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EXISTENCE OF SOLUTIONS TO A PARABOLIC p(x)-LAPLACE
EQUATION WITH CONVECTION TERM VIA L∞ ESTIMATES

ZHONGQING LI, BAISHENG YAN, WENJIE GAO

Abstract. This article is devoted to the study of the existence of weak so-

lutions to an initial and boundary value problem for a parabolic p(x)-Laplace
equation with convection term. Using the De Giorgi iteration technique, the

authors establish the critical a priori L∞-estimates and thus prove the exis-

tence of weak solutions.

1. Introduction

In this article, we consider the initial and boundary value problem for parabolic
p(x)-Laplace equation

∂u

∂t
− div

(
|∇u|p(x)−2∇u

)
= B(x, t)|∇u|p(x) − div

−→
F (x, t), (x, t) ∈ QT ,

u(x, t) = 0, (x, t) ∈ ΓT ,

u(x, 0) = u0(x) ∈ L∞(Ω), x ∈ Ω.

(1.1)

Here, Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, QT = Ω × (0, T ),
ΓT = ∂Ω × (0, T ), T > 0 is finite, and p(x), B(x, t),

−→
F (x, t) are given quantities

satisfying conditions to be specified later.
Recently, partial differential equations involving variable exponents, such as the

p(x)-Laplace equation in (1.1), have been extensively investigated, owing to their
physical importance and powerful application. The mathematical model of Problem
(1.1) originates from heat and mass transfer in nonhomogeneous media and non-
Newtonian fluids with thermo-convective effects [2]. Equations of this type also
appear in the study of digital image recovery [4] and electrorheological fluids [16].
It describes the evolution diffusion and filtration process. In particular, the models
like (1.1) with variable exponent provide a good mathematical interpretation for
the mechanical properties of certain viscous electrorheological fluids characterized
by their abilities to undergo significant changes when an electric field is applied.

We focus on mathematical analysis concerning the existence of solutions to Prob-
lem (1.1). Similar problems with constant exponents or L1 data have been studied
by many authors; see, e.g., [3, 5, 13, 14, 15, 18, 21, 24]. To study our problem,
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we encounter several difficulties arising from the variable exponents. To deal with
(1.1), one must face the typical difficulty of how to define the solution space to (1.1).
When p(x) = p is a constant, it is well known that Lp(0, T ;W 1,p

0 (Ω)) can be taken as
the solution space. However, in the nonconstant case and p− = inf p(x) > 1, if the
solution space is defined to be Lp(x)(0, T ;W 1,p(x)

0 (Ω)), or Lp
−

(0, T ;W 1,p(x)
0 (Ω)),

etc., then it leads to an unfavorable fact that the p(x)-Laplace operator is not
bounded and not continuous from this space into its dual. To conquer this dif-
ficulty, we adopt the appropriate solution space V as defined below, which helps
us to define a weak solution to (1.1). However, other difficulties arise from it at
the same time. On one hand, one must verify the chain rule in the variable ex-
ponent space, as given in Lemma 2.2 with its proof in the Appendix, even if this
is an obvious fact in the case when p is a constant [5, 13]. On the other hand,
we will get the existence result for Problem (1.1) through a limit process in which
Simon’s compactness theorem [17] plays a crucial role. Nevertheless, the solution
space V prevents from directly employing the theorem. We take into account the
properties associated with V and surmount this difficulty. There are other differ-
ences between the variable exponent case and the constant exponent case. Some
important properties and inequalities are no longer valid. For example, the variable
exponent spaces are not translation invariant, Young’s inequality with convolution
‖f ∗g‖p(·) ≤ C‖f‖p(·)‖g‖1 holds if and only if p is constant, and for u ∈W 1,p(x)

0 (Ω),∫
Ω
|u|p(x)dx ≤ C

∫
Ω
|∇u|p(x)dx is not valid for the variable exponent p, etc.; we refer

to monograph [7] for details and more references.
To define an appropriate solution space for Problem (1.1), we make the following

hypotheses on the quantities appearing in (1.1).

(H1) p ∈ C(Ω), and p+ := maxΩ p(x), p− := minΩ p(x) satisfy 1 < p− ≤ p+ <
+∞; furthermore, there exists a positive constant C such that the following
log-Hölder continuous condition holds:

|p(x)− p(y)| ≤ −C
log |x− y|

for every x, y ∈ Ω satisfying |x− y| ≤ 1
2

. (1.2)

(H2) B ∈ L∞(QT ) satisfies 0 ≤ B(x, t) ≤ b, where b > 0 is a constant, and
−→
F is a vector field satisfying |

−→
F |(p−)′ ∈ Lr(QT ), where (p−)′ = p−

p−−1 and

r > N+p−

p− . Hence,
−→
F ∈

(
Lp
′(x)(QT )

)N as |
−→
F | ∈ L(p−)′(QT ) ↪→ Lp

′(x)(QT );
see the relevant definitions below.

We remark that, when p is a constant, it is well known that W 1,p
0 (Ω) (the clo-

sure of C∞0 (Ω) in W 1,p(Ω)) is identical to H1,p
0 (Ω) := {f ∈ Lp(Ω) : |∇f | ∈

Lp(Ω) with f |∂Ω = 0}. However, when p is a function, there exists an interest-
ing Lavrentiev phenomenon [22], which shows that the above two space are not
equivalent. The log-Hölder continuous condition (1.2) above guarantees an impor-
tant fact that C∞0 (Ω) is dense in W 1,p(x)(Ω) [23]. Under this condition, one can
define variable Sobolev spaces with homogeneous boundary values, W 1,p(x)

0 (Ω), as
the closure of C∞0 (Ω) in W 1,p(x)(Ω); moreover, the condition makes p(x)-Poincaré’s
inequality hold [1, 10, 21].

We introduce the function space

V = {v ∈ Lp
−

(0, T ;W 1,p(x)
0 (Ω)) : |∇v| ∈ Lp(x)(QT )},
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endowed with the norm ‖u‖V = |∇u|Lp(x)(QT ), or the equivalent norm ‖u‖V =
|u|

Lp− (0,T ;W
1,p(x)
0 (Ω))

+ |∇u|Lp(x)(QT ); the equivalence follows from p(x)-Poincaré’s
inequality. Then V is a separable and reflexive Banach space (see [3, 21]).

We now give the definition of weak solutions to Problem (1.1).

Definition 1.1. We say that u ∈ V ∩L∞(QT ) is a weak solution to (1.1), provided
that ut ∈ V ∗ + L1(QT ), u(x, 0) = u0(x) in Lp

−
(Ω), and∫ T

0

〈ut, φ〉dt+
∫ T

0

∫
Ω

|∇u|p(x)−2∇u · ∇φdx dt

=
∫ T

0

∫
Ω

B|∇u|p(x)φdx dt+
∫ T

0

∫
Ω

∇φ ·
−→
F dx dt

(1.3)

holds for every φ(x, t) ∈ V ∩L∞(QT ). Here, with ut = α(1) +α(2) ∈ V ∗ +L1(QT ),
it is understood that∫ T

0

〈ut, φ〉dt := 〈ut, φ〉V ∗+L1(QT ),V ∩L∞(QT ) = 〈α(1), φ〉V ∗,V +
∫ T

0

∫
Ω

α(2)φdx dt.

