution of (1.1). Fix t ∈ R and let n ∈ Z such that
t ∈ Jn. Then

y(t+ τ)− y(t)

= [X(t+ τ, tn+p)−X(t, tn)]c(n+ p) +X(t, tn)[c(n+ p)− c(n)]

+
∫ t

tn+p−τ
[X(t+ τ, u+ τ)−X(t, u)]B(u+ τ)du · c(n+ p)

+
∫ t

tn+p−τ
X(t, u)B(u+ τ)du · [c(n+ p)− c(n)]

+
∫ t

tn+p−τ
X(t, u)[B(u+ τ)−B(u)]du · c(n) +

∫ tn

tn+p−τ
X(t, u)B(u)du · c(n)
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+
∫ t

tn+p−τ
[X(t+ τ, u+ τ)−X(t, u)]f(u+ τ)du

+
∫ t

tn+p−τ
X(t, u)[f(u+ τ)− f(u)]du+

∫ tn

tn+p−τ
X(t, u)f(u)du

So, by Lemmas 2.5 and 2.6, there is K ′ > 0 large enough such that |y(t+τ)−y(t)| ≤
εK ′ for all t ∈ R. Since τ > 0 was taken arbitrarily in T (A, ε) ∩ T (B, ε) ∩ T (f, ε),
this set is contained in T (x, εK ′). By Lema 2.4, T (x, εK ′) is relatively dense. Since
ε > 0 was taken arbitrarily, y is an almost periodic solution of (1.1). From (2.5), it
can be noticed that y is the unique bounded solution of DEPCAG (1.1). So, y is
the unique almost periodic solution of DEPCAG (1.1).

Since Z(t, s) is bounded and the relations (2.4), (2.5) and (3.3) are satisfied, we
have inequality (3.4). �

4. The nonlinear equation (1.2)

To study the existence of an almost periodic solution of (1.2), recall that W ⊆
(Cq)` is not empty and the set

T (F, ε,W ) = {τ ∈ R : |F (t+ τ, w)− F (t, w)| ≤ ε, for all (t, w) ∈ R×W}

is relatively dense for allε > 0.

Lemma 4.1. Let y : R → Cq an almost periodic function. Assume that (H2) is
satisfied and F satisfies (H4). Then F (t, yγ(t)) satisfies (H3).

Proof. Let ε > 0 and τ ∈ T (y, ε) ∩ T (F, ε,W ). Since y is almost periodic, it is
uniformly continuous. So, there is δ > 0 such that s, t ∈ R : |s− t| ≤ δ implies that
|y(t)− y(s)| ≤ ε. Since Pτ (δ) 6= φ, |γpj (t+ τ)− (γpj (t) + τ) | ≤ δ, for j = 1, . . . , `.
Moreover,

|F (t+ τ, yγ(t+ τ))− F (t, yγ(t))|
≤ |F (t+ τ, yγ(t+ τ))− F (t, yγ(t+ τ))|+ |F (t, yγ(t+ τ))− F (t, yγ(t))|
≤ ε+ L`ε.

Since ε > 0 was taken arbitrarily, F (t, yγ(t)) satisfies (H3). �

Theorem 4.2. Assume that (H1), (H2) and (H6) hold. Assume that F satisfies
(H4). If

2
KL`

1− ρ
< 1, (4.1)

then (1.2) has an almost periodic solution.

Proof. Let

(T c)(n) =
+∞∑

k=−∞

G(n, k)h(k, ĉ(k)), (4.2)

where h(n, ĉ(n)) =
∫ tn+1

tn
X(tn+1, s)F (s, ĉ(n))ds and G(n, k) is given in (2.2) and

ĉ(n) = (c(n− p1), . . . , c(n− p`)).
If c is a fixed point of the operator defined by (4.2) then c is solution of the

difference equation
c(n+ 1) = H(n)c(n) + h(n, ĉ(n)). (4.3)
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If c is almost periodic then h(n, ĉ(n)) is almost periodic. In that case, T c is
almost periodic. So, T (AP(Z,Cq)) ⊆ AP(Z,Cq). Moreover,

|(T c1)(n)− (T c2)(n)| ≤ 2
KL`

1− ρ
|c1 − c2|∞.

