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GUIDING POTENTIAL METHOD FOR DIFFERENTIAL

INCLUSIONS WITH NONLOCAL CONDITIONS

RADOS�AW PIETKUN

Abstract. This article shows the existence of solutions to some nonlocal
initial-value problems for di�erential inclusions. The guiding potential method
is used and the topological degree theory for admissible multivalued vector
�elds is applied. Some conclusions concerning compactness of the solution set
are drawn.

1. Introduction

The aim of this article is to formulate theorems about the existence of absolutely
continuous solutions of the nonlocal Cauchy problem

ẋ(t) ∈ F (t, x(t)), a.e. t ∈ I = [0, T ],

x(0) = g(x),
(1.1)

where F : I × RN ( RN is a multivalued map and g : C(I,RN ) → RN . Proofs of
these theorems rely on the use of C1-guiding potential. This method, whose base
was laid by Krasnosel'skii and Perov, generically employed to di�erential equations
and subsequently expanded to inclusions, has demonstrated its e�ectiveness to the
study of periodic problems (see, e.g. [2, 6, 7] and especially [8], which contains a
lot of references to subject literature). However, periodic condition constitutes just
a single case of a much wider class of so called nonlocal initial conditions. The
consideration for nonlocal initial condition, given by some g, is stimulated by the
observation that this type of conditions is more realistic than usual ones in treating
physical problems.

Let us mention here three important cases covered by our results:

• g(x) = −x(T ) (anti-periodicity condition);
• g(x) =

∑n
i=1 αix(ti), where

∑n
i=1 |αi| 6 1,

∑n
i=1 αi 6= 1 and 0 < t1 < t2 <

. . . < tn 6 T (multi-point discrete mean condition);

• g(x) = 1
T

∫ T
0
h(x(t)) dt, with h : RN → RN such that |h(x)| 6 |x| (mean

value condition).

In each of the above cases we are dealing with the situation when the function g
possesses a sublinear growth, and strictly speaking satis�es the condition: |g(x)| 6
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‖x‖ for x ∈ C(I,RN ). This means in particular that the existence of solutions to
(1.1) for such g's can not be resolved by means of the �xed point theorem (see
Theorem 3.1 below). Therefore arises a need for a di�erent approach to boundary
problems of this type. Such an approach is presented in Theorems 3.4, 3.7 and 3.9,
which use the existence of a smooth guiding potential V for the multivalued right-
hand side of the di�erential inclusion ẋ(t) ∈ F (t, x(t)). Next, we try to abstract
properties of the map appearing in the nonlocal condition by formulating Theorem
3.11, which generalizes the previous considerations.

In Theorem 3.16 we give an example of the property of g, which also guarantees
the existence of solutions to (1.1), but that excludes same time sublinear growth
(3.1) with a constant c 6 1.

We end this paper by describing the topological structure of the set of solutions
to (1.1) in Theorem 3.18, which gives conditions for the compactness of this set.

2. Preliminaries

Let X and Z be a Banach space. An open ball with center x ∈ X (resp. zero)
and radius r > 0 is denoted by B(x, r) (B(r)). Symbol B(r) stands for a closed
ball. If A ⊂ X, then A denotes the closure of A, ∂A the boundary of A and coA
the convex hull of A. The inner product in RN represents 〈·, ·〉.

For I ⊂ R, (C(I,RN ), ‖ · ‖) is the Banach space of continuous maps I → RN
equipped with the maximum norm and AC(I,RN ) is the subspace of absolutely con-
tinuous functions. By (L1(I,RN ), ‖ · ‖1) we mean the Banach space of all Lebesgue
integrable maps.

A multivalued map F : X ( Z assigns to any x ∈ X a nonempty subset F (x) ⊂
Z. The set of all �xed points of the multivalued (or univalent) map F is denoted by
Fix(F ). Recall that a map F : X ( Z with compact values is upper semicontinuous
i� given a sequence (xn, yn) in the graph of F with xn → x in X, there is a
subsequence ykn → y ∈ F (x). If the image F (X) is relatively compact in Z, then
we say that F is a compact multivalued map. A multimap F : I ( RN is called
measurable, if {t ∈ I : F (t) ⊂ A} belongs to the Lebesgue σ-�eld of I for every
closed A ⊂ RN .

A set-valued map F : X ( Z is admissible (compare [5, Def.40.1]) if there is a
metric space Y and two continuous functions p : X → Y , q : Y → Z from which p
is a Vietoris map such that F (x) = q(p−1(x)) for every x ∈ X. It turns out that
every acyclic multivalued map, i.e. an usc multimap with compact acyclic values, is
admissible. In particular, every usc multivalued map with compact convex values
is admissible.

Let M be the set of triples (Id − F,Ω, y) such that Ω ⊂ X is open bounded,
Id is the identity, F : Ω ( X is a compact usc multimap with closed convex
values, and y 6∈ (Id − F )(∂Ω). Then it is possible to de�ne, using approximation
methods for multivalued maps, a unique topological degree function deg : M→ Z
(see [3, 5, 8] for details). This degree inherits directly all the basic properties of the
Leray-Schauder degree, among others existence, localization, normality, additivity,
homotopy invariance and contractivity.

Let L : domL ⊂ X → Z be a linear Fredholm operator of zero index such that
ImL ⊂ Z is a closed subspace. Consider continuous linear idempotent projections
P : X → X and Q : Z → Z such that ImP = kerL, ImL = kerQ. By the
symbol LP we denote the restriction of the operator L on domL ∩ kerP and by
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KP,Q : Z → domL ∩ kerP the operator given by the relation KP,Q(z) = L−1
P (Id−

Q)(z). Since dim kerL = dim cokerL <∞ we may choose a linear homeomorphism
Φ: ImQ→ ImP .

The proofs of main results of this paper will be based in particular on the fol-
lowing coincidence point theorem. In the wake of [4] we should specify it as the
Continuation Theorem.

Theorem 2.1 ([3, Lemma 13.1]). Let X and Z be real Banach spaces, L : domL ⊂
X → Z be Fredholm operator of index zero and with closed graph, Ω ⊂ X be open
bounded and N : Ω( Z be such that QN and KP,QN are compact usc multimaps
with compact convex values. Assume also that

(a) Lx 6∈ λN(x) for all λ ∈ (0, 1) and x ∈ domL ∩ ∂Ω,
(b) 0 6∈ QN(x) on kerL ∩ ∂Ω and deg(ΦQN, kerL ∩ Ω, 0) 6= 0.