When p(x) = p is a constant, sup-/sub-solution method is powerful and direct to
the existence results (see [13]). Nevertheless, it is not suitable to our problem be-
cause, due to the complicated nonlinearities of p(x)-Laplace, it may be quite difficult
to construct a supsolution u and a subsolution u in V which simultaneously satisfy
u ≤ u. Roughly speaking, in Equation (1.1), the growth power of |∇u|p(x)−2∇u at
the left-hand side of (1.1) is less than that of the convection term |∇u|p(x) at the
right-hand side, which leads us not to directly utilizing pseudo-monotone operator
method [12]. Instead, to obtain the existence of weak solutions to Problem (1.1), we
will employ the L∞ estimate method and get the solution through a limit process
to the approximate equations. We carry out the De Giorgi iteration, different from
the classical constant exponent case (see [24, 5, 14] and the excellent and elegant
argument therein), in the setting of variable exponent. We first give a general form
of [5, Theorem 5.1] or [24, Lemma 1], as stated in (2.5), by which we obtain the
L∞ regularity under the classification when p− ≥ 2 and when 1 < p− < 2, other
than the classification appeared in [24]. It should be remarked that, we employ the
infimum of p(x), which facilitates this iteration, however, on the other side of the
coin, it makes the iteration process more technical and complexity. By the way,
our result in Theorem 2.3 shows an interesting phenomenon: the uniformly L∞

bound of u can depend on p− other than p(x) itself as in the constant exponent
case [24]. In the limit process, the properties of solution space V and its related
variable exponent space will be frequently used, which is one of the features in the
equation with variable exponent.

The plan of this paper is as follows. In section 2, we apply the De Giorgi iteration
to Problem (1.1) to obtain a uniform bound for the bounded weak solution u ∈ V ;
this a priori L∞-assumption is crucial for such a uniform bound, as in [5, 14]. In
section 3, we construct an approximation equation to Problem (1.1). Based on
the uniform bound of un, we obtain the strong convergence of un in the solution
space V , by virtue of which we establish the existence of solutions. Section 4 is an
Appendix in which we give some brief proofs to some lemmas in the paper.

To conclude this section, we recall some preliminary results on the Lebesgue and
Sobolev spaces with variable exponents; for more details, see [9, 10] or monograph
[7, 16]. Let p be a continuous function defined in Ω, p(x) > 1, for any x ∈ Ω.
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1. The space

Lp(x)(Ω) :=
{
u : u is measurable in Ω and

∫
Ω

|u(x)|p(x)dx <∞
}
.

This space is equipped with the Luxemburg’s norm

|u|Lp(x)(Ω) := inf
{
λ > 0 :

∫
Ω

|u(x)
λ
|p(x)dx ≤ 1

}
.

The space
(
Lp(x)(Ω), | · |Lp(x)(Ω)

)
is a separable, uniformly convex Banach space.

2. The space

W 1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

endowed with the norm

|u|W 1,p(x)(Ω) := |∇u|Lp(x)(Ω) + |u|Lp(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω). In fact, the norm

|∇u|Lp(x)(Ω) and |u|W 1,p(x)(Ω) are equivalent norms in W
1,p(x)
0 (Ω). W 1,p(x)(Ω) and

W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces.
3. Frequently used relationships for the estimates.

min
{
|u|p

−

Lp(x)(Ω)
, |u|p

+

Lp(x)(Ω)

}
≤
∫

Ω

|u(x)|p(x)dx ≤ max
{
|u|p

−

Lp(x)(Ω)
, |u|p

+

Lp(x)(Ω)

}
.

Consequently,

|uk − u|Lp(x)(Ω) → 0⇐⇒
∫

Ω

|uk − u|p(x)dx→ 0.

4. p(x)-Hölder’s inequality: For any u ∈ Lp(x)(Ω) and v ∈ Lp
′(x)(Ω), with

1
p(x) + 1

p′(x) = 1, we have∣∣∣ ∫
Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1
(p′)−

)
|u|Lp(x)(Ω)|v|Lp′(x)(Ω) ≤ 2|u|Lp(x)(Ω)|v|Lp′(x)(Ω).

5. Embedding relationships: If p1 and p2 are in C(Ω), and 1 ≤ p1(x) ≤ p2(x),
for any x ∈ Ω, then there exists a positive constant Cp1(x),p2(x) such that

|u|Lp1(x)(Ω) ≤ Cp1(x),p2(x)|u|Lp2(x)(Ω).

i.e. the embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω) is continuous. If q ∈ C(Ω) and 1 ≤
q(x) < p∗(x), for any x ∈ Ω, then the embedding W 1,p(x)

0 (Ω) ↪→ Lq(x)(Ω) is contin-
uous and compact, where

p∗(x) :=

{
Np(x)
N−p(x) , p(x) < N,

+∞, p(x) ≥ N.

6. p(x)-Poincaré’s inequality: Under the condition (1.2), there exists a positive
constant Cp such that

|u|Lp(x)(Ω) ≤ Cp|∇u|Lp(x)(Ω), for all u ∈W 1,p(x)
0 (Ω).
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2. A priori bounds

First of all, we give some technical lemmas frequently used in the process of De
Giorgi iteration. In particular, (2.5) can be seen as a general form of [5, Theorem
5.1] or [24, Lemma 1]. Their proofs will be given in the Appendix for the convenience
of the readers.

Lemma 2.1. Assume that a, b, λ are positive constants, with λ ≥ 1
2 + b

a . Define

ϕ(s) =

{
eλs − 1, s ≥ 0,
−e−λs + 1, s ≤ 0.

(2.1)

Then the following properties hold:
(1) For all s ∈ R,

|ϕ(s)| ≥ λ|s|, aϕ′(s)− b|ϕ(s)| ≥ a

2
eλ|s|. (2.2)

(2) There exist constants d ≥ 0 and M > 1 such that, for all s ≥ d,

ϕ′(s) ≤ λM
[
ϕ
( s
p−
)]p−

, ϕ(s) ≤M
[
ϕ
( s
p−
)]p−

. (2.3)

(3) Let Φ(s) =
∫ s

0
ϕ(σ)dσ. If p− ≥ 2, then there exists a positive constant c∗

such that
Φ(s) ≥ c∗

[
ϕ
( s
p−
)]p−

, ∀s ≥ 0; (2.4)

if 1 < p− < 2, then there exist d ≥ 0 and c∗ = c∗(p−, d) such that

Φ(s) ≥ c∗
[
ϕ
( s
p−
)]p−

, ∀s ≥ d,

Φ(s) ≥ c∗
[
ϕ
( s
p−
)]2

, ∀0 ≤ s ≤ d.
(2.5)

Lemma 2.2. Assume that function π : R → R is piecewise C1 with π(0) = 0
and π′ = 0 outside a compact set. Let Π(s) =

∫ s
0
π(σ)dσ. If u ∈ V with ut ∈

V ∗ + L1(QT ), then∫ T

0

〈ut, π(u)〉dt = 〈ut, π(u)〉V ∗+L1(QT ),V ∩L∞(QT ) =
∫

Ω

Π(u(T ))dx−
∫

Ω

Π(u(0))dx.

(2.6)

Using the lemmas above, we begin the De Giorgi iteration to get the a priori L∞

estimate.