If (4.1) holds, T : AP(Z,Cq) → AP(Z,Cq) is a contracting mapping. By the
Banach fixed point theorem, there is c ∈ AP(Z,Cq) a unique fixed point for T .
Therefore, equation (4.3) has an almost periodic solution c. By Theorem 3.3, it can
be constructed a solution y of (1.2) which is almost periodic. �

The ret of this article is devoted to the exponential stability of the almost periodic
solution of (1.2), whose existence was proved in the previous section. First, we say
what we understand by exponential stability.

Assume that pj > 0 for j = 1, . . . , `. Let p = maxj=1,...,` pj . A solution y of
(1.2), is exponentially stable as t→ +∞ if there is α ∈]0, 1[ such that given ε > 0,
there exists δ > 0 such that ỹ = ỹ(t) is a solution of (1.2) defined for t ≥ t0 then

max
j=0,1,...,p

|y(t−j)− ỹ(t−j)| ≤ δ

implies

|ỹ(t)− y(t)| ≤ εαt, for all t ≥ t0. (4.4)

This kind of stability is in the half axis although the solution being exponentially
stable is defined on the whole axis.

This definition is independent on the choice of t0. Any other value could be
chosen.

Let Φ(n, k) = Φ(n)Φ(k)−1, for all (n, k) ∈ Z2. Assume that the difference
system (1.10) is exponentially stable as n→ +∞, i.e., assume that there are positive
constants ρ,K with ρ < 1 and K ≥ 1 such that

|Φ(n, k + 1)| ≤ Kρn−k, (4.5)

for all n, k ∈ Z : n ≥ k.
By Theorem 4.2 and the exponential stability, the condition

KL`

1− ρ
< 1, (4.6)

ensures the existence of a unique almost periodic solution y = y(t) of (1.2) defined
for all t ∈ R.

For (1.4), notice that an exponential stability for (1.10) implies a direct notion
on exponential stability on Z(t, s). In fact, from (1.9) and (4.5), it is obtained, for
n > k, t ∈ Jn and s ∈]tk, tk+1], that

|Z(t, s)| ≤ K4ρ
n−k,

where K4 = K
√
qK2

0 [1 +
√
qK0|B|∞θ]2 and θ is given in (2.4). Since t − s ≤

tn+1 − tk ≤ θ(n− k + 2),

|Z(t, s)| ≤ K4ρ
−2ρ

t−s
θ .

If η0, η1, . . . , ηp ∈ Cq, it is not hard to see that the difference system (4.3) has a
solution c̃ = c̃(n) defined for n ≥ 0 with the initial conditions c̃(−j) = ηj ∈ Cq for
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j = 0, 1, . . . , p. Let

ỹ(t) = Zk(t)(t)
(

Φ(n, 0)c̃(0) +
n−1∑
k=0

Φ(n, k + 1)
∫ tk+1

tk

X(tk+1, u)

× F (u, c̃(k − p1), . . . , c̃(k − p`))du
)

+
∫ t

γ0(t)

X(t, u)F (u, c̃(n− p1), . . . , c̃(n− p`))du,

(4.7)

where t ≥ t0. Then, ỹ = ỹ(t) is the unique solution of (1.2) with t ≥ t0 and fixed
initial conditions ỹ(t−j) = ηj for j = 0, 1, . . . , p.

Theorem 4.3. Assume that (H1), (H2), (H4) hold and that the difference system
(1.10) has an exponential stability as n→ +∞. Assume that (4.5) and (4.6) hold.
If y is the almost periodic solution of (1.2) and ỹ is solution of (1.2) for t ≥ t0
with initial conditions ỹ(t−j) = ηj for j = 0, 1, . . . , p, then there is K̃ > 0 such that

|y(t)− ỹ(t)| ≤ K̃
(
ρ(1 +KL`ρ−p)

)n max
j=0,1,...,p

|c(−j)− ηj |, (4.8)

where t ≥ t0. Hence, if
KL`

1− ρ
< ρp−1 (4.9)

then y is exponentially stable.

