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MATHEMATICAL ANALYSIS FOR AN AGE-STRUCTURED HIV
INFECTION MODEL WITH SATURATION INFECTION RATE

JINLIANG WANG, RAN ZHANG, TOSHIKAZU KUNIYA

Abstract. In this article, we study a continuous age-structured HIV infection
model. For the case of the saturation infection rate, the basic reproduction

number <0 is shown to be a sharp threshold value for the global dynamics; that

is, the infection-free equilibrium is globally stable if <0 < 1, while a unique
infection equilibrium is so if <0 > 1. For the proof, we use Lyapunov func-

tional techniques based on the relative compactness of the orbit and uniform
persistence of the system.

1. Introduction

During the past decades, mathematical analysis of within-host dynamics of HIV
has been extensively done by many authors (see, for example, [4, 5, 7, 9, 14, 15, 16,
22] and the references therein). These studies have enriched our knowledge of in-
host models. The classical and basic viral infection models proposed by Nowak and
May [14], Perelson and Nelson [16] have widely been developed in several directions
including, in particular, immune response and oscillations (see [6, 7]). However,
most of the models might neglect an important character that the mortality rate
and viral production rate of infected cells are functions of the infection age of cells
[4], where age is defined as the time since the infection.

The evidence that the number of virus production increases exponentially with
the age of the infected cell [17] and the death rate of infected cells varies all time [2]
has been found from the recent studies. Investigating the impact of the age depen-
dent mortality rate and viral production rate are a neglected activity of significant
importance. The age structure will allow us to have a good description of the viral
particles and the mortality of infected cells [8]. Age structure allows more realistic
representations of the biology of HIV-1 infection [15]. Therefore, it is necessary to
study in-host models with age structure.

One of the basic age-structured HIV models presented by Nelson et al [15] was
governed by the first order partial differential equations system. By evaluating
eigenvalues and its related characteristic equation, local stability of the equilibria
has been analyzed. The global asymptotic stability of the equilibria was established
by Huang et al [4] by using suitable Lyapunov functions and Lasalle’s invariance
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principle. Based on the model studied in [15], Rong et al [18] considered two mod-
els with age-of-infection and combination therapies involving reverse transcriptase,
protease, and entry/fusion inhibitors and study the impact of drugs on viral dy-
namics.

The model we shall consider in this study is an extension of the model proposed
by Nelson et al [15] and Huang et al [4]. It incorporates with the saturation infection
rate. Based on the existing age-structured HIV infection models formulated in
[4, 15, 18], and motivated by the works in [1, 3, 9, 10, 11, 12, 22], the main concern
of this research is to prove the global stability of the following age-structured model
with saturated infection rate:

dT (t)
dt

= s− dT (t)− kT (t)
V (t)

1 + αV (t)
,

∂i(a, t)
∂a

+
∂i(a, t)
∂t

= −δ(a)i(a, t),

dV (t)
dt

=
∫ ∞

0

p(a)i(a, t)da− cV (t) .

(1.1)

The boundary and initial conditions are

i(0, t) = kT (t)
V (t)

1 + αV (t)
,

T (0) = Ts, i(a, 0) = is(a), V (0) = Vs,

(1.2)

where T (t) and V (t) denote the densities of uninfected target T cells and infectious
free virion at time t. i(a, t) denotes the density of infected T cells of infection age
a at time t and is(a) is a given non-negative function. The meanings of the other
parameters in the system (1.1) are listed in Table 1.

Parameter Meaning
a Age of infection, i.e., the time since

an HIV virion penetrated cell;
s Recruitment rate of healthy T cells;
d Per capita death rate of uninfected cells;
c Clearance rate of virions;
α Saturation constant;
k Rate at which an uninfected cell becomes infected

by an infectious virus;
δ(a) Age-dependent per capita death rate of infected cells;
p(a) Viral production rate of an infected cell with age a.

Table 1. The definition of the different parameters in Section 1.

For the models describing age-structured viral infection, local stability can be
proved by linearizing the systems at their equilibrium states and verifying the eigen-
values of the corresponding characteristic equations. While, for models described
by PDEs, the global stability analysis of equilibrium is often very challenging if not
impossible. The global stability approach used in this paper is related to ones used
in [4, 12, 11].
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In this paper, we focus not only on proving the global stability properties for
the case of continuous age by constructing suitable Lyapunov functions, but also
on giving rigorous mathematical analysis on technical materials and necessary ar-
guments to the proofs including the relative compactness of the orbit and uniform
persistence of system (1.1).

The result in the present paper can be regarded as a supplement and generaliza-
tion of the works in [15] and [4]. The basic reproduction number shall be defined
and proved to be a sharp threshold determining whether or not infection dies out.
More precisely, if <0 < 1 the infection-free equilibrium is globally asymptotically
stable; if <0 > 1, a unique infection equilibrium exists and is globally asymptotically
stable.