Theorem 2.3. Let u ∈ L∞(QT ) ∩ V be a weak solution to Problem (1.1). Then

‖u‖L∞(QT ) ≤ ‖u0‖L∞(Ω) + C,

where C is a constant depending on p−, N, T, r, b,Ω, |||
−→
F |(p−)′‖Lr(QT ), but indepen-

dent of u.

Proof. Let k be a real number such that k > ‖u0‖L∞(Ω) and let ϕ be the function
defined in (2.1) with constant λ ≥ 1

2 +2b, where b > 0 is the constant in Hypothesis
(H2). (We shall use (2.2) with a = 1 and a = 1/2 below.) Define

Gk(u) =


u− k, if u > k,

u+ k, if u < −k,
0, if |u| ≤ k.
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Note that u ∈ L∞(QT ) ∩ V ; so does ϕ(Gk(u)). Then, for each τ ∈ [0, T ], one may
choose v = ϕ(Gk(u))χ[0,τ ] as a test function in (1.3) (where χA is the characteristic
function on the set A). Noting that ∇v = χ[0,τ ]χ{|u| > k}ϕ′(Gk(u))∇u, we have∫ τ

0

〈ut, ϕ(Gk(u))〉dt+
∫ τ

0

∫
Ω

|∇u|p(x)ϕ′(Gk(u))χ{|u| > k} dx dt

=
∫ τ

0

∫
Ω

B|∇u|p(x)ϕ(Gk(u)) dx dt+
∫ τ

0

∫
Ω

χ{|u| > k}ϕ′(Gk(u))∇u ·
−→
F dx dt.

(2.7)

Denote Ak(t) = {x ∈ Ω : |u(x, t)| > k}. In what follows, we write ϕ = ϕ(Gk(u))
and ϕ′ = ϕ′(Gk(u)) for simplicity. Thanks to the choice of k, one has∫ τ

0

〈ut, ϕ(Gk(u))〉dt =
∫

Ω

Φ(Gk(u))(τ)dx−
∫

Ω

Φ(Gk(u0))dx

=
∫
Ak(τ)

Φ(Gk(u))(τ)dx−
∫
Ak(0)

Φ(Gk(u0))dx

=
∫
Ak(τ)

Φ(Gk(u))(τ)dx.

(2.8)

From Young’s inequality with ε, it follows that∫ τ

0

∫
Ak(t)

ϕ′∇u ·
−→
F dx dt

≤ ε
∫ τ

0

∫
Ak(t)

|∇u|p
−
ϕ′ dx dt+ C(ε)

∫ τ

0

∫
Ak(t)

|
−→
F |(p

−)′ϕ′ dx dt.

(2.9)

Substituting (2.8) and (2.9) in (2.7) yields∫
Ak(τ)

Φ(Gk(u))(τ)dx+
∫ τ

0

∫
Ak(t)

|∇u|p(x) (ϕ′ −B|ϕ|) dx dt

≤ ε
∫ τ

0

∫
Ak(t)

|∇u|p
−
ϕ′ dx dt+ C(ε)

∫ τ

0

∫
Ak(t)

|
−→
F |(p

−)′ϕ′ dx dt.

(2.10)

Note that ϕ′−B|ϕ| ≥ ϕ′− b|ϕ| ≥ 1
2e
λ|Gk(u)| > 0 by (2.2) (with a = 1). By utilizing

|∇u|p(x) ≥ |∇u|p− − 1 and choosing ε = 1
2 , we get from (2.10) that∫

Ak(τ)

Φ(Gk(u))(τ)dx+
∫ τ

0

∫
Ak(t)

|∇u|p
−(1

2
ϕ′ −B|ϕ|

)
dx dt

≤ C
∫ τ

0

∫
Ak(t)

|
−→
F |(p

−)′ϕ′ dx dt+
∫ τ

0

∫
Ak(t)

(ϕ′ −B|ϕ|) dx dt

≤
∫ τ

0

∫
Ak(t)

(
C|
−→
F |(p

−)′ + 1
)
ϕ′ dx dt.

(2.11)

Using (2.2) with a = 1
2 , we have 1

2ϕ
′−B|ϕ| ≥ 1

2ϕ
′−b|ϕ| ≥ 1

4e
λ|Gk(u)| > 0. Denoting

wk = ϕ
(
|Gk(u)|
p−

)
, we proceed to estimate (2.11),∫ τ

0

∫
Ak(t)

|∇u|p
−
(1

2
ϕ′ −B|ϕ|

)
dx dt ≥ 1

4

∫ τ

0

∫
Ak(t)

|eλ
|Gk(u)|
p− ∇u|p

−
dx dt

≥ 1
4
( 1
λ

)p− ∫ τ

0

∫
Ak(t)

|∇wk|p
−
dx dt.

(2.12)
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By definition, Ak(t) \ Ak+d(t) = t{x ∈ Ω : k < |u(x, t)| ≤ k + d}; hence 0 <
|Gk(u)| ≤ d and ϕ′(Gk(u)) = λeλ|Gk(u)| ≤ λeλd on Ak(t) \Ak+d(t). So, from (2.3),
it follows that∫ τ

0

∫
Ak(t)

(
C|
−→
F |(p

−)′ + 1
)
ϕ′ dx dt

≤ λM
∫ τ

0

∫
Ak+d(t)

(
C|
−→
F |(p

−)′ + 1
)
|wk|p

−
dx dt

+
∫ τ

0

∫
Ak(t)\Ak+d(t)

(
C|
−→
F |(p

−)′ + 1
)
ϕ′ dx dt

≤ λM
∫ τ

0

∫
Ak+d(t)

h|wk|p
−
dx dt+ λeλd

∫ τ

0

∫
Ak(t)\Ak+d(t)

h dx dt,

(2.13)

where h = C|
−→
F |(p−)′ + 1. Putting (2.11), (2.12) and (2.13) together, we deduce∫

Ak(τ)

Φ(Gk(u))(τ)dx+
1
4
( 1
λ

)p− ∫ τ

0

∫
Ak(t)

|∇wk|p
−
dx dt

≤ λM
∫ τ

0

∫
Ak+d(t)

h|wk|p
−
dx dt+ λeλd

∫ τ

0

∫
Ak(t)\Ak+d(t)

h dx dt.

(2.14)

Case 1. p− ≥ 2. In this case, by (2.4), one has∫
Ak(τ)

Φ(Gk(u))(τ)dx ≥ c∗
∫
Ak(τ)

|wk|p
−
dx. (2.15)

Substituting (2.15) in (2.14) and taking the supremum for τ ∈ [0, t1], with t1 ≤ T
to be determined later, we have

c∗ sup
τ∈[0,t1]

∫
Ak(τ)

|wk|p
−
dx+

1
4
( 1
λ

)p− ∫ t1

0

∫
Ak(t)

|∇wk|p
−
dx dt

≤ λM
∫ t1

0

∫
Ak(t)

h|wk|p
−
dx dt+ λeλd

∫ t1

0

∫
Ak(t)\Ak+d(t)

h dx dt.