Proof. Consider that c(n) = y(tn) and c̃(n) = ỹ(tn) for all integer n ≥ n0. Let
u(n) = c(n)− c̃(n) for all n ∈ Z. Then, for n0 ∈ Z,

|u(n)| ≤ |Φ(n, 0)||u(0)|+
n−1∑
k=0

|Φ(n, k + 1)||F (k, ĉ)(n)− F (k, ˆ̃c(n))|

≤ Kρn|u(0)|+KL

n−1∑
k=0

ρn−k
∑̀
j=1

|u(k − pj)|.

Let ω(n) = ρ−n
∑`
j=1 |u(n− pj)| and v(n) = ρ−n|u(n)|. Then

ρ−nu(n) ≤ K|u(0)|+KL

n−1∑
k=0

ω(k)

Note that

ω(n) =
∑̀
j=1

ρ−pjρ(−n−pj)|u(n− pj)| ≤ ρ−p
∑̀
j=1

v(n− pj).

For n ≥ 0,

v(n) ≤ Kv(0) +KL

n−1∑
k=0

ω(k).

Let zn = max{|v(m)| : m = −p,−p+1, . . . , n}. Then, ω(n) ≤ ρ−p`zn, for all n ≥ 0.
Hence,

v(n) ≤ Kv(0) +KLρ−p`

n−1∑
k=0

zk.

Let mn ∈ {−p, n− p+ 1, . . . , n} such that zn = v(mn).
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If mn ≥ 0, then zn ≤ Kv(0) +KL`ρ−p
∑mn−1
k=0 zk. Hence,

zn ≤ Kv(0) +KL`ρ−p
n−1∑
k=0

zk.

If mn < 0, then there is j0 ∈ {1, . . . , p} such that mn = n − j0. Since K ≥ 1,
zn ≤ Kz0. So,

zn ≤ Kz0 +KL`ρ−p
n−1∑
k=0

zk,

for all n ≥ 0. By Gronwall’s inequality,

zn ≤ (1 +KL`ρ−p)nz0.

So, for all n ≥ 0,

|c(n)− c̃(n)| ≤ Kρn(1 +KL`ρ−p)n max
j=0,1,...,p

|c(−j)− c̃(−j)|. (4.10)

By Lemma 2.5, there is a positive constant K0 such that |X(t, u)| ≤ √qK0, for
all u ∈ Jk(t) and |Z(t, γ0(t))| ≤ √qK0(1 +

√
qK0|B|∞θ) for all t ≥ t0. By relation

(4.7), for t ≥ t0, there is a positive constant K ′ such that

|y(t)− ỹ(t)| ≤ K ′|c(n)− c̃(n)|. (4.11)

This inequality show a Lipschitz continuous relation c̃ 7→ ỹ.
By combining (4.10) and (4.11), this result is proved with K̃ = K ′K.
Notice that (4.9) implies (4.6). Then Theorem 4.2 ensures the existence of the

unique almost periodic solution of (1.2) which is exponentially stable. In fact, let
α = ρ(1 +KL`ρ−p). By (4.9), α < 1. For ε > 0 consider δ = ε

K̃
. By (4.8), (4.4) is

satisfied and y is exponentially stable. �

In the previous theorem, condition (4.9) is impled and is slightly stronger than
the condition of existence (4.6).