The organization of this article is as follows. In Section 2, we present some
preliminary results on system (1.1). In Section 3, we prove that the global stability
of the infection-free equilibrium for <0 < 1 by constructing a suitable Lyapunov
function. In Section 4, for the proof of global stability of the infection equilibrium,
we present some preliminary results on the uniform persistence. In Section 5, we
give the proof of the global stability of infection equilibrium for <0 > 1.

2. Preliminaries

Let us define a functional space X := R× L1(0,∞)× R equipped with norm

‖(x, ϕ, y)‖X := |x|+
∫ ∞

0

|ϕ(a)|da+ |y|, x, y ∈ R, ϕ ∈ L1(0,∞). (2.1)

The initial condition (1.2) for system (1.1) can be represented as

X0 := (T (0), i(·, 0), V (0)) = (Ts, is(·), Vs) ∈ X+, (2.2)

where X+ := R+ × L1
+(0,∞)× R+ denotes the positive cone of X .

It is necessary to make the following assumption on the parameters of system
(1.1), which makes the model to be biologically relevant.

Assumption 2.1. We assume that:
(i) s > 0, d > 0, k > 0, α > 0 and c > 0;
(ii) δ, p ∈ L∞+ (0,∞) and

δ+ := ess supa∈[0,∞) δ(a) < +∞, p+ := ess supa∈[0,∞) p(a) < +∞;

(iii) There exists a positive constant δ0 ∈ (0, d] such that δ(a) ≥ δ0 for all a ≥ 0;
(iv) There exists a maximum age a† > 0 for the viral production such that

p(a) > 0 for a ∈ (0, a†).

Integrating the second equation in (1.1) along the characteristic line t − a =
const., we have

i(a, t) =

{
kT (t− a) V (t−a)

1+αV (t−a)e
−

R a
0 δ(ε)dε, t > a ≥ 0;

is(a− t)e−
R t
0 δ(a−t+ε)dε, a ≥ t ≥ 0.

(2.3)

As mentioned in Section 1, we shall focus on the global stability of (1.1). To this
end, we first define the continuous semi-flow associated with the system. Using
standard methods, we can verify the existence and uniqueness of solutions to the
system (1.1). Moreover, we can show that all solutions with nonnegative initial
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conditions X0 ∈ X+ will remain nonnegative for all t > 0. Thus, we can obtain a
continuous semi-flow Φ : R+ ×X+ → X+ defined by system (1.1) such that

Φ(t,X0) := (T (t), i(·, t), V (t)), t ≥ 0, X0 ∈ X+. (2.4)

Thus

‖Φ(t,X0)‖X = ‖Φ(T (t), i(·, t), V (t))‖X = T (t) +
∫ ∞

0

i(a, t)da+ V (t). (2.5)

Define the state space for system (1.1) by

Ω :=
{

(x, ϕ, y) ∈ X+ : ‖(x, ϕ, y)‖X ≤ (1 +
p+

c
)
s

δ0

}
. (2.6)

Now, we are in a position to show the positive invariance of Ω.

Proposition 2.2. Let Φ and Ω be defined by (2.4) and (2.6), respectively. Ω is
positively invariant for Φ; that is,

Φ(t,X0) ⊂ Ω, ∀t ≥ 0, X0 ∈ Ω.

Proof. It can be easily checked from the second equation of (1.1) that

d

dt

∫ ∞
0

i(a, t) da = kT (t)
V (t)

1 + αV (t)
−
∫ ∞

0

δ(a)i(a, t) da.

Thus, from the first equation of (1.1) and (iii) of Assumption 2.1, we have
d

dt

(
T (t) +

∫ ∞
0

i(a, t) da
)

= s− dT (t)−
∫ ∞

0

δ(a)i(a, t) da

≤ s− δ0
(
T (t) +

∫ ∞
0

i(a, t) da
)
.

Using the variation of constants formula, we obtain

T (t) +
∫ ∞

0

i(a, t) da ≤ s

δ0
− e−δ0t

{ s
δ0
−
(
Ts +

∫ ∞
0

is(a) da
)}
.

It is easy to see that for all t ≥ 0,

T (t) +
∫ ∞

0

i(a, t) da ≤ s

δ0
(2.7)

holds for any X0 ∈ Ω. Moreover, the third equation of (1.1) and (ii) of Assumption
2.1 lead to

dV (t)
dt

≤ p+

∫ ∞
0

i(a, t) da− cV (t).

From (2.7), it follows that

dV (t)
dt

≤ p+ s

δ0
− cV (t) .