Then deg(Id − P − (ΦQ + KP,Q)N,Ω, 0) 6= 0. In particular, Lx ∈ N(x) has a
solution in Ω.

We are able to place considered boundary value problem (1.1) in the context of
Theorem 2.1 and the above introduced general framework. Let X := C(I,RN ),
Z := L1(I,RN ) × RN , domL := AC(I,RN ); L : domL ⊂ X → Z be such
that Lx := (ẋ, 0). Then kerL = i(RN ), where i : RN ↪→ C(I,RN ) is de�ned by
i(x0)(t) = x0, ImL = L1(I,RN )×{0} and cokerL ≈ RN , i.e. L is a Fredholm map-
ping of index zero. Consider continuous linear operators P : X → X and Q : Z → Z
such that P (x)(t) = x(0) and Q((y, v)) = (0, v). It is clear that (P,Q) is an exact
pair of idempotent projections with respect to L. De�ne operator NF : X → Z by

NF (x) :=
{
f ∈ L1(I,RN ) : f(t) ∈ F (t, x(t)) for a.a. t ∈ I

}
×
{
γ(x)

}
,

where γ = ev0−g (evt : C(I,RN ) → RN stands for the evaluation at point t ∈ I).
It is clear that the nonlocal Cauchy problem (1.1) is equivalent to the operator
inclusion Lx ∈ NF (x).

For a potential V ∈ C1(RN ,R) we de�ne the induced vector �eldWV : RN → RN
by the formula

WV (x) =

{
∇V (x), if |∇V (x)| 6 1,
∇V (x)
|∇V (x)| , if |∇V (x)| > 1.

Then WV is continuous and bounded. Let NWV
: X → Z be such that

NWV
(x) = (WV (x(·)), γ(x)).

In this particular case we have KP,QNWV
(x)(t) =

∫ t
0
WV (x(s)) ds. Therefore NWV

is L-compact (see [4] for more details).
Throughout the rest of this paper Φ: ImQ → kerL will denote a �xed linear

homeomorphism, given by Φ((0, x0)) = i(x0).
Regarding the guiding potential evoked in the title, we are obliged to introduce

some auxiliary concepts. We say that potential V : RN → R is monotone, if

[|x| 6 |y| ⇒ V (x) 6 V (y)].

Observe that, if potential V is monotone, then V satis�es [|x| = |y| ⇒ V (x) =
V (y)]. In particular, V is also even. The function V : RN → R is coercive, if
lim|x|→+∞ V (x) = +∞.

Example 2.2. (i) The classical Krasnosel'skii-Perov potential V (x) = 1
2 |x|

2

is monotone coercive and continuously di�erentiable.
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(ii) Suppose f ∈ C1(R,R) is nondecreasing and there is R > 0 such that
f(x) > x for x > R. Then the mapping V (x) = f

(
1
2 |x|

2
)
is a monotone

coercive potential of C1-class.

The method of guiding potential uses also another generic notion:

De�nition 2.3. A continuously di�erentiable function V : RN → R is called a
nonsingular potential, if

∃R > 0 ∀|x| > R, ∇V (x) 6= 0. (2.1)

The symbol 〈A,B〉− (or 〈A,B〉+) we use below stands for the lower inner product
(upper inner product) of nonempty compact subsets of Rn, i.e.

〈A,B〉− = inf{〈a, b〉 : a ∈ A, b ∈ B}, 〈A,B〉+ = sup{〈a, b〉 : a ∈ A, b ∈ B}.

Let us specify the concept of a guiding potential for the multimap F : I×RN (
RN (compare [2, 6]):

De�nition 2.4. Suppose that V ∈ C1(RN ,R) is nonsingular. We will call the
mapping V

a weakly positively guiding potential for multimap F , if

∃R > 0 ∀|x| > R ∀t ∈ I ∃ y ∈ F (t, x), 〈∇V (x), y〉 > 0, (2.2)

a weakly negatively guiding potential for multimap F , if

∃R > 0 ∀|x| > R ∀t ∈ I ∃ y ∈ F (t, x), 〈∇V (x), y〉 6 0, (2.3)

a strictly negatively guiding potential for multimap F , if

∃R > 0 ∀|x| > R ∀t ∈ I 〈∇V (x), F (t, x)〉+ < 0. (2.4)

In what follows we shall permanently refer to a certain initial set of assumptions
regarding the multimap F , which concretizes the following de�nition.

De�nition 2.5. We will say that a nonempty convex compact valued map F : I ×
RN ( RN is a Carathéodory map, if the following conditions are satis�ed:

(F1) the multimap t 7→ F (t, x) is measurable for every �xed x ∈ RN ,
(F2) the multimap x 7→ F (t, x) is upper semicontinuous for t ∈ I a.e.
(F3) sup{|y| : y ∈ F (t, x)} 6 µ(t)(1 + |x|) for every (t, x) ∈ I × RN , where

µ ∈ L1(I,R).

3. Main results

The �rst assertion illustrates why referring to guiding potential method is super-
�uous, if the function g : C(I,RN ) → RN satis�es su�ciently strong assumption
regarding sublinear growth.

Theorem 3.1. Let F : I ×RN ( RN be a Carathéodory map. Let g : C(I,RN )→
RN be a continuous mapping with contractive sublinear growth, i.e.

∃ c ∈ (0, 1) ∃ d > 0 ∀x ∈ C(I,RN ) |g(x)| 6 c‖x‖+ d. (3.1)

Then the nonlocal initial value problem (1.1) possesses at least one solution.
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Proof. De�ne so-called solution set map SF : RN ( C(I,RN ), associated with the
Cauchy problem

ẋ(t) ∈ F (t, x(t)), a.e. t ∈ I,
x(0) = x0,

(3.2)

by the formula

SF (x0) :=
{
x ∈ C(I,RN ) : x is a solution of (3.2)

}
.

As it is well known the multimap SF is admissible (in terms of [5, Def. 40.1]). In
fact, it is an usc multimap with compactRδ values. Now we are able to introduce the
Poincaré-like operator P : RN ( RN related to problem (1.1), given by P = g ◦SF .