5. Examples

5.1. Exponential Dichotomy. It is not obvious how to extend the exponential
dichotomy from the difference equation (1.10) to (1.4). Akhmeth studied this topic
in [6]; other helpful references are [13, 23, 27, 29]. We could consider an intuitively
direct definition given by the existence of a projection Π∗ and positive constants
M and α such that

|Z(t, t0)Π∗Z(s, t0)−1| ≤Me−α(t−s), if t ≥ s

|Z(t, t0)(I −Π∗)Z(s, t0)−1| ≤Meα(t−s), if t ≤ s.
(5.1)

However, if we take

(1) tn = νn + qn, where ν is a positive constant and (qn)+∞
n=1 is an almost

periodic sequence in [0, ν[ such that ∆n = qn+1 − qn → 0 as n→ ±∞,
(2) A(t) = 0
(3) and B(t) = diag(λ0(t), λ1(t)), where λ0(t) = − 2

π + sin
(

2π
ν (t − qn)

)
and

λ1(t) = −λ0(t) for all t ∈ [tn, tn+1[, n ∈ Z,
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then, for

g0(δ) =
∫ tn+δ

tn

λ0(ξ)dξ = − ν

2π

(
4
δ

ν
− 1 + cos

(
2π
δ

ν

))
,

we have that g0

(
π
4 ν
)

= 0 and

lim
δ→(tn+1−tn)−

g0(δ) =
ν

2π

(
− 4
(
1 +

∆n

ν

)
− 1 + cos

(∆n

ν

))
= −2ν

π
+ βn,

where βn = ν
2π

(
− 4∆n

ν − 1 + cos
(

∆n

ν

))
→ 0 as n → ±∞. Note that for n large

enough, there is α > 0 such that − 2ν
π + βn ≤ −α. This is equivalent to,∫ tn+π

4 ν

tn

λ1(ξ)dξ = −g0

(π
4
ν
)

= 0

and limt→t−n+1
−g0(t) ≥ 2ν

π − βn ≥ α for n large enough. So, the exponential di-
chotomy on the difference equation (1.10) can be written as (2.1) for Π = diag(1, 0)
but there is no Π∗ such that condition (5.1) is satisfied.

Notice that a dichotomy condition on the ordinary differential equation (1.6)
implies an exponential dichotomy on the difference equation (1.10) [23, Proposition
2] when |B(t)| is small enough. However, an exponential dichotomy for the differ-
ence equation on (1.10) is not a necessary condition for an exponential dichotomy
for the ordinary differential system (1.6). In fact, let’s consider A(t) = 0 and
B(t) = diag

(
− 3

2 ,
1
2

)
. Then the exponential dichotomy for difference system (1.10)

is satisfied, with no exponential dichotomy for the ordinary differential system (1.6).

5.2. Constant coefficients. Assume that in (1.2), A(t) = A0 and B(t) = B0 are
constants matrices and F (t, ·) is almost periodic. Then (1.2) becomes

y′(t) = A0y(t) +B0y(γ0(t)) + F (t, yγ(t)), t ∈ R. (5.2)

Assume that tn+1 − tn = ν + ∆n, where ∆n → 0 as n→ ±∞,that A0 and

H(n) = e(ν+∆n)A0 [I +A−1
0 (I − e−(ν+∆n)A0)B0]

are invertible matrices, for all n ∈ Z.
By using σ(H(n)) as the usual notation for the spectrum of the matrix H(n),

assume that
σ(H(n)) ⊆ {z ∈ C : |z| < R or 1 +R < |z|},

for all n ∈ Z, where R < 1 and that L in (1.5) satisfies (4.6). Then, (5.2) has an
almost periodic solution. In particular, it is obtained when the elements of σ(A0)
have non zero real part and |B0| is small enough.

Now, assume that
σ(H(n)) ⊆ {z ∈ C : |z| < R}

where R < 1 and that L in (1.5) satisfies the condition (4.9). Then, (5.2) has an
almost periodic solution which is exponentially stable. In particular, it is obtained
when the elements of σ(A0) have negative real part and |B0| is small enough.

Assume that A0 = 0, that H(n) = I + (ν + ∆n)B0 is invertible for all n ∈ Z,
that σ(B0) ⊆ {z ∈ C : |z| < 1/(ν + r)}, where r = max ∆n and that ν + ∆n and L
in (1.5) satisfies (4.6). Then (5.2) has an almost periodic solution. We can notice
that it behaves as a difference equation.
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Departamento de Matemática, Facultad de Ciencias, Universidad del B́ıo-B́ıo, Casilla

5-C, Concepcíıon, Chile
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