Hence, using the variation of constants formula again, we obtain

V (t) ≤ p+

c

s

δ0
, ∀t ≥ 0, (2.8)

for all X0 ∈ Ω. Consequently, from (2.7) and (2.8), we have

T (t) +
∫ ∞

0

i(a, t) da+ V (t) ≤ (1 +
p+

c
)
s

δ0
, ∀t ≥ 0,

which implies Φ(t,X0) ⊂ Ω for all t ≥ 0. �
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2.1. Equilibria and basic reproductive number. Let N denote the burst size;
that is, the total number of viral particles produced by an infected cell in its lifespan.
Then,

N ≡
∫ ∞

0

p(a)σ(a)da (=
∫ a†

0

p(a)σ(a) da), (2.9)

where

σ(a) = e−
R a
0 δ(ε)dε (2.10)

denotes the fraction at which an infected cell survives up to age a.
System (1.1) has at most two equilibria. There always exists an infection-free

equilibrium E0
1 = (T0, i0(a), V0) ∈ Ω, where T0 = s/d, i0(a) = 0, V0 = 0. An infec-

tion equilibrium E∗1 = (T ∗, i∗(a), V ∗) ∈ Ω possibly exists satisfying the following
equations:

s− dT ∗ − kT ∗ V ∗

1 + αV ∗
= 0,

di∗(a)
da

= −δ(a)i∗(a),∫ ∞
0

p(a)i∗(a)da = cV ∗,

i∗(0) = kT ∗
V ∗

1 + αV ∗
.

(2.11)

Integrating the second equation of (2.11) from 0 to a yields

i∗(a) = i∗(0)e−
R a
0 δ(s)ds. (2.12)

Thus, from the fourth equation of (2.11), we have

i∗(a) = σ(a)kT ∗
V ∗

1 + αV ∗
. (2.13)

Substituting (2.13) in the third equation of (2.11) and using the equality in (2.9)
gives ∫ ∞

0

p(a)σ(a)kT ∗
V ∗

1 + αV ∗
da = NkT ∗

V ∗

1 + αV ∗
= cV ∗, (2.14)

and thus T ∗ = c(1+αV ∗)
Nk . The basic reproduction number of system (1.1) is

<0 =
Nks

dc
, (2.15)

which is defined by the number of newly infected cells produced by one infected
cell during its lifespan. As will be shown in the next sections, the qualitative and
quantitative behaviors of the model (1.1) is completely determined by <0.

Solving the first equation of (2.11) with respect to V ∗, we can easily obtain

V ∗ =
Nks− dc
dcα+ kc

=
dc

dcα+ kc

(Nks
dc
− 1
)

=
dc

dcα+ kc
(<0 − 1),

Thus, we have infection equilibrium E∗1 = (T ∗, i∗(a), V ∗) if and only if <0 > 1.
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2.2. Relative compactness of the orbit. As we are now concerned with the
infinite dimensional Banach space X including L1(0,∞), the issue one fist faces is
to show the relative compactness of the orbit {Φ(t,X0) : t ≥ 0} in X in order to
make use of the invariance principle (see e.g., [20, Theorem 4.2 of Chapter IV]). To
this end, we first decompose Φ : R+ × X+ → X+ into the following two operators
Θ,Ψ : R+ ×X+ → X+:

Θ(t,X0) := (0, ϕ̃i(·, t), 0), (2.16)

Ψ(t,X0) := (T (t), ĩ(·, t), V (t)), (2.17)

where

ϕ̃i(a, t) :=

{
0, t > a ≥ 0,
i(a, t), a ≥ t ≥ 0,

and ĩ(a, t) :=

{
i(a, t), t > a ≥ 0,
0, a ≥ t ≥ 0.

(2.18)

It is easy to see that

Φ(t,X0) = Θ(t,X0) + Ψ(t,X0), ∀t ≥ 0,

and from [21, Proposition 3.13] and Proposition 2.2, we arrive at the following
lemma.

Lemma 2.3. Let Φ, Ω, Θ and Ψ be defined by (2.4), (2.6), (2.16) and (2.17),
respectively. If the following two conditions hold, then {Φ(t,X0) : t ≥ 0} for X0 ∈
Ω has compact closure in X .

(i) There exists a function ∆ : R+ × R+ → R+ such that for any r > 0,
limt→∞∆(t, r) = 0, and if X0 ∈ Ω with ‖X0‖X ≤ r, then ‖Θ(t,X0)‖X ≤
∆(t, r) for t ≥ 0;

(ii) For t ≥ 0, Ψ(t, ·) maps any bounded sets of Ω into sets with compact closure
in X .

To show that conditions (i) and (ii) in Lemma 2.3 hold, we first prove the fol-
lowing lemma.

Lemma 2.4. Let Ω and Θ be defined by (2.6) and (2.16), respectively. For r > 0, let
∆(t, r) := e−δ0tr. Then, limt→∞∆(t, r) = 0 and for t ≥ 0, ‖Θ(t,X0)‖X ≤ ∆(t, r)
provided X0 ∈ Ω with ‖X0‖X ≤ r.