It is clear that SF (x0) ⊂ B(|x0| + ‖µ‖1) for every x0 ∈ RN . Thus SF (B(r)) ⊂
B(r + ‖µ‖1). On the other hand we have g(B(M)) ⊂ B(cM + d), due to (3.1).
Therefore P (B(r)) ⊂ B(c(r + ‖µ‖1) + d). By the fact that c < 1, we can take any
r such that

r >
c‖µ‖1 + d

1− c
> 0

to be sure that P (B(r)) ⊂ B(r). Of course, the multivalued operator P : B(r) (
B(r) is compact admissible. As such, this operator possesses a �xed point x0 ∈ B(r)
in view of the generalized Schauder �xed point theorem [6, Th.41.13]. This point
corresponds to the solution x of the nonlocal Cauchy problem (1.1) in such a way
that x(0) = x0 = g(x). �

Corollary 3.2. Suppose all the assumptions of Theorem 3.1 are satis�ed. Then the
set SF (g) of solutions to (1.1) is nonempty and compact as a subset of C(I,RN ).

Proof. Retaining the notation of the proof of Theorem 3.1, we claim that the �xed
point set Fix(P ) is compact. Indeed, take x0 ∈ Fix(P ) and observe that |x0| =
|g(x)| 6 c‖x‖ + d for some x ∈ SF (x0). Thus, |x0| 6 c(|x0| + ‖µ‖1) + d and as a
result

|x0| 6
c‖µ‖1 + d

1− c
.

Fix(P ) is obviously closed, hence it must be compact.
De�ne a multivalued map Ψ: Fix(P )( C(I,RN ), by the formula

Ψ(x0) = {x ∈ SF (x0) : g(x) = x0}.

It is easy to see that Ψ is a compact valued usc multimap and that SF (g) coincides
with Ψ(Fix(P )). Therefore, the solution set SF (g) is compact. �

Remark 3.3. The following exemplary classes of mappings have sublinear growth:
compact maps, linear continuous maps, Lipschitzian maps, uniformly continuous
maps. A su�cient condition for a map to have a contractive sublinear growth
is, for instance: compactness, to be linear continuous with norm less then one,
contractivity.

The next theorem addresses the issue of the existence of solutions to the problem
(1.1), when mapping g = − evT .

Theorem 3.4. If F : I × RN ( RN is a Carathéodory map and there exists an
even coercive weakly positively guiding potential V : RN → R for the map F , then
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the antiperiodic problem

ẋ(t) ∈ F (t, x(t)), a.e. t ∈ I,
x(0) = −x(T )

(3.3)

possesses at least one solution.

Proof. Choose R > 0 so that the conditions (2.1) and (2.2) are satis�ed. Fix

r > max{V (x) : |x| 6 R}

and put G := V −1((−∞, r))). Then Ω := C(I,G) is open in X. Since V is coercive,
Ω is also bounded.

Suppose that x ∈ Ω = C(I,G) is a solution to the antiperiodic problem

ẋ(t) = λWV (x(t)), t ∈ I,
x(0) = −x(T )

for some λ ∈ (0, 1). If there is t0 ∈ (0, T ) such that x(t0) ∈ ∂G, then t0 is a
critical point of V ◦ x in view of Fermat lemma, i.e. (V ◦ x)′(t0) = 0. On the other
hand however (V ◦x)′(t0) = 〈∇V (x(t0)), λWV (x(t0))〉 > 0, since |x(t0)| > R. Thus
x(t0) ∈ ∂G is contradicted. Assuming that x(0) ∈ ∂G we see that

1
h

(V (x(h))− V (x(0))) 6 0

for every h > 0. It means that the right-hand derivative (V ◦ x)′(0) 6 0. However,
at the same time 〈∇V (x(0)), λWV (x(0))〉 > 0. Once again a contradiction. This
implies that x(0) 6∈ ∂G. Because V is even the boundary ∂G of the set G is symmet-
ric with respect to the origin. Thus it follows also that x(T ) 6∈ ∂G. Summing up,
we see that x(I)∩∂G = ∅, i.e. x 6∈ ∂Ω. In fact, we have shown that Lx 6= λNWV

(x)
for every x ∈ domL ∩ ∂Ω and λ ∈ (0, 1).

It is easy to see that condition 0 6∈ QNWV
(kerL∩ ∂Ω) is equivalent to x0 6= −x0

for every x0 ∈ ∂G. The latter is obviously true, since ∂G ⊂ RN \B(R) ⊂ RN \ {0}.
Note that i : i−1(Ω)→ kerL∩Ω is a di�eomorphism of C1-class. Using standard

property of the Brouwer degree we obtain

deg(ΦQNWV
, kerL ∩ Ω, 0) = deg(i−1ΦQNWV

i, i−1(Ω), 0) = deg(γ ◦ i, G, 0)

= deg((ev0 + evT )i, G, 0).

Observe that (ev0 + evT )i(x) = 2x and de�ne U ∈ C1(RN ,R), by U(x) = |x|2.
Since U is a coercive potential we know, by [7, Th.12.9.], that Ind(U) = 1. Therefore

deg(ΦQNWV
, kerL ∩ Ω, 0) = deg(∇U,G, 0) = Ind(U) 6= 0.

We are in position to apply the Continuation Theorem (Theorem 2.1) to deduce
that

deg(Id− P − (ΦQ+KP,Q)NWV
,Ω, 0) = deg(Id− P − ΦQNWV

,Ω, 0)

= deg(−ΦQNWV
, kerL ∩ Ω, 0) 6= 0.

(3.4)

Of course, the integer deg(Id− P − (ΦQ+KP,Q)NWV
,Ω, 0) is nothing more than

the coincidence degree deg((L,NWV
),Ω).

Following proof of [6, Theorem 4.4] we bring in a useful auxiliary multivalued
map FV : I × RN ( RN de�ned by:

FV (t, x) = F (t, x) ∩ {y ∈ RN : 〈α(x)∇V (x), y〉 > 0},
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where α is the Urysohn function

α(x) =

{
0, |x| 6 R,
1, |x| > R.

So the de�ned map FV has the property that FV (t, x) ⊂ F (t, x), while the function
V is a guiding potential for FV in the strict sense, i.e.

〈∇V (x), FV (t, x)〉− > 0 (3.5)

for every (t, x) ∈ I × RN , with |x| > R. It is routine to check that FV is a
Carathéodory map.