(2.16)

By the embedding inequality (see [6, 11]), we have(∫ t1

0

∫
Ak(t)

|wk|p
− N+p−

N dx dt
) N

N+p−

≤ γ
(

sup
τ∈[0,t1]

∫
Ak(τ)

|wk|p
−
dx+

∫ t1

0

∫
Ak(t)

|∇wk|p
−
dx dt

)
,

(2.17)

where γ is a constant depending on N, p−, but independent of t1 ≤ T . Hence, from
(2.16), it follows that

Jkt1 :=
(∫ t1

0

∫
Ak(t)

|wk|p
− N+p−

N dx dt
) N

N+p−

≤ C
(∫ t1

0

∫
Ak(t)

h|wk|p
−
dx dt+

∫ t1

0

∫
Ak(t)\Ak+d(t)

h dx dt
)
,
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where C is a constant independent of t1. Consequently, by Hölder’s inequality
(thanks to the assumption |

−→
F |(p−)′ ∈ Lr(QT ) with r > N+p−

p− ), we deduce

Jkt1 ≤ C
(∫ t1

0

∫
Ak(t)

|wk|p
− N+p−

N dx dt
) N

N+p−
(∫ t1

0

∫
Ak(t)

h
N+p−

p− dx dt
) p−

N+p−

+ C
(∫ t1

0

∫
Ak(t)

hr dx dt
)1/r(∫ t1

0

µ(Ak(t))dt
)1− 1

r

≤ C
(∫ t1

0

∫
Ak(t)

|wk|p
− N+p−

N dx dt
) N

N+p− ‖h‖Lr(Qt1 )

(
t1µ(Ω)

) p−

N+p−
− 1
r

+ C‖h‖Lr(Qt1 )

(∫ t1

0

µ(Ak(t))dt
)1− 1

r

,

where µ(Ω) represents the Lebesgue measure of Ω. Choosing t1 small enough such
that

C‖h‖Lr(Qt1 ) (t1µ(Ω))
p−

N+p−
− 1
r ≤ 1

2
(2.18)

and we obtain

Jkt1 ≤ C‖h‖Lr(QT )

(∫ t1

0

µ(Ak(t))dt
)1− 1

r

. (2.19)

For any l > k ≥ ‖u0‖L∞(Ω), using (2.2), we conclude that

Jkt1 ≥
(∫ t1

0

∫
Ak(t)

|λGk(u)
p−

|p
− N+p−

N dx dt
) N

N+p−

≥
( λ
p−
)p−(∫ t1

0

∫
Ak(t)

(
|u| − k

)p− N+p−
N dx dt

) N

N+p−

≥
( λ
p−
)p−(l − k)p

−
(∫ t1

0

µ(Al(t))dt
) N

N+p−
.

(2.20)

Let ψk =
∫ t1

0
µ(Ak(t))dt. It follows from (2.19) and (2.20) that

ψl ≤
C

(l − k)
p−(N+p−)

N

ψ
(1− 1

r )N+p−
N

k . (2.21)

Case 2. 1 < p− < 2. In this case, from (2.5) (it should be remarked that the
constant d in (2.3) and (2.5) could be the same if we choose d suitably large), we
have∫

Ak(τ)

Φ(Gk(u))(τ)dx ≥ c∗
∫
Ak+d(τ)

|wk|p
−
dx+ c∗

∫
Ak(τ)\Ak+d(τ)

|wk|2dx. (2.22)
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Substituting (2.22) into (2.14) and taking the supremum for τ ∈ [0, t1], where
t1 ≤ T to be chosen later, we derive

c∗ sup
τ∈[0,t1]

∫
Ak+d(τ)

|wk|p
−
dx+

1
4
( 1
λ

)p− ∫ t1

0

∫
Ak+d(t)

|∇wk|p
−
dx dt

+ c∗ sup
τ∈[0,t1]

∫
Ak(τ)\Ak+d(τ)

|wk|2dx+
1
4
( 1
λ

)p− ∫ t1

0

∫
Ak(t)\Ak+d(t)

|∇wk|p
−
dx dt

≤ λM
∫ t1

0

∫
Ak+d(t)

h|wk|p
−
dx dt+ λeλd

∫ t1

0

∫
Ak(t)\Ak+d(t)

h dx dt.

(2.23)
Again, recall the following embedding estimates [6, 11]:∫ t1

0

∫
Ak+d(t)

|wk|p
− N+p−

N dx dt

≤ γp
− N+p−

N

(
sup

τ∈[0,t1]

∫
Ak+d(τ)

|wk|p
−
dx+

∫ t1

0

∫
Ak+d(t)

|∇wk|p
−
dx dt

)1+ p−
N

,

(2.24)∫ t1

0

∫
Ak(t)\Ak+d(t)

|wk|p
− N+2

N dx dt

≤ γp
− N+2

N

(
sup

τ∈[0,t1]

∫
Ak(τ)\Ak+d(τ)

|wk|2dx

+
∫ t1

0

∫
Ak(t)\Ak+d(t)

|∇wk|p
−
dx dt

)1+ p−
N

.

(2.25)

Combining (2.24), (2.25) with (2.23), we obtain

J
(1)
kt1

:=
(∫ t1

0

∫
Ak+d(t)

|wk|p
− N+p−

N dx dt
) N

N+p−

+
(∫ t1

0

∫
Ak(t)\Ak+d(t)

|wk|p
− N+2

N dx dt
) N

N+p−

≤ C
∫ t1

0

∫
Ak+d(t)

h|wk|p
−
dx dt+ C

∫ t1

0

∫
Ak(t)\Ak+d(t)

h|wk|p
−
dx dt

+ C

∫ t1

0

∫
Ak(t)

h dx dt := (E1) + (E2) + (E3).

We estimate (E1) as follows.

(E1)

≤ C
(∫ t1

0

∫
Ak+d(t)

|wk|p
− N+p−

N dx dt
) N

N+p−
(∫ t1

0

∫
Ak+d(t)

h
N+p−

p− dx dt
) p−

N+p−

≤ C
(∫ t1

0

∫
Ak+d(t)

|wk|p
− N+p−

N dx dt
) N

N+p− ‖h‖Lr(Qt1 ) (t1µ(Ω))
p−

N+p−
− 1
r .

Using Hölder’s inequality and Young’s inequality with ε, we have

(E2)
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≤ C
(∫ t1

0

∫
Ak(t)\Ak+d(t)

|wk|p
− N+2

N dx dt
) N
N+2

(∫ t1

0

∫
Ak(t)\Ak+d(t)

h
N+2

2 dx dt
) 2
N+2

≤ 1
2

(∫ t1

0

∫
Ak(t)\Ak+d(t)

|wk|p
− N+2

N dx dt
) N

N+p−

+ C
(∫ t1

0

∫
Ak(t)\Ak+d(t)

h
N+2

2 dx dt
) 2

2−p−

≤ 1
2

(∫ t1

0

∫
Ak(t)\Ak+d(t)

|wk|p
− N+2

N dx dt
) N

N+p−

+ C‖h‖
N+2
2−p−

Lr(Qt1 )

(∫ t1

0

µ(Ak(t))dt
) 2

2−p−
(1−N+2

2r )

.

For (E3), we have

(E3) ≤ C‖h‖Lr(Qt1 )

(∫ t1

0

µ(Ak(t))dt
)1− 1

r

.