Proof. limt→∞∆(t, r) = 0 is obvious. From (2.3), we have

ϕ̃i(a, t) =

{
0, t > a ≥ 0;
is(a− t)e−

R t
0 δ(a−t+ε)dε, a ≥ t ≥ 0.

Then, for X0 ∈ Ω satisfying ‖X0‖X ≤ r, we have

‖Θ(t,X0)‖X = |0|+
∫ ∞

0

|ϕ̃i(a, t)|da+ |0|

=
∫ ∞
t

|is(a− t)e−
R t
0 δ(a−t+ε)dε|da

≤ e−δ0t
∫ ∞

0

|is(a)|da

≤ e−δ0t‖X0‖X
≤ e−δ0tr = ∆(t, r), ∀t ≥ 0,

which completes the proof. �
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Lemma 2.5. Let Ω and Ψ be defined by (2.6) and (2.17), respectively. Then, for
t ≥ 0, Ψ(t, ·) maps any bounded sets of Ω into sets with compact closure in X .

Proof. It follows from Proposition 2.2 that T (t) and V (t) remain in the compact
set [0, (1 + p+/c)s/δ0]. Thus, we are in a position to show that ĩ(a, t) remains in a
precompact subset of L1

+(0,∞), which is independent of X0 ∈ Ω. To this end, it
suffices to verify the following conditions (see e.g., [19, Theorem B.2]).

(i) The supremum of
∫∞
0
ĩ(a, t) da with respect to X0 ∈ Ω is finite;

(ii) limh→∞
∫∞
h
ĩ(a, t)da = 0 uniformly with respect to X0 ∈ Ω;

(iii) limh→0+

∫∞
0
|̃i(a+ h, t)− ĩ(a, t)|da = 0 uniformly with respect to X0 ∈ Ω;

(iv) limh→0+

∫ h
0
ĩ(a, t) da = 0 uniformly with respect to X0 ∈ Ω.

In fact, from (2.3) and (2.18), it follows that

ĩ(a, t) =

{
kT (t− a) V (t−a)

1+αV (t−a)e
−

R a
0 δ(ε)dε, t > a ≥ 0;

0, a ≥ t ≥ 0,
(2.19)

and hence, from Proposition 2.2 and the fact that f(x) = x/(1 + αx) is monotone
increasing with respect to x, we obtain the inequality

0 ≤ ĩ(a, t) ≤ k(1 +
p+

c
)
s

δ0

1
α
e−

R a
0 δ(ε)dε. (2.20)

Thus, the aforementioned conditions (i), (ii) and (iv) follow immediately from
(2.20).

We claim that (iii) holds. In fact, for sufficiently small h ∈ (0, t), we have∫ ∞
0

|̃i(a+ h, t)− ĩ(a, t)|da

=
∫ t−h

0

∣∣kT (t− a− h)
V (t− a− h)

1 + αV (t− a− h)
σ(a+ h)

− kT (t− a)
V (t− a)

1 + αV (t− a)
σ(a)

∣∣ da
+
∫ t

t−h
|0− kT (t− a)

V (t− a)
1 + αV (t− a)

σ(a)| da

≤
∫ t−h

0

kT (t− a− h)
V (t− a− h)

1 + αV (t− a− h)
|σ(a+ h)− σ(a)| da

+
∫ t−h

0

∣∣kT (t− a− h)
V (t− a− h)

1 + αV (t− a− h)
− kT (t− a)

V (t− a)
1 + αV (t− a)

∣∣σ(a) da

+ k(1 +
p+

c
)
s

δ0

1
α
h

≤ k(1 +
p+

c
)
s

δ0

1
α

∫ t−h

0

|σ(a+ h)− σ(a)| da

+ k

∫ t−h

0

∣∣T (t− a− h)
V (t− a− h)

1 + αV (t− a− h)
− T (t− a)

V (t− a)
1 + αV (t− a)

∣∣σ(a) da

+ k(1 +
p+

c
)
s

δ0

1
α
h. (2.21)
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Noticing that σ(a) = e−
R a
0 δ(ε)dε is monotone decreasing with respect to a, we have∫ t−h

0

|σ(a+ h)− σ(a)|da =
∫ t−h

0

{σ(a)− σ(a+ h)}da

=
∫ h

0

σ(a) da−
∫ t

t−h
σ(a) da ≤ h.

(2.22)

Moreover, we have∣∣T (t− a− h)
V (t− a− h)

1 + αV (t− a− h)
− T (t− a)

V (t− a)
1 + αV (t− a)

∣∣
≤
∣∣∣T (t− a− h)V (t− a− h){1 + αV (t− a)}

− T (t− a)V (t− a){1 + αV (t− a− h)}
∣∣∣

≤
∣∣T (t− a− h)V (t− a− h)− T (t− a)V (t− a)

∣∣
+ |T (t− a− h)− T (t− a)|αV (t− a− h)V (t− a).