Now we de�ne another map G : I × RN × [0, 1]( RN by

G(t, x, λ) := λWV (x) + (1− λ)FV (t, x).

It is easy to see thatG is also a Carathéodory map. In particular, the mapG(t, ·, ·) is
upper semicontinuous for a.a t ∈ I and sup{|y| : y ∈ G(t, x, λ)} 6 max{µ(t), 1}(1 +
|x|).

De�ne N : Ω× [0, 1]( Z by the formula

N(x, λ) := {f ∈ L1(I,RN ) : f(t) ∈ G(t, x(t), λ) for a.a. t ∈ I} × {γ(x)},
where γ = ev0 + evT . Now we may introduce a homotopy H : Ω × [0, 1] ( X in
the following way:

H(x, λ) := Px+ (ΦQ+KP,Q)N(x, λ). (3.6)

Observe that QN(x, λ) = (0, γ(x)) and KP,QN(x, λ)(t) =
∫ t
0
G(s, x(s), λ) ds. It is

clear that QN is completely continuous. Standard and plain arguments justify that
KP,QN is an usc multimap with compact convex values and the range KP,QN(Ω×
[0, 1]) is relatively compact. Bearing in mind that P is linear continuous and has a
�nite dimensional range it is clear that P (Ω) is also relatively compact. All these
observations allow to conclude that the homotopy H is a compact usc multimap
with convex compact values.

We claim that x 6∈ H(x, λ) on ∂Ω× [0, 1]. Let x ∈ Ω = C(I,G) be a solution to
the problem

ẋ(t) ∈ G(t, x(t), λ), a.e. t ∈ I,
x(0) = −x(T )

for some λ ∈ (0, 1].
Suppose there is t0 ∈ [0, T ) such that x(t0) ∈ ∂G. This means that |x(t0)| > R

and as a result there is δ ∈ (0, T − t0] such that |x(t)| > R for t ∈ [t0, t0 + δ]. It
implies that

〈∇V (x(t)), ẋ(t)〉 > 〈∇V (x(t)), λWV (x(t)) + (1− λ)FV (t, x(t))〉−

> λ〈∇V (x(t)),WV (x(t))〉+ (1− λ)〈∇V (x(t)), FV (t, x(t))〉−

> λ〈∇V (x(t)),WV (x(t))〉 (by (3.5))

> 0 (by (2.1))

(3.7)

for almost all t ∈ [t0, t0 + δ]. Therefore we obtain:

V (x(t0 + δ))− V (x(t0)) =
∫ t0+δ

t0

〈∇V (x(t)), ẋ(t)〉 dt > 0
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and hence V (x(t0)) < V (x(t0+δ)) 6 r. We arrive at contradiction with x(t0) ∈ ∂G.
Once more we use the fact that V is even to infer that x(T ) 6∈ ∂G. Summing up,
x 6∈ ∂Ω. In fact, the above reasoning proves that Lx 6∈ N(x, λ) for all x ∈ domL∩∂Ω
and λ ∈ (0, 1]. Furthermore, suppose that Lx 6∈ N(x, 0) for every x ∈ ∂Ω (otherwise
(3.3) has a solution and there is nothing to prove). Taking into account that
Lx ∈ N(x, λ) ⇔ x ∈ Px + (ΦQ + KP,Q)N(x, λ) we conclude that x 6∈ H(x, λ) on
∂Ω× [0, 1] is veri�ed.

Relying on the homotopy invariance of the topological degree for the class M
(or if the Reader considers it more appriopriate, of coincidence degree theory) we
obtain the equality

deg(Id− P − (ΦQ+KP,Q)N(·, 0),Ω, 0)

= deg(Id−H(·, 0),Ω, 0) = deg(Id−H(·, 1),Ω, 0)

= deg(Id− P − (ΦQ+KP,Q)NWV
,Ω, 0).

In view of (3.4) we see that deg(Id−P−(ΦQ+KP,Q)N(·, 0),Ω, 0) 6= 0. This means
that there is a coincidence point x ∈ Ω∩domL of the inclusion Lx ∈ N(x, 0). This
point constitutes a solution to (3.3). �

Corollary 3.5. Assume that F : I × RN ( RN is a Carathéodory map and there
exists an even coercive weakly negatively guiding potential V : RN → R for the map
F . Then the antiperiodic problem (3.3) has at least one solution.

Proof. De�ne a map W : RN → R, by W (x) = −V (x). Then W is an even coercive
weakly positively guiding potential for the map F . Thus, the thesis of Theorem 3.4
applies. �

Remark 3.6. Let us notice that the coercivity condition in Theorem 3.4 could not
be dropped. In fact,

V (x) −→
|x|→+∞

+∞⇐⇒ ∀r > 0 V −1((−∞, r)) is bounded.

The following theorem refers to the case when the function g takes the form of
a linear combination of evaluations at �xed points of division of segment I. Note
that the anti-periodicity condition is a special case of the multi-point discrete mean
condition.

Theorem 3.7. Let 0 < t1 < t2 < . . . < tn 6 T be arbitrary, but �xed,
∑n
i=1 |αi| 6 1

and
∑n
i=1 αi 6= 1. If F : I × RN ( RN is a Carathéodory map and there exists

a monotone coercive weakly negatively guiding potential V : RN → R for the map
F , then the following nonlocal initial value problem with multi-point discrete mean
condition

ẋ(t) ∈ F (t, x(t)), a.e. t ∈ I,

x(0) =
n∑
i=1

αix(ti)
(3.8)

possesses at least one solution.

Proof. We keep the notation introduced in the proof of Theorem 3.4. Let x ∈ Ω be
such that

ẋ(t) = −λWV (x(t)), t ∈ I,
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x(0) =
n∑
i=1

αix(ti),

for some λ ∈ (0, 1). Taking into account that 〈∇V (x(t)),−λWV (x(t))〉 < 0 for
all t ∈ I, with |x(t)| > R, we infer in a strictly analogous manner to the proof of
Theorem 3.4 that x(t) 6∈ ∂G for t ∈ (0, T ). If x(T ) ∈ ∂G, then the left-hand deriva-
tive (V ◦x)′(T ) > 0, which is in contradiction with 〈∇V (x(T )),−λWV (x(T ))〉 < 0.
Notice that

|x(0)| =
∣∣ n∑
i=1

αix(ti)
∣∣ 6 n∑

i=1

|αi‖x(ti)| 6 max
16i6n

|x(ti)| = |x(ti0)|,

where ti0 ∈ (0, T ]. Keeping in mind that V is nondecreasing we obtain V (x(0)) 6
V (x(ti0)) < r. Thus x(0) 6∈ ∂G and x 6∈ ∂Ω. These considerations show that
Lx 6= λN(−WV )(x) for every x ∈ domL ∩ ∂Ω and λ ∈ (0, 1).