Now select t1 ∈ (0, (µ(Ω))−1] sufficiently small so that

C‖h‖Lr(Qt1 ) (t1µ(Ω))
p−

N+p−
− 1
r ≤ 1

2
. (2.26)

From the above estimates, we have

J
(1)
kt1
≤ C‖h‖Lr(Qt1 )

(∫ t1

0

µ(Ak(t))dt
)1− 1

r

+ C‖h‖
N+2
2−p−

Lr(Qt1 )

(∫ t1

0

µ(Ak(t))dt
) 2

2−p−
(1−N+2

2r )

.

(2.27)

Noticing that r > N+p−

p− , after a straightforward computation, we have 2
2−p− (1 −

N+2
2r ) > 1 − 1

r . Meanwhile, the choice of t1 ensures ψk ≤ t1µ(Ω) ≤ 1. As a result,
(2.27) becomes

J
(1)
kt1
≤ C

(∫ t1

0

µ(Ak(t))dt
)1− 1

r

. (2.28)

For any l > k ≥ ‖u0‖L∞(Ω), using (2.2), we deduce that

J
(1)
kt1
≥
(∫ t1

0

∫
Ak+d(t)

|λGk(u)
p−

|p
− N+p−

N dx dt
) N

N+p−

+
(∫ t1

0

∫
Ak(t)\Ak+d(t)

|λGk(u)
p−

|p
− N+2

N dx dt
) N

N+p−

≥
( λ
p−
)p−(∫ t1

0

∫
Ak+d(t)

(
|u| − k

)p− N+p−
N dx dt

) N

N+p−

+
( λ
p−
)p− N+2

N+p−
(∫ t1

0

∫
Ak(t)\Ak+d(t)

(
|u| − k

)p− N+2
N dx dt

) N

N+p−

≥
( λ
p−
)p−(l − k)p

−
(∫ t1

0

µ (Al(t) ∩Ak+d(t)) dt
) N

N+p−

+
( λ
p−
)p− N+2

N+p− (l − k)p
− N+2
N+p−

(∫ t1

0

µ (Al(t)\Ak+d(t)) dt
) N

N+p−
.
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In fact, we have(
J

(1)
kt1

)N+p−
N ≥

( λ
p−
)p− N+p−

N (l − k)p
− N+p−

N

∫ t1

0

µ (Al(t) ∩Ak+d(t)) dt

+
( λ
p−
)p− N+2

N (l − k)p
− N+2

N

∫ t1

0

µ (Al(t)\Ak+d(t)) dt.

(2.29)

Consequently, combining (2.29) and (2.28), with ψk =
∫ t1

0
µ(Ak(t))dt, we have

again

ψl ≤
C

min
{

(l − k)
p−(N+p−)

N , (l − k)
p−(N+2)

N

}ψ(1− 1
r )N+p−

N

k . (2.30)

Now we have proved (2.30) and (2.21). Our hypothesis r > N+p−

p− guarantees(
1− 1

r

)
N+p−

N > 1. Therefore, thanks to the iteration lemma in [24], we eventually
obtain that ψ(‖u0‖L∞(Ω)+D) = 0, where D > 0 is a constant depending only on

p−, N, t1, r, b,Ω, ‖|
−→
F |(p−)′‖Lr(Qt1 ). This proves that, for a fixed λ validating Lemma

2.1,
‖u(x, t)‖L∞(Qt1 ) ≤ ‖u0‖L∞(Ω) +D. (2.31)

Finally, partition the time interval [0, T ] into finite subintervals [0, t1], [t1, t2] · · ·
[tn−1, T ] such that the conditions similar to those in (2.18) and (2.26) are available
for each subinterval [ti, ti+1]; then, using the same method, we deduce an inequality
of the form (2.31). Eventually, we conclude that ‖u(x, t)‖L∞(QT ) ≤ ‖u0‖L∞(Ω) +C,
where the constant C depends only on p−, N, T, r, b,Ω, ‖|

−→
F |(p−)′‖Lr(QT ). �

3. Application to the existence of solutions to (1.1)

With the L∞-estimate obtained above, we can prove the existence of solutions
to Problem (1.1). First, we recall a lemma from [13], which plays an important role
in our estimates.

Lemma 3.1. Let θ(s) = seηs
2
, s ∈ R, where η ≥ b2

4a2 is fixed, and let Θ(s) =∫ s
0
θ(τ)dτ . Then θ(0) = 0 and

Θ(s) ≥ 0, aθ′(s)− b|θ(s)| ≥ a

2
, ∀ s ∈ R. (3.1)

We are now in a position to prove the existence of solutions to (1.1) based on
the L∞ estimate.

Theorem 3.2. Under the hypotheses (H1) and (H2), there exists a solution u ∈
L∞(QT ) ∩ V to (1.1).

Proof. Step 1: The approximation equation. We introduce the following
approximation equation of Problem (1.1).

∂un
∂t
− div

(
|∇un|p(x)−2∇un

)
= B(x, t) min{|∇un|p(x), n} − div

−→
F (x, t),

(x, t) ∈ QT ,
un(x, t) = 0, (x, t) ∈ ΓT ,

un(x, 0) = u0(x) ∈ L∞(Ω), x ∈ Ω.

(3.2)

For each fixed n ∈ N, since min
{
|∇un|p(x), n

}
is bounded, the existence of a weak

solution un ∈ L∞∩V to (3.2) follows from the standard methods (for instance, the
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pseudo-monotonicity operator theory in [12, 10, 20], or the difference and variation
methods in [21]).

We write the term B(x, t) min{|∇un|p(x), n} in (3.2) as Bn(x, t)|∇un|p(x), with
Bn(x, t) defined by

Bn(x, t) =

0, if |∇un(x, t)| = 0,

B(x, t)min{|∇un(x,t)|p(x),n}
|∇un(x,t)|p(x) , if |∇un(x, t)| 6= 0.

Then Bn ∈ L∞(QT ) satisfies 0 ≤ Bn(x, t) ≤ B(x, t) ≤ b. Hence, by Theorem 2.3,
we have the uniform bound

‖un(x, t)‖L∞(QT ) ≤ ‖u0‖L∞(Ω) + C, (3.3)

where C depends only on p−, N, T, r, b,Ω, ‖|
−→
F |(p−)′‖Lr(QT ) and it is independent

of n. Our goal is to show that a subsequence of the approximate solution sequence
{un} converges to a measurable function u, which coincides with a weak solution
of Problem (1.1).

Step 2: The weak convergence un ⇀ u in Lp
−

(0, T ;W 1,p(x)
0 (Ω)). Choosing

θ(un) as a testing function in (3.2), we have∫ T

0

〈∂un
∂t

, θ(un)〉dt+
∫∫

QT

|∇un|p(x)θ′(un) dx dt

=
∫∫

QT

Bmin{|∇un|p(x), n}θ(un) dx dt+
∫∫

QT

θ′(un)∇un ·
−→
F dx dt.

(3.4)

Lemma 2.2 yields
∫ T

0
〈∂un∂t , θ(un)〉dt =

∫
Ω

[Θ(un(T ))−Θ(u0)] dx. Using Young’s
inequality with ε in the last term of the right-hand side, (3.4) becomes∫

Ω

Θ(un(T ))dx+
∫∫

QT

|∇un|p(x)θ′(un) dx dt

≤
∫

Ω

Θ(u0)dx+
∫∫

QT

B|∇un|p(x)|θ(un)| dx dt

+ ε

∫∫
QT

|∇un|p(x)θ′(un) dx dt+
∫∫

QT

ε−
1

p(x)−1 |
−→
F |p

′(x)θ′(un) dx dt.