(2.23)

Now, the Lipschitz continuity of T (·) and V (·) on R+ is easily verified from (1.1) and
the boundedness of the solution (Proposition 2.2) and thus, the product T (·)V (·)
of these two Lipschitz functions is also Lipschitz (see e.g., [13, Proposition 6]).
Therefore, there exists a positive constant MTV > 0 such that (2.23) becomes∣∣∣T (t− a− h)

V (t− a− h)
1 + αV (t− a− h)

− T (t− a)
V (t− a)

1 + αV (t− a)

∣∣∣ ≤MTV h. (2.24)

From (2.21), (2.22) and (2.24), we obtain∫ ∞
0

|̃i(a+ h, t)− ĩ(a, t)|da

≤ k(1 +
p+

c
)
s

δ0

1
α
h+ kMTV h

∫ t−h

0

σ(a) da+ k(1 +
p+

c
)
s

δ0

1
α
h

≤ 2k(1 +
p+

c
)
s

δ0

1
α
h+ kMTV h

∫ t−h

0

e−δ0ada

≤ k
{

2(1 +
p+

c
)
s

δ0

1
α

+
MTV

δ0

}
h.

(2.25)

Since this upper bound is independent of X0 ∈ Ω and converges to 0 as h → 0+,
the condition (iii) holds. Consequently, ĩ(a, t) remains in a precompact subset Ci

of L1
+(0,∞), and thus

Ψ(t, C) ⊆ [0, (1 +
p+

c
)
s

δ0
]× Ci × [0, (1 +

p+

c
)
s

δ0
]

holds for any bounded subset C ⊂ Ω of Ω. This completes the proof. �

In summary, from Lemmas 2.3-2.5, we have proved the following result on the
relative compactness of the orbit {Φ(t,X0) : t ≥ 0}.

Proposition 2.6. Let Φ and Ω be defined by (2.4) and (2.6), respectively. For
X0 ∈ Ω, {Φ(t,X0) : t ≥ 0} has compact closure in X .
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3. Global stability of the infection-free equilibrium

In this section, we study the global stability of the infection-free equilibrium E0
1

of (1.1) by constructing a suitable Lyapunov function. Our principal result in this
section can be stated as follows.

Theorem 3.1. Let <0 be defined by (2.15). The infection-free equilibrium E0
1 of

(1.1) is globally asymptotically stable if <0 ≤ 1.

Proof. Define

α(a) =
∫ ∞
a

p(ε)e−
R ε
a
δ(s)dsdε

(
=
∫ a†

a

p(ε)e−
R ε
a
δ(s)dsdε

)
. (3.1)

Note that from (iv) of Assumption 2.1 and (2.9) it follows that α(a) > 0 for 0 ≤
a < a† and α(0) = N . It is easy to see that α(a) is bounded and its derivative is
given by

α′(a) = δ(a)α(a)− p(a). (3.2)
We define a Lyapunov function

U1(t) = T0g
(T (t)
T0

)
+

1
N

∫ a†

0

α(a)i(a, t)da+
1
N
V (t), (3.3)

where
g(z) = z − 1− ln z, z ∈ R+, (3.4)

which has the global minimum at z = 1 and g(1) = 0. Thus, U1(t) reaches its global
minimum at E0

1 , and therefore it is a Lyapunov function, which is nonnegative.
Differenting U1(t) along the solutions of (1.1) yields

dU1(t)
dt

=
(

1− T0

T (t)

)(
dT0 − dT (t)− kT (t)

V (t)
1 + αV (t)

)
− 1
N

∫ a†

0

α(a)
(∂i(a, t)

∂a
+ δ(a)i(a, t)

)
da

+
1
N

∫ a†

0

p(a)i(a, t)da− cV (t)
N

= − d

T (t)
(T (t)− T0)2 + kT0

V (t)
1 + αV (t)

− kT (t)
V (t)

1 + αV (t)

− 1
N

∫ a†

0

α(a)
∂i(a, t)
∂a

da− 1
N

∫ a†

0

α′(a)i(a, t)da− cV (t)
N

.

Recall that α(0) = N , α(a†) = 0 and i(0, t) = kT (t) V (t)
1+αV . Using the integration

by parts, we have∫ a†

0

α(a)
∂i(a, t)
∂a

da = α(a)i(a, t)
∣∣a=a†
a=0

−
∫ a†

0

α′(a)i(a, t)da

= −NkT (t)
V (t)

1 + αV
−
∫ a†

0

α′(a)i(a, t)da.

It follows that
dU1(t)
dt

= − d

T (t)
(T (t)− T0)2 − cαV 2(t)

N(1 + αV (t))
+ (<0 − 1)

cV (t)
N(1 + αV (t))

.