Clearly, 0 6∈ QN(−WV )(kerL∩∂Ω) is equivalent to γ(x) 6= 0 for x ∈ kerL∩∂Ω. In
the current case γ = ev0−

∑n
i=1 αi evti . Therefore, we demand that ev0(i(x0)) 6=∑n

i=1 αi evti(i(x0)), i.e. x0 6=
∑n
i=1 αix0 for every x0 ∈ ∂G. The latter is true,

since
∑n
i=1 αi 6= 1.

Put W (x) = (1 −
∑n
i=1 αi)

1
2 |x|

2. Applying again Continuation Theorem we
obtain

deg(Id− P − (ΦQ+KP,Q)N(−WV ),Ω, 0)

= deg(Id− P − ΦQN(−WV ),Ω, 0)

= deg(−ΦQN(−WV ), kerL ∩ Ω, 0) = deg(−γ ◦ i, G, 0)

= deg
(
−
(

ev0−
n∑
i=1

αi evti
)
i, G, 0

)
= deg(−∇W,G, 0)

= (−1)N+1 deg(∇W,B(R), 0) = (−1)N+1 Ind(W ) 6= 0.

(3.9)

Let us modify de�nition of the multimap FV : I × RN ( RN in the following
way:

FV (t, x) = F (t, x) ∩ {y ∈ RN : 〈α(x)∇V (x), y〉 6 0}. (3.10)

Then (3.5) takes the form

〈∇V (x), FV (t, x)〉+ 6 0 (3.11)

for every (t, x) ∈ I × RN , with |x| > R. We change respectively de�nition of
multimap G : I × RN × [0, 1]( RN , namely

G(t, x, λ) := λ(−WV )(x) + (1− λ)FV (t, x).

Our aim is to show that x 6∈ H(x, λ) on ∂Ω× [0, 1], where H is a homotopy de�ned
by (3.6).

Let x ∈ Ω be a solution to the nonlocal Cauchy problem

ẋ(t) ∈ G(t, x(t), λ), a.e. t ∈ I,

x(0) =
n∑
i=1

αix(ti)

for some λ ∈ (0, 1]. If there is t0 ∈ (0, T ] such that x(t0) ∈ ∂G, then there is
δ ∈ (0, t0] such that |x(t)| > R for t ∈ [t0 − δ, t0]. Now (3.7) assumes the form

〈∇V (x(t)), ẋ(t)〉 6 〈∇V (x(t)), λ(−WV (x(t))) + (1− λ)FV (t, x(t))〉+
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6 λ〈∇V (x(t)),−WV (x(t))〉+ (1− λ)〈∇V (x(t)), FV (t, x(t))〉+

6 λ〈∇V (x(t)),−WV (x(t))〉 (by (3.11))

< 0

for almost all t ∈ [t0 − δ, t0]. Consequently

V (x(t0))− V (x(t0 − δ)) =
∫ t0

t0−δ
〈∇V (x(t)), ẋ(t)〉 dt < 0.

Thus V (x(t0)) < V (x(t0 − δ)) 6 r and x(t0) ∈ ∂G is contradicted. Recall that the
boundary condition implies |x(0)| 6 |x(ti0)| for some ti0 ∈ (0, T ]. Thus V (x(0)) < r,
since V is monotone. Consequently x 6∈ ∂Ω. Analogous reasoning like in the proof
of Theorem 3.4 justi�es x 6∈ H(x, λ) on ∂Ω× [0, 1].

Applying the homotopy invariance and property (3.9) we arrive at the conclusion

deg(Id− P − (ΦQ+KP,Q)N(·, 0),Ω, 0)

= deg(Id−H(·, 0),Ω, 0) = deg(Id−H(·, 1),Ω, 0)

= deg(Id− P − (ΦQ+KP,Q)N(−WV ),Ω, 0) 6= 0.

This indicates that there is a coincidence point x ∈ Ω ∩ domL of the operator
inclusion Lx ∈ N(x, 0), which means that (3.8) has at least one solution. �

Substitution of the notion of a weakly negatively guiding potential in the hy-
potheses of Theorem 3.7 leads to the following conclusion.

Corollary 3.8. Let 0 6 t1 < t2 < · · · < tn < T be arbitrary, but �xed,
∑n
i=1 |αi| 6

1 and
∑n
i=1 αi 6= 1. If F : I ×RN ( RN is a Carathéodory map and there exists a

monotone coercive weakly positively guiding potential V : RN → R for the map F ,
then the following nonlocal boundary value problem with multi-point discrete mean
condition

ẋ(t) ∈ F (t, x(t)), a.e. t ∈ I,

x(T ) =
n∑
i=1

αix(ti)

possesses at least one solution.

Subsequent result concerns the situation where the mapping g, determining the
boundary condition, has the form of mean value of the composition of its argument
and some subsidiary function h. Unfortunately, the argumentation contained in
the proof of this theorem, based on the evaluation of the Brouwer degree of Id−h,
excludes the case g(x) = 1

T

∫ T
0
x(t) dt.

Theorem 3.9. Let h : RN → RN be a continuous mapping such that |h(x)| 6 |x|
for every x ∈ RN . Assume further that the �xed point set of h is compact. If
F : I × RN ( RN is a Carathéodory map and there exists a monotone coercive
weakly negatively guiding potential V : RN → R for the map F , then the following
nonlocal Cauchy problem with mean value condition

ẋ(t) ∈ F (t, x(t)), a.e. t ∈ I,

x(0) =
1
T

∫ T

0

h(x(t)) dt
(3.12)

possesses at least one solution.
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Proof. The �xed point set Fix(h) is compact if and only if there is M > 0 such
that Fix(h) ⊂ B(M). Choose R > M according to (2.1) and (2.3). Following the
scheme presented in the proof of Theorem 3.7, take x ∈ Ω such that

ẋ(t) = −λWV (x(t)), t ∈ I,

x(0) =
1
T

∫ T

0

h(x(t)) dt,

for some λ ∈ (0, 1). We know already that x(t) 6∈ ∂G for t ∈ (0, T ]. Suppose
|x(0)| > |x(t)| for t ∈ (0, T ]. Then

|x(0)| = 1
T

∫ T

0

|x(0)| dt > 1
T

∫ T

0

|x(t)| dt

>
1
T

∫ T

0

|h(x(t))| dt

>
∣∣∣ 1
T

∫ T

0

h(x(t)) dt
∣∣∣ = |x(0)|.