Taking ε = 1/2, we rewrite the above inequality as∫
Ω

Θ(un(T ))dx+
∫∫

QT

[
1
2
θ′(un)−B|θ(un)|

]
|∇un|p(x) dx dt

≤
∫

Ω

Θ(u0)dx+
(

1
2

)− 1
p−−1

∫∫
QT

|
−→
F |p

′(x)θ′(un) dx dt.

(3.5)

With the aid of (3.1) in Lemma 3.1 (with a = 1
2 , and 1

2θ
′(un)−B|θ(un)| ≥ 1

2θ
′(un)−

b|θ(un)| ≥ 1
4 ), we deduce that

1
4

∫∫
QT

|∇un|p(x) dx dt ≤
∫

Ω

Θ(u0)dx+
(

1
2

)− 1
p−−1

∫∫
QT

|
−→
F |p

′(x)θ′(un) dx dt.

(3.6)
Since un is uniformly bounded with respect to n and u0 ∈ L∞(Ω), it follows that∫∫

QT

|∇un|p(x) dx dt ≤ C
(
|
−→
F |Lp′(x)(QT ), ‖u0‖L∞(Ω), sup

n
‖un‖L∞(QT )

)
. (3.7)
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This implies that un is uniformly bounded in V . By the way, obviously, the following
inequality holds

|un|p
−

Lp− (0,T ;W
1,p(x)
0 (Ω))

=
∫ T

0

|∇un|p
−

Lp(x)(Ω)
dt

≤ max
{(∫∫

QT

|∇un|p(x) dx dt
) p−
p+
T

1− p
−

p+ ,

∫∫
QT

|∇un|p(x) dx dt
}
,

which implies

|un|Lp− (0,T ;W
1,p(x)
0 (Ω))

≤ C
(
|
−→
F |Lp′(x)(QT ), ‖u0‖L∞(Ω), sup

n
‖un‖L∞(QT ), p

−, p+, T
)
.

(3.8)
Therefore, un is bounded in the space L∞(QT ) ∩ Lp−(0, T ;W 1,p(x)

0 (Ω)). We can
extract a subsequence of un, still denoted by un, such that un ⇀ u, weakly in
Lp
−

(0, T ;W 1,p(x)
0 (Ω)). Simultaneously, un ⇀ u, weakly* in L∞(QT ).

Step 3: The strong convergence un → u in Lp
−

(0, T ;Lp(x)(Ω)). From (3.2),
we deduce that
∂un
∂t

= div
(
|∇un|p(x)−2∇un −

−→
F
)

+Bmin{|∇un|p(x), n} ∈ V ∗ + L1(QT ). (3.9)

For each v ∈ V , by the definition of the norm on V and p(x)-Hölder’s inequality,
we have

sup
‖v‖V ≤1

|〈div
(
|∇un|p(x)−2∇un −

−→
F
)
, v〉V ∗,V |

= sup
‖v‖V ≤1

∣∣ ∫∫
QT

(
−|∇un|p(x)−2∇un · ∇v +

−→
F · ∇v

)
dx dt

∣∣
≤ sup
‖v‖V ≤1

[
2||∇un|p(x)−2∇un|Lp′(x)(QT )|∇v|Lp(x)(QT ) + 2|

−→
F |Lp′(x)(QT )|∇v|Lp(x)(QT )

]
≤ 2 max

{(∫∫
QT

|∇un|p(x) dx dt
) 1

(p′)+
,
(∫∫

QT

|∇un|p(x) dx dt
) 1

(p′)−
}

+ 2|
−→
F |Lp′(x)(QT ).

It follows from (3.7) that∥∥div
(
|∇un|p(x)−2∇un −

−→
F
)∥∥
V ∗
≤ C, (3.10)

where C is independent of n. Thanks to the embedding relationship

L(p−)′(0, T ;W−1,p′(x)(Ω)) ↪→ V ∗

↪→ L(p+)′(0, T ;W−1,p′(x)(Ω)) = L(p′)−(0, T ;W−1,p′(x)(Ω)),
(3.11)

from (3.10), (3.7) and (3.9), we conclude that ∂un
∂t is bounded in the space

L(p′)−(0, T ;W−1,p′(x)(Ω)) + L1(QT ).
For a fixed s such that s > N

2 + 1, the following embedding relationships hold
1� s > N

2 , we have Hs
0(Ω) ↪→ L∞(Ω), and then L1(Ω) ↪→ H−s(Ω); 2� s − 1 > N

2 ,



14 Z. LI, B. YAN, W. GAO EJDE-2015/46

one has Hs
0(Ω) ↪→W 1,p(x)(Ω), consequently, W−1,p′(x)(Ω) ↪→ H−s(Ω). As a result,

we have

‖∂un
∂t
‖L1(0,T ;H−s(Ω)) ≤ C, (3.12)

where C is independent of n. Noticing that W 1,p(x)
0 (Ω)

compact
↪→ Lp(x)(Ω) ↪→ H−s(Ω)

and by (3.8), we employ Simon’s compactness theorem in [17] to obtain that un → u,
strongly in Lp

−
(0, T ;Lp(x)(Ω)).

Step 4: The convergence ∇un → ∇u a.e. in QT . From the strong convergence
obtained in Step 3, one may choose a subsequence of un, still denoted by un for
simplicity, such that un → u, a.e. in QT . We now use Egoroff’s theorem (recalling
µ(QT ) < +∞) to obtain, for fixed δ > 0, there exists a measurable closed subset
Eδ ⊂ QT such that

(1) µ(QT − Eδ) ≤ δ;
(2) un ⇒ u uniformly on Eδ. It follows that |un − um| < k, for fixed k > 0,

and sufficiently large m,n.

Let ζ be a cut-off function satisfying ζ ∈ C∞0 (QT ); ζ = 1 on Eδ; 0 ≤ ζ ≤ 1 on QT .
Introduce the following truncation function

Tk(s) =


s, if |s| < k,

k, if s ≥ k,
−k, if s ≤ −k.

Subtracting Equations (3.2) for different parameters n and m, we have

∂(un − um)
∂t

− div
(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
= B

(
min{|∇un|p(x), n} −min{|∇um|p(x),m}

)
, (x, t) ∈ QT ,

(un − um)(x, t) = 0, (x, t) ∈ ΓT ,

(un − um)(x, 0) = 0, x ∈ Ω.

(3.13)

Since Tk is Lipschitz continuous, one may take ζTk(un − um) as a test function in
(3.13); hence we have∫ T

0

〈∂(un − um)
∂t

, ζTk(un − um)〉dt

+
∫∫

QT

(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
·
(
∇un −∇um

)
ζT ′k(un − um) dx dt

+
∫∫

QT

(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
· ∇ζTk(un − um) dx dt

=
∫∫

QT

B
(

min{|∇un|p(x), n} −min
{
|∇um|p(x),m

})
ζTk(un − um) dx dt.