Therefore, <0 ≤ 1 ensures that U ′1 ≤ 0 holds. Similar to the arguments in [4,
Theorem 3.1], the largest invariant set of {dU1(t)

dt = 0} is singleton {E0
1}. Thus, by
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the invariance principle for relatively compact orbit {Φ(t,X0) : t ≥ 0} (see [20,
Theorem 4.2, Chapter IV] and Proposition 2.6), the infection-free equilibrium is
globally asymptotically stable when <0 ≤ 1. �

4. Uniform persistence

In Section 5, we will prove the global stability of the infection equilibrium E∗1
for <0 > 1. For the proof, as in the proof of Theorem 3.1, we will use function
g defined by (3.4) in a Lyapunov functional. To make g( i(t,a)i∗(a) ) well-defined, one
faces an issue that we have to show that i(t, a)/i∗(a) is bounded below and above
by some positive constants. To this end, we show that the limit infimum of T (t)
and V (t) is bounded below by some constants independent from the choice of the
initial condition (uniform persistence). We first prove the following lemma.

Lemma 4.1. There exists a positive lower bound T > 0 such that

lim inf
t→∞

T (t) ≥ T .

Here, T is independent from the choice of initial value X0 = (Ts, is(·), Vs) ∈ Ω.

Proof. It follows from the monotonicity of V/(1 + αV ) with respect to V and the
first equation of (1.1) that

dT (t)
dt

≥ s− dT (t)− k

α
T (t).

Hence, the variation of constants formula yields

T (t) ≥ s

d+ k
α

(
1− e−(d+ k

α )t
)

+ e−(d+ k
α )tTs →

s

d+ k
α

, as t→∞,

which implies lim inf
t→∞

T (t) ≥ T > 0 with T := s/(d+ k/α). �

Next we show that the limit infimum of V (t) is bounded below by a constant if
<0 > 1. Before the proof, we need the following lemma.

Lemma 4.2. Let <0 be defined by (2.15). If <0 > 1 and Vs > 0, then there exists
a positive constant ε0 > 0 such that

lim sup
t→∞

V (t) ≥ ε0.

Here, ε0 is independent from the choice of initial value X0 = (Ts, is(·), Vs) ∈ Ω with
Vs > 0.

Proof. From <0 = Nks
dc > 1, we can choose ε0 > 0 sufficiently small such that

Nks

(d+ k ε0
1+αε0

)c
1

1 + αε0
> 1 (4.1)

holds. For this ε0, we show that lim supt→∞ V (t) ≥ ε0. Suppose for the contrary,
if lim supt→∞ V (t) < ε0, then there exists a positive constant t0 > 0 such that
V (t) < ε0 holds for all t ≥ t0. From the first equation of (1.1), one gets

dT (t)
dt

≥ s− dT (t)− kT (t)
ε0

1 + αε0
, ∀t ≥ t0.
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The variation of constants formula yields

T (t) ≥ e−(d+k
ε0

1+αε0
)t
{
s

∫ t

t0

e(d+k
ε0

1+αε0
)τdτ + T (t0)

}
≥ s

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)(t−t0)
)
, ∀t ≥ t0.

(4.2)

From (4.1), it follows that there exists a sufficiently large t̃0 ≥ t0 such that

Nks

(d+ k ε0
1+αε0

)c

(
1− e−(d+k

ε0
1+αε0

)(t̃0−t0)
) 1

1 + αε0
> 1. (4.3)

Moreover, recalling that the right-hand side of (4.2) is monotone increasing with
respect to t, we have

T (t) ≥ s

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)(t̃0−t0)
)
, V (t) < ε0, ∀t ≥ t̃0. (4.4)

Here, without loss of generality, we can perform a time-shift of t̃0 on the solution
being studied. That is, we can replace the initial conditionX0 withX1 := Φ(t̃0, X0).
Then, from (4.4), the solution passing through X1 at time t = 0 satisfies

T (t) ≥ s

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)(t̃0−t0)
)
, V (t) < ε0, ∀t ≥ 0. (4.5)

Integrating the third equation of (1.1) yields

V (t) = e−ct
{∫ t

0

ecτ
∫ ∞

0

p(a)i(a, τ) da dτ + V (0)
}

≥
∫ t

0

e−c(t−τ)
∫ τ

0

p(a)i(a, τ) da dτ.

It follows from (2.3) and (4.5) that

V (t) ≥
∫ t

0

e−c(t−τ)
∫ τ

0

p(a)kT (τ − a)
V (τ − a)

1 + αV (τ − a)
σ(a) da dτ

≥ k s

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)(t̃0−t0)
) 1

1 + αε0

×
∫ t

0

e−c(t−τ)
∫ τ

0

p(a)σ(a)V (τ − a) da dτ.