Therefore there exists t0 ∈ (0, T ] such that |x(0)| 6 |x(t0)|. Since V is monotone
we have V (x(0)) 6 V (x(t0)) < r, i.e. x(0) 6∈ ∂G. This proves that x 6∈ ∂Ω resulting
in: Lx 6= λN(−WV )(x) for every x ∈ domL ∩ ∂Ω and λ ∈ (0, 1).

Condition 0 6∈ QN(−WV )(kerL ∩ ∂Ω) is equivalent to x0 6= 1
T

∫ T
0
h(i(x0)(t)) dt,

i.e. x0 6= h(x0) for x0 ∈ ∂G. The latter requirement is ful�lled in our case, because

x0 ∈ ∂G⇒ |x0| > R⇒ x0 6∈ B(M)⇒ x0 6∈ Fix(h)⇒ x0 6= h(x0).

Take x0 ∈ ∂G. Then |x0 − h(x0)| > 0 and |h(x0)| 6 |x0|. Thus |(x0 − h(x0))−
x0| = |h(x0)| < |x0−h(x0)|+ |x0|. The last inequality is an equivalent formulation
of the Poincaré-Bohl theorem [7, Theorem 2.1]), which means that λ(Id−h)(x0) +
(1 − λ)Id(x0) 6= 0 for every (x0, λ) ∈ ∂G × [0, 1]; i.e., vector �elds Id − h and Id
are joined by the linear homotopy, which has no zeros on the boundary ∂G. Apply
Continuation Theorem to see that

deg(Id− P − (ΦQ+KP,Q)N(−WV ),Ω, 0)

= deg(Id− P − ΦQN(−WV ),Ω, 0)

= deg(−ΦQN(−WV ), kerL ∩ Ω, 0) = deg(−(Id− h), G, 0)

= (−1)N+1 deg(Id,G, 0) = (−1)N+1 6= 0,

(3.13)

as 0 ∈ B(R) ⊂ G.
Following proof of Theorem 3.7 we consider a solution x ∈ Ω of the succeeding

boundary value problem

ẋ(t) ∈ G(t, x(t), λ), a.e. t ∈ I,

x(0) =
1
T

∫ T

0

h(x(t)) dt,

for some λ ∈ (0, 1]. The reasoning goes without changes, so that we show that
x(t) 6∈ ∂G for t ∈ (0, T ]. The boundary condition as before implies that x(0) 6∈ ∂G.
Therefore, x 6∈ ∂Ω, which means that the homotopy H has no �xed points on
∂Ω× [0, 1]. The homotopy invariance together with (3.13) entails

deg(Id− P − (ΦQ+KP,Q)N(·, 0),Ω, 0)
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= deg(Id−H(·, 0),Ω, 0) = deg(Id−H(·, 1),Ω, 0)

= deg(Id− P − (ΦQ+KP,Q)N(−WV ),Ω, 0) 6= 0.

Summarizing, there exists a coincidence point x ∈ Ω ∩ domL of the operator in-
clusion Lx ∈ N(x, 0). This point constitutes the solution of the nonlocal Cauchy
problem (3.12) with mean value condition. �

Corollary 3.10. Let h : RN → RN be a continuous mapping such that |h(x)| 6 |x|
for every x ∈ RN . Assume further that the �xed point set of h is compact. If
F : I × RN ( RN is a Carathéodory map and there exists a monotone coercive
weakly positively guiding potential V : RN → R for the map F , then the following
nonlocal boundary value problem with mean value condition

ẋ(t) ∈ F (t, x(t)), a.e. t ∈ I,

x(T ) =
1
T

∫ T

0

h(x(t)) dt

possesses at least one solution.

A cursory look at the proof of Theorem 3.7. and 3.9 leads to the following
generalization.

Theorem 3.11. Assume that F : I ×RN ( RN is a Carathéodory map and there
exists a monotone coercive weakly negatively guiding potential V : RN → R for
the map F . Let R > 0 be chosen with accordance to (2.1) and (2.3) and r >
max{V (x) : |x| 6 R}. Let g : C(I,RN )→ RN be a continuous function, which maps
bounded sets into bounded sets and satis�es additionally the following conditions:

(i) ∀x ∈ domL ∩ C(I, V −1((−∞, r])) [x(0) = g(x)] ⇒ ∃ t ∈ (0, T ] |g(x)| 6
|x(t)|,

(ii) |g(i(x))| 6 |x| for all x ∈ V −1({r}),
(iii) Fix(g ◦ i) ∩ V −1({r}) = ∅.

Then the nonlocal Cauchy problem (1.1) possesses at least one solution.

Proof. Our reasoning will reproduce exactly the proceedings of the proof of Theo-
rem 3.7. Let x ∈ Ω be such that

ẋ(t) = −λWV (x(t)), t ∈ I,
x(0) = g(x),

for some λ ∈ (0, 1). We infer in a strictly analogous manner to the proof of Theorem
3.7 that x(t) 6∈ ∂G for t ∈ (0, T ]. Notice thatG = V −1((−∞, r]), due to (2.1). Thus,
x ∈ domL ∩ C(I, V −1((−∞, r])). It follows from condition (i) that there exists
t ∈ (0, T ] such that |x(0)| 6 |x(t)|. Since V is monotone we obtain V (x(0)) 6
V (x(t)) < r. Therefore x(0) 6∈ ∂G and x 6∈ ∂Ω. Consequently, Lx 6= λN(−WV )(x)
for every x ∈ domL ∩ ∂Ω and λ ∈ (0, 1).

Recall that 0 6∈ QN(−WV )(kerL ∩ ∂Ω) is equivalent to ev0(x) 6= g(x) for x ∈
kerL ∩ ∂Ω. In other words: x0 6= g(i(x0)) for every x0 ∈ ∂G = V −1({r}). Of
course, condition (iii) is formulated so that the latter is true.