(3.14)
Since ζ(x, 0) = ζ(x, T ), by Lemma 2.2, we handle the first term on the left-hand
side of (3.14) as follows,∫ T

0

〈∂(un − um)
∂t

, ζTk(un − um)〉dt = −
∫

Ω

∫ T

0

ζt

∫ un−um

0

Tk(s)dsdtdx.
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Noticing that Tk is an odd function, |Tk(s)| ≤ k, we get∫∫
QT

(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
· (∇un −∇um) ζT ′k(un − um) dx dt

≤ k
∫∫

QT

|ζt||un − um| dx dt

+ k

∫∫
QT

||∇un|p(x)−2∇un − |∇um|p(x)−2∇um||∇ζ| dx dt

+ bk

∫∫
QT

|min{|∇un|p(x), n} −min{|∇um|p(x),m}|ζ dx dt ≤ kC(δ).

Noting that T ′k ≥ 0, T ′k(s) = 1 on |s| < k and that un converges uniformly on Eδ,
we obtain∫∫

Eδ

(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
· (∇un −∇um) dx dt

=
∫∫

Eδ

(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
· (∇un −∇um)T ′k(un − um) dx dt

≤
∫∫

QT

(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
· (∇un −∇um) ζT ′k(un − um) dx dt.

Hence, based on the above estimates, by (3.3), (3.7) and the arbitrariness of k, we
have

lim sup
n,m→+∞

∫∫
Eδ

(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
· (∇un −∇um) dx dt = 0.

(3.15)
From (3.15) and using the method in [19, 24] (or the method to be used in Step
5 below), we may obtain that

∫∫
Eδ
|∇un −∇um|p(x) dx dt → 0 (it is equivalent to

|∇un −∇um|Lp(x)(Eδ) → 0), which shows that {∇un}∞n=1 is a Cauchy sequence in
(Lp(x)(Eδ))N . Thus, we can extract a subsequence of un, still denoted by itself, such
that ∇un → α, strongly in (Lp

−
(Eδ))N . In step 3, we know that un → u, strongly

in Lp
−

(0, T ;Lp(x)(Ω)), it is easy to say un → u, strongly in Lp
−

(Eδ). It follows
from above analysis that α = ∇u, i.e. ∇un → ∇u a.e. in Eδ. The arbitrariness of
δ indicates that ∇un → ∇u a.e. in QT .

Step 5: The convergence
∫∫
QT
|∇un − ∇u|p(x) dx dt → 0. For the function θ

defined in Lemma 3.1, it follows that θ(un − um) ∈ L∞(QT ) ∩ V since un, um ∈
L∞(QT ) ∩ V . Therefore, θ(un − um) can be taken as a test function in (3.13) to
yield that∫ T

0

〈∂(un − um)
∂t

, θ(un − um)〉dt

+
∫∫

QT

(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
· (∇un −∇um) θ′(un − um) dx dt

=
∫∫

QT

B
(

min
{
|∇un|p(x), n

}
−min

{
|∇um|p(x),m

})
θ(un − um) dx dt.

(3.16)
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Use (3.1) in Lemma 3.1 to estimate the first term on the left-hand side of (3.16) to
obtain ∫ T

0

〈∂(un − um)
∂t

, θ(un − um)〉dt =
∫

Ω

Θ(un − um)(T )dx ≥ 0.

After a simple computation, the right-hand side of (3.16) can be estimated as
follows.∫∫

QT

B
(

min
{
|∇un|p(x), n

}
−min

{
|∇um|p(x),m

})
θ(un − um) dx dt

≤ b
∫∫

QT

(
|∇un|p(x) + |∇um|p(x)

)
|θ(un − um)| dx dt

= b

∫∫
QT

(
|∇un|p(x)−2∇un · ∇um + |∇um|p(x)−2∇um · ∇un

)
|θ(un − um)| dx dt

+ b

∫∫
QT

(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
· (∇un −∇um) |θ(un − um)| dx dt.

Consequently, (3.16) can be estimated as∫∫
QT

(
|∇un|p(x)−2∇un − |∇um|p(x)−2∇um

)
· (∇un −∇um) [θ′(un − um)− b|θ(un − um)|] dx dt

≤ b
∫∫

QT

(
|∇un|p(x)−2∇un · ∇um + |∇um|p(x)−2∇um · ∇un

)
|θ(un − um)| dx dt.

(3.17)
With the help of (3.1) in Lemma 3.1 (with a = 1), since ∇un → ∇u a.e. in QT
(Step 4), we may utilize Fatou’s Lemma in (3.17) as m→ +∞ to obtain that

E(n) :=
∫∫

QT

(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· (∇un −∇u) dx dt

≤ 2b
∫∫

QT

(
|∇un|p(x)−2∇un · ∇u+ |∇u|p(x)−2∇u · ∇un

)
|θ(un − u)| dx dt

≤ 4b||∇un|p(x)−2∇un|Lp′(x)(QT )|θ(un − u)∇u|Lp(x)(QT )

+ 4b||∇u|p(x)−2∇uθ(un − u)|Lp′(x)(QT )|∇un|Lp(x)(QT )

≤ C max
{(∫∫

QT

|∇un|p(x) dx dt
) 1

(p′)±
}

×max
{(∫∫

QT

|θ(un − u)|p(x)|∇u|p(x) dx dt
) 1
p±
}

+ C max
{(∫∫

QT

|θ(un − u)|p
′(x)|∇u|p(x) dx dt

) 1
(p′)±

}
×max

{(∫∫
QT

|∇un|p(x) dx dt
) 1
p±
}

≤ C max
{(∫∫

QT

|θ(un − u)|p(x)|∇u|p(x) dx dt
) 1
p±
}
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+ C max
{(∫∫

QT

|θ(un − u)|p
′(x)|∇u|p(x) dx dt

) 1
(p′)±

}
.

In view of (3.7) and (3.3), θ(un−u) is uniformly bounded. The Lebesgue dominated
convergence theorem yields

E(n) :=
∫∫

QT

(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
·(∇un −∇u) dx dt→ 0. (3.18)

We now estimate∫∫
QT

|∇un −∇u|p(x) dx dt

=
∫ T

0

∫
{x∈Ω;p(x)≥2}

|∇un −∇u|p(x) dx dt

+
∫ T

0

∫
{x∈Ω;1<p(x)<2}

|∇un −∇u|p(x) dx dt = I(1) + I(2).

(3.19)

Applying the following basic inequality, for any y, z ∈ RN ,(
|y|p(x)−2y − |z|p(x)−2z

)
· (y − z) ≥

{
22−p+ |y − z|p(x), if p(x) ≥ 2,

(p− − 1) |y−z|2
(|y|+|z|)2−p(x) , if 1 < p(x) < 2.

we compute the two parts in (3.19):

I(1) ≤ 1
22−p+

∫ T

0

∫
{x∈Ω;p(x)≥2}

(
|∇un|p(x)−2∇un

− |∇u|p(x)−2∇u
)
· (∇un −∇u) dx dt

≤ 2p
+−2E(n)→ 0.