(4.6)

Taking the Laplace transform to each side of above equation yields

V̂ (λ) ≥ ks

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)(t̃0−t0)
) 1

1 + αε0

×
∫ ∞

0

e−λt
∫ t

0

e−c(t−τ)
∫ τ

0

p(a)σ(a)V (τ − a) da dτ dt.
(4.7)
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Using the fact that the Laplace transform of a convolution of functions equals the
product of the Laplace transforms of each of the functions, we have∫ ∞

0

e−λt
∫ t

0

e−c(t−τ)
∫ τ

0

p(a)σ(a)V (τ − a) da dτ dt

=
∫ ∞

0

e−λte−ctdt×
∫ ∞

0

e−λt
∫ t

0

p(a)σ(a)V (t− a) da dt

=
1

λ+ c

∫ ∞
0

e−λtp(t)σ(t) dt× V̂ (λ).

(4.8)

Substituting (4.8) into (4.7) and dividing both sides by V̂ (λ), we have

1 ≥ ks

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)(t̃0−t0)
) 1

1 + αε0

1
λ+ c

∫ ∞
0

e−λtp(t)σ(t)dt.

Thus, taking λ→ 0, we obtain

1 ≥ Nks

(d+ k ε0
1+αε0

)c

(
1− e−(d+k

ε0
1+αε0

)(t̃0−t0)
) 1

1 + αε0
,

which contradicts to (4.3). This completes the proof. �

Under Lemma 4.2, we prove the following lemma about the lower bound of the
limit infimum of V .

Lemma 4.3. Let <0 be defined by (2.15). If <0 > 1 and Vs > 0, then there exists
a positive lower bound V > 0 such that

lim inf
t→∞

V (t) ≥ V . (4.9)

Here, V is independent from the choice of initial value X0 = (Ts, is(·), Vs) ∈ Ω with
Vs > 0.

Proof. Let us choose ε0 > 0 as in Lemma 4.2. It follows that lim supt→∞ V (t) ≥ ε0
holds, and hence, we only have the following two possibilities.

(i) There exists a positive constant t̃ > 0 such that V (t) ≥ ε0 for all t ≥ t̃;
(ii) Eventually V (t) oscillates around ε0.

For (i), we have lim inft→∞ V (t) ≥ ε0 and hence (4.9) holds with V = ε0. We
consider (ii). In this case, there exist two positive constants t1 > 0 and t2 > t1 such
that

V (t1) = V (t2) = ε0;

V (t) ≤ ε0, ∀t ∈ (t1, t2).
(4.10)

Now let C0 > 0 be a positive constant defined below, which is independent of the
choice of t1 and t2. For such C0, if we show

V (t) > ε0e
−cC0 , ∀t ∈ (t1, t2), (4.11)

then (4.9) holds with V = ε0e
−cC0 . Therefore, in the remainder of this proof, we

prove (4.11).
First we consider the case where t2 − t1 ≤ C0. Since we have from the third

equation of (1.1) that
dV (t)
dt

> −cV (t).
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With the help of variation of constants formula and the first equation of (4.10), we
obtain

V (t) > V (t1)e−c(t−t1) ≥ ε0e−cC0 = V , ∀t ∈ (t1, t2).

Hence (4.11) holds.
Next we consider the case where t2 − t1 > C0. Similar to the above, we have

V (t) > V , ∀t ∈ [t1, t1 + C0]

and hence, we are left to show that

V (t) > V , ∀t ∈ (t1 + C0, t2). (4.12)

Suppose for the contrary, if there exists a positive constant C̃0 ∈ (0, t2 − t1 − C0)
such that

V (t) > V ∀t ∈ (t1 + C0, t1 + C0 + C̃0);

V (t1 + C0 + C̃0) = V
(4.13)

and show a contradiction. Now, from the second equation of (4.10), we have

V (t) ≤ ε0, ∀t ∈ [t1, t1 + C0 + C̃0] (4.14)

and hence, from the first equation of (1.1), this implies that

dT (t)
dt

≥ s− dT (t)− kT (t)
ε0

1 + αε0
, ∀t ∈ [t1, t1 + C0 + C̃0],

which leads to the inequality

T (t) ≥ s

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)(t−t1)
)
∀t ∈ [t1, t1 + C0 + C̃0].

Since the right-hand side of this inequality is monotone increasing with respect to
t, we have

T (t) ≥ s

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)
C0
2

)
, ∀t ∈ [t1 +

C0

2
, t1 + C0 + C̃0]. (4.15)

Here, without loss of generality, we can perform a time-shift of t1 + C0/2 of the
solution being studied. That is, we can replace the initial condition X0 with X2 :=
Φ(t1+C0/2, X0). Then, from (4.13), (4.14) and (4.15), the solution passing through
X2 at time t = 0 satisfies

T (t) ≥ s

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)
C0
2

)
, ∀t ∈ [0,

C0

2
+ C̃0];

V (t) ≤ ε0, V (t) > V , ∀t ∈ [0,
C0

2
+ C̃0);

V (
C0

2
+ C̃0) = V .