Take x0 ∈ ∂G. Then |x0 − g(i(x0))| > 0, by condition (iii) and |g(i(x0))| 6 |x0|,
by condition (ii). Whence |x0 − g(i(x0)) − x0| < |x0 − g(i(x0))| + |x0|. The last
inequality is a simple reformulation of the Poincaré-Bohl condition [7, Theorem 2.1],
which means that λ(Id−g◦i)(x0)+(1−λ)Id(x0) 6= 0 for every (x0, λ) ∈ ∂G× [0, 1],
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i.e. vector �elds Id− g ◦ i and Id are joined by the homotopy, nonsingular on the
boundary ∂G. Now we can apply Continuation Theorem:

deg(Id− P − (ΦQ+KP,Q)N(−WV ),Ω, 0)

= deg(Id− P − ΦQN(−WV ),Ω, 0)

= deg(−ΦQN(−WV ), kerL ∩ Ω, 0) = deg(−(Id− g ◦ i), G, 0)

= (−1)N+1 deg(Id,G, 0) = (−1)N+1 6= 0,

(3.14)

as 0 ∈ B(R) ⊂ G.
The rest of the proof is strictly analogous to the remaining part of the proof of

Theorem 3.7. In particular, if x ∈ Ω is a solution to the problem

ẋ(t) ∈ G(t, x(t), λ), a.e. t ∈ I,
x(0) = g(x)

for some λ ∈ (0, 1], then the only modi�cation would be the use of property (i) to
demonstrate that x(0) 6∈ ∂G. In this way we prove that x 6∈ ∂Ω, which means that
x 6∈ H(x, λ) on ∂Ω× [0, 1]. By referring to the property (3.14) we conclude that

deg(Id− P − (ΦQ+KP,Q)N(·, 0),Ω, 0)

= deg(Id−H(·, 0),Ω, 0) = deg(Id−H(·, 1),Ω, 0)

= deg(Id− P − (ΦQ+KP,Q)N(−WV ),Ω, 0) 6= 0.

The coincidence point x ∈ Ω ∩ domL of the operator inclusion Lx ∈ N(x, 0)
determines the solution of the nonlocal Cauchy problem (1.1). �

Corollary 3.12. Assume that F : I × RN ( RN is a Carathéodory map and
there exists a monotone coercive weakly positively guiding potential V : RN → R
for the map F . Let R > 0 be chosen with accordance to (2.1) and (2.2) and
r > max{V (x) : |x| 6 R}. Let g : C(I,RN ) → RN be a continuous function, which
maps bounded sets into bounded sets and satis�es conditions (ii)-(iii) of Theorem
3.11 along with

(iv) ∀x ∈ domL ∩ C(I, V −1((−∞, r])) [x(T ) = g(x)] ⇒ ∃t ∈ [0, T ] |g(x)| 6
|x(t)|.

Then the nonlocal boundary value problem

ẋ(t) ∈ F (t, x(t)), a.e. t ∈ I,
x(T ) = g(x)

possesses at least one solution.

Example 3.13. The mappings, which were used to de�ne nonlocal initial condi-
tions in Theorems 3.4, 3.7 and 3.9 satisfy conditions (i)-(iii).

Example 3.14. The following requirement

∀0 6= x ∈ domL ∩ C(I, V −1((−∞, r])) ∃ t ∈ (0, T ] |g(x)| < |x(t)|.

implies conditions (i)-(iii).

Example 3.15. If g : C(I,RN ) → RN is such that |g(x)| < ‖x‖ for every x 6= 0,
then in particular conditions (i)-(iii) are satis�ed.
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All previous theorems apply to the cases where the function g satis�es the es-
timate |g(x)| 6 ‖x‖ for every x ∈ C(I,RN ). The next result is based on such a
property of g, which prevents the function g from ful�llment of this estimate.

Theorem 3.16. Let F : I × RN ( RN be a Carathéodory map. Assume that
g : C(I,RN )→ RN is continuous, maps bounded sets into bounded sets and satis�es
the following conditions:

(a) lim inf‖x‖→+∞
|g(x)|
‖x‖ > 1,

(b) the counter image (g ◦ i)−1({0}) is compact and deg(g ◦ i, B(R), 0) 6= 0,
where (g ◦ i)−1({0}) ⊂ B(R).

Then the solution set SF (g) of nonlocal initial value problem (1.1) is nonempty and
compact as a subset of C(I,RN ).

Proof. Let R > 0 be such that (g ◦ i)−1({0}) ⊂ B(R). Property (a) of the mapping
g means that there is M > 0 such that |g(x)| > ‖x‖ for all ‖x‖ >M . Assume that
M > R and put Ω := C(I,B(M)). De�ne NF : Ω( Z, by

NF (x) :=
{
f ∈ L1(I,RN ) : f(t) ∈ F (t, x(t)) for a.a. t ∈ I

}
×
{
γ(x)

}
,

where γ = ev0−g. Taking into account QNF (x) = (0, γ(x)) and KP,QNF (x)(t) =∫ t
0
F (s, x(s)) ds we infer that QNF and KP,QNF are compact usc multimaps with

compact convex values.
Suppose x ∈ Ω is a solution to the following nonlocal Cauchy problem

ẋ(t) ∈ λF (t, x(t)), a.e. t ∈ I,
x(0) = g(x)

for some λ ∈ (0, 1). From (a) it follows that ‖x‖ < M . Otherwise x(0) 6= g(x).
Thus x 6∈ ∂Ω and inclusion Lx ∈ λNF (x) has no solution on ∂Ω for every λ ∈ (0, 1).

Observe that 0 6∈ QNF (kerL ∩ ∂Ω) is equivalent to x0 6= g(i(x0)) for every
x0 ∈ ∂B(M). However

x0 ∈ ∂B(M)⇒ |x0| = ‖i(x0)‖ >M ⇒ |g(i(x0))| > |x0| ⇒ x0 6= g(i(x0)).