(3.20)

Using p(x)-Hölder’s inequality, for I(2), by (3.7) and (3.18), we have

I(2) =
∫ T

0

∫
{x∈Ω;1<p(x)<2}

|∇un −∇u|p(x)

(|∇un|+ |∇u|)
p(x)

2 (2−p(x))

(
|∇un|

+ |∇u|
) p(x)

2 (2−p(x))

dx dt

≤ 2
∣∣∣ |∇un −∇u|p(x)

(|∇un|+ |∇u|)
p(x)

2 (2−p(x))

∣∣∣
L

2
p(x) (QT )

∣∣∣(|∇un|
+ |∇u|

) p(x)
2 (2−p(x))∣∣∣

L
2

2−p(x) (QT )

≤ 2 max
{(∫∫

QT

|∇un −∇u|2

(|∇un|+ |∇u|)2−p(x)
dx dt

) p±
2
}

×max
{(∫∫

QT

(|∇un|+ |∇u|)p(x)
dx dt

) 2−p±
2
}

≤ C max
{( 1
p− − 1

) p±
2 (E(n))

p±
2

}
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×max
{(∫∫

QT

(
|∇un|p(x) + |∇u|p(x)

)
dx dt

) 2−p±
2
}
→ 0. (3.21)

Combining (3.19), (3.20) and (3.21), we arrive at∫∫
QT

|∇un −∇u|p(x) dx dt→ 0, (3.22)

which implies
|∇un −∇u|Lp(x)(QT ) → 0; (3.23)

that is, un → u strongly in the solution space V (simultaneously, un → u, strongly
in Lp

−
(0, T ;W 1,p(x)

0 (Ω))).
Step 6: Passing to the limit. It follows from (3.23), the property of Nemytskii
operator ([10, 20]) and generalized Lebesgue dominated convergence theorem that

|∇un|p(x)−2∇un → |∇u|p(x)−2∇u, strongly in
(
Lp
′(x)(QT )

)N
,

min
{
|∇un|p(x), n

}
→ |∇u|p(x), strongly inL1(QT ).

For every v ∈ V ,∣∣〈−div
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
, v〉V ∗,V

∣∣
=
∣∣ ∫∫

QT

(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· ∇v dx dt

∣∣
≤ 2
∣∣|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

∣∣
Lp′(x)(QT )

|∇v|Lp(x)(QT ).

It follows that

‖ − div
(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
‖V ∗

≤ 2||∇un|p(x)−2∇un − |∇u|p(x)−2∇u|Lp′(x)(QT ) → 0.

Therefore, for the principal term in the approximate equation (3.2), we have

− div(|∇un|p(x)−2∇un)→ −div(|∇u|p(x)−2∇u), strongly in V ∗.

As a consequence, one has unt → ut, strongly in V ∗ + L1(QT ).
On the other hand, as stated in Step 3, V ∗ + L1(QT ) ↪→ L1(0, T ;H−s(Ω))

for s sufficiently large. Therefore, from (3.8) and (3.12), we deduce (accord-
ing to W 1,1(0, T ;H−s(Ω)) ↪→ C([0, T ];H−s(Ω)) in [8]) that un → u, strongly in
C([0, T ];H−s(Ω)), from which un(x, 0) = u0(x) makes a perfect sense.

Finally, since un(x, 0) → u(x, 0), strongly in H−s(Ω), it follows that u(x, 0) =
u0(x). This proves that u ∈ V ∩ L∞(QT ) is a weak solution to Problem (1.1). �

4. Appendix

Proof of Lemma 2.1. Note that

ϕ′(s) =

{
λeλs, s ≥ 0,
λe−λs, s ≤ 0.

(1) Obviously, |ϕ(s)| = eλ|s| − 1 ≥ λ|s|. Remember that λ ≥ 1
2 + b

a . If s ≥ 0, then

aλeλs − b(eλs − 1) ≥ (aλ− b)eλs ≥ a

2
eλs.
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If s ≤ 0, then

aλe−λs − b(e−λs − 1) ≥ (aλ− b)e−λs ≥ a

2
e−λs.

(2) The inequality λeλs ≤ λM [eλ
s

p− − 1]p
−

is equivalent to [
exp(λ s

p−
)

exp(λ s

p−
−1) ]p

− ≤M ,

which, for s ≥ d, is guaranteed by

lim
s→+∞

exp(λ s
p− )

exp(λ s
p− − 1)

= 1.

Likewise, the inequality eλs−1 ≤M
[
e
λ s

p− − 1
]p−

for s ≥ d is ensured by the limit

lim
s→+∞

exp(λs)
exp(λ s

p− − 1)p−
= 1.

(3) We prove the case 1 < p− < 2 only; the proof of the case p− ≥ 2 is entirely
similar. The desired inequalities follow easily from the following limits:

lim
s→+∞

1
λ (eλs − 1)− s
(eλ

s

p− − 1)p−
=

1
λ

; lim
s→+∞

1
λ (eλs − 1)− s
(eλ

s

p− − 1)2
= 2λ.

�

Proof of Lemma 2.2. Since π ∈ C1 with π(0) = 0 and π, π′ are bounded, it follows
that π(u) ∈ V ∩ L∞(QT ). The left-hand side of (2.6) exists. By Lemma 3.2 in [3]
or [15], it follows from u ∈ V with ut ∈ V ∗+L1(QT ) that u ∈ C([0, T ];L1(Ω)) and
hence Π(u) ∈ C([0, T ];L1(Ω)). So, the right-hand side of (2.6) does exist. For the
decomposition of the time derivative ut = α(1) + α(2) ∈ V ∗ + L1(QT ), noting the
embedding relationship

Lp
+

(0, T ;W 1,p(x)
0 (Ω)) ↪→ V ↪→ Lp

−
(0, T ;W 1,p(x)

0 (Ω)),

by standard mollification method in [18], there exist un ∈ C∞([0, T ];W 1,p(x)
0 (Ω)),

unt = α
(1)
n + α

(2)
n , α(1)

n ∈ C∞([0, T ];W−1,p′(x)(Ω)), α(2)
n ∈ C∞([0, T ];L1(Ω)) such

that un → u, strongly in V ; α(1)
n → α(1), strongly in V ∗; α(2)

n → α(2), strongly in
L1(0, T ;L1(Ω)). Because Π(un) ∈ C1([0, T ];L1(Ω)) and π(un) ∈ V ∩ L∞(QT ), we
have

Π(un(T ))−Π(un(0)) =
∫ T

0

[Π(un)]tdt

= 〈α(1)
n , π(un)〉V ∗,V +

∫∫
QT

α(2)
n π(un) dx dt.

(4.1)

Since un → u, strongly in C([0, T ];L1(Ω)), we have un → u, a.e. in QT . (If
necessary, by a further subsequence to be denoted by the same un.) Furthermore,
the sequence π(un)→ π(u), a.e. in QT and remains bounded; hence π(un)→ π(u),
weakly* in L∞(QT ). Combing with α

(2)
n → α(2), strongly in L1(QT ), one has∫∫

QT
α

(2)
n π(un) dx dt →

∫∫
QT

α(2)π(u) dx dt. Moreover, from un → u, strongly in
V and the properties of π, one has π(un) → π(u), strongly in V . Together with
α

(1)
n → α(1), strongly in V ∗, it yields 〈α(1)

n , π(un)〉V ∗,V → 〈α(1), π(u)〉V ∗,V . Finally,
Π(un) → Π(u) in C([0, T ];L1(Ω)) ↪→ L1(QT ). Meanwhile Π(un(T )) → Π(u(T ))
and Π(un(0)) → Π(u(0)), strongly in L1(QT ). Consequently,

∫
Ω

Π(un(T ))dx −
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Ω

Π(un(0))dx→
∫

Ω
Π(u(T ))dx−

∫
Ω

Π(u(0))dx. Hence (2.6) follows from (4.1) by
passing to the limit as n→∞. �
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