Take x0 ∈ ∂B(M). Then |x0| < |g(i(x0))|. In other words |x0 − g(i(x0)) −
(−g(i(x0)))| < | − g(i(x0))|. It follows from a corollary to the theorem of Poincaré-
Bohl ([7, Thorem 2.3]) that vector �elds Id−g◦i and −g◦i are mutually homotopic.
Using standard properties of the Brouwer degree we see that

deg(id− g ◦ i, B(M), 0) = deg(−g ◦ i, B(M), 0) = (−1)N+1 deg(g ◦ i, B(M), 0)

= (−1)N+1 deg(g ◦ i, B(R), 0) 6= 0,

by (b). Applying the same reasoning as in the proof of Theorem 3.7 we obtain

deg(ΦQNF , kerL ∩ Ω, 0) = deg(γ ◦ i, B(M), 0) = deg(Id− g ◦ i, B(M), 0) 6= 0.

In view of Theorem 2.1 there is a solution of the inclusion Lx ∈ NF (x) in Ω. This
is of course also a solution of the problem (1.1).

It is easy to see that compactness of SF (g) is equivalent to the existence of a priori
bounds on the solutions to (1.1). Indeed, suppose SF (g) is bounded. Then this
set must also be equicontinuous in view of (F3). Therefore it is relatively compact.
The closedness of SF (g) is a straightforward consequence of Compactness Theorem
[1, Theorem 0.3.4]), Convergence Theorem ([1, Theorem 1.4.1]) and continuity of
g.
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Suppose that for every r > 0 there exists an element x ∈ SF (g) such that
‖x‖ > r. Choose r := M . Then |g(x)| > ‖x‖ > |x(0)| for some x ∈ SF (g), which
yields a contradiction with x(0) = g(x). Therefore the solution set SF (g) must be
bounded, completing the proof. �

Lemma 3.17. Suppose F : I × RN ( RN has sublinear growth, i.e. (F3) is satis-
�ed. Let x ∈ AC(I,RN ) be a solution to the Cauchy problem

ẋ(t) ∈ F (t, x(t)), a.e. on I,

x(0) = x0.

Then |x(t)| > r > 0 for every t ∈ I, provided |x0| > e‖µ‖1(r + 1)− 1.

Proof. Taking into account that x ∈ AC(I,RN ) and |ẋ(t)| 6 µ(t)(1 + |x(t)|) a.e.
on I, in view of (F2) we have

|x(t)− x(s)| 6
∫ t

s

µ(τ)(1 + |x(τ)|) dτ

for 0 6 s 6 t 6 T . Thus

|x(t)| > |x(s)| −
∫ t

s

µ(τ)(1 + |x(τ)|) dτ

for 0 6 s 6 t 6 T . De�ne f : [0, t]→ R+ by

f(s) = |x(t)|+
∫ t

s

µ(τ)(1 + |x(τ)|) dτ + 1.

Then
f(s) > |x(s)|+ 1 > 0 and f(t) = |x(t)|+ 1. (3.15)

Obviously

ln f(t)− ln f(s) =
∫ t

s

f ′(τ)
f(τ)

dτ.

Also
f ′(s) = −µ(s)(1 + |x(s)|)

a.e. on [0, t]. Therefore,

ln
f(t)
f(s)

= ln f(t)− ln f(s) = −
∫ t

s

µ(τ)(1 + |x(τ)|)
f(τ)

dτ

> −
∫ t

s

µ(τ)(1 + |x(τ)|)
|x(τ)|+ 1

dτ (by (3.15))

= −
∫ t

s

µ(τ) dτ.

From where

f(t) > f(s) exp
(
−
∫ t

s

µ(τ) dτ
)

which implies

|x(t)|+ 1 > (|x(s)|+ 1) exp
(
−
∫ t

s

µ(τ) dτ
)

for 0 6 s 6 t 6 T , by (3.15). Substituting s = 0 we have

|x(t)| > (|x0|+ 1) exp
(
−
∫ t

0

µ(τ) dτ
)
− 1 > (|x0|+ 1)e−‖µ‖1 − 1.
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Now the assertion of the lemma is already visible. �

The purpose of the last theorem is to provide the conditions that ensure the
compactness of the set of solutions to nonlocal Cauchy problems that were the
subject of interest in Theorems 3.4, 3.7 and 3.9.

Theorem 3.18. Assume that F : I × RN ( RN is a Carathéodory map. Suppose
there exists a monotone coercive strictly negatively guiding potential V : RN → R
for the map F . Let R > 0 be chosen with accordance to (2.1) and (2.4) and r >
max{V (x) : |x| 6 R}. Let g : C(I,RN )→ RN be a continuous function, which maps
bounded sets into bounded sets and satis�es additionally the following conditions:

(i) ∀x ∈ AC(I,RN ) [x(0) = g(x)]⇒ ∃ t ∈ (0, T ] |g(x)| 6 |x(t)|,
(ii) |g(i(x))| 6 |x| for all x ∈ V −1({r}),
(iii) Fix(g ◦ i) ∩ V −1({r}) = ∅.

Then the solution set SF (g) of nonlocal initial value problem (1.1) is nonempty and
compact as a subset of C(I,RN ).

Proof. That the set SF (g) is not empty results from Theorem 3.11. Just as in the
proof of Theorem 3.16 it su�ces to show the boundedness of the solution set SF (g)
to be certain of its compactness.

Take x ∈ SF (g) and suppose that |x(0)| > e‖µ‖1(R + 1)− 1. From Lemma 3.17
it follows that |x(t)| > R for every t ∈ I. Assume that |x(0)| 6 |x(t0)| for some
t0 ∈ (0, T ]. Then V (x(t0)) − V (x(0)) > 0, due to the monotonicity of V . On the

other hand V (x(t0))− V (x(0)) =
∫ t0
0
〈∇V (x(s)), ẋ(s)〉 ds < 0, because

〈∇V (x(s)), ẋ(s)〉 6 〈∇V (x(s)), F (s, x(s))〉+ < 0 for a.a. s ∈ [0, t0].

We arrive at contradiction. If we assume the opposite, i.e. |x(0)| > |x(t)| for every
t ∈ (0, T ], then condition (i) is contradicted. Therefore it is impossible that the
supposition |x(0)| > e‖µ‖1(R+ 1)− 1 was correct.

The growth condition (F3) along with the Gronwall inequality implies

|x(t)| 6
[
‖µ‖1 + (R+ 1)e‖µ‖1 − 1

]
e

R t
0 µ(s) ds for t ∈ I.

Thus SF (g) ⊂ B(M), where

M :=
[
‖µ‖1 + (R+ 1)e‖µ‖1 − 1

]
e‖µ‖1 .

�
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