(4.16)

Now, from first inequality in (4.6) we obtain

V (t) ≥
∫ t

0

e−c(t−τ)
∫ τ

0

p(a)kT (τ − a)
V (τ − a)

1 + αV (τ − a)
σ(a) da dτ.

With the help of (4.16), we have

V = V (
C0

2
+ C̃0)
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≥
∫ C0

2 +C̃0

0

e−c(
C0
2 +C̃0−τ)

∫ τ

0

p(a)kT (τ − a)
V (τ − a)

1 + αV (τ − a)
σ(a) da dτ

≥ k s

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)
C0
2

) V

1 + αε0

×
∫ C0

2 +C̃0

0

e−c(
C0
2 +C̃0−τ)

∫ τ

0

p(a)σ(a) da dτ.

Dividing both sides by V and performing integration by parts yield

1 ≥ k s

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)
C0
2

) 1
1 + αε0

× 1
c

{∫ C0
2 +C̃0

0

p(a)σ(a) da− e−c(
C0
2 +C̃0)

∫ C0
2 +C̃0

0

ecτp(τ)σ(τ) dτ
}
.

(4.17)

Now, noticing that from (iv) of Assumption 2.1,∫ C0
2 +C̃0

0

p(a)σ(a) da and
∫ C0

2 +C̃0

0

ecτp(τ)σ(τ) dτ

become finite, ∫ a†

0

p(a)σ(a) da (= N) and
∫ a†

0

ecτp(τ)σ(τ) dτ

for sufficiently large C0. Thus the right-hand side of (4.17) converges to

Nks

(d+ k ε0
1+αε0

)c
1

1 + αε0

as C0 →∞. Consequently, from (4.1), we see that this value is greater than 1 and
thus, for sufficiently large C0 > 0,

k
s

d+ k ε0
1+αε0

(
1− e−(d+k

ε0
1+αε0

)
C0
2

) 1
1 + αε0

× 1
c

{∫ C0
2 +C̃0

0

p(a)σ(a) da− e−c(
C0
2 +C̃0)

∫ C0
2 +C̃0

0

ecτp(τ)σ(τ) dτ
}
> 1

(4.18)

holds. In fact, since C0 is an arbitrary large constant, we can assume without
loss of generality that C0 satisfies (4.18), which contradicts with (4.17). Therefore,
there exists no C̃0 ∈ (0, t2 − t1 − C0) satisfying (4.13) and thus, (4.12) holds. This
completes the proof. �

5. Global stability of infection equilibrium

With the above preparation, we are ready to study the stability of equilibria.
Now, from (2.3) and (2.13), we can easily see that for t− a > 0,

i(a, t)
i∗(a)

=
T (t− a)
T ∗ V ∗

1+αV ∗

V (t− a)
1 + αV (t− a)

holds. Thus, it follows from Lemmas 4.1 and 4.3 that for sufficiently small ε > 0,
there exists t3 > 0 such that

i(a, t)
i∗(a)

≥ T − ε
T ∗ V ∗

1+αV ∗

V − ε
1 + α(V − ε)

(> 0)
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holds for all t ≥ max(t3, a). Thus, letting t4 := max(t3, a†), the integral∫ a†

0

α(a)i∗(a)g
( i(a, t)
i∗(a)

)
da (5.1)

is well-defined for any t ≥ t4, where g is a function defined by (3.4). In what follows,
without loss of generality, we can perform a time-shit of t4 on the solution being
studied. That is, we can replace the initial condition X0 with X3 := Φ(t4, X0).
Under this setting, using a Lyapunov functional which includes the integral (5.1),
we prove the following main theorem.

Theorem 5.1. Let <0 be defined by (2.15). The infection equilibrium E∗1 of (1.1)
is globally asymptotically stable if <0 > 1.

Proof. We define a Lyapunov function

U2(t) = T ∗g
(T (t)
T ∗

)
+

1
N

∫ a†

0

α(a)i∗(a)g
( i(a, t)
i∗(a)

)
da+

1
N
g
(V (t)
V ∗

)
.

where g(z) = z−1− ln z and has global minimum value in 1, g(1) = 0. It is easy to
see that U2(t) is nonnegative and infection equilibrium E∗1 is the global minimum
point.

Using the equilibrium equations (2.11), differentiating U2(t) along the solutions
of (1.1) gives

dU2(t)
dt

=
(

1− T ∗

T (t)

)(
dT ∗ + kT ∗

V ∗

1 + αT ∗
− dT (t)− kT (t)

V (t)
1 + αV (t)

)
+

1
N

∫ a†

0

α(a)
(

1− i∗(a)
i(a, t)

)∂i(a, t)
∂t

da

+
1
N

(
1− V ∗

V (t)

)(∫ a†

0

p(a)i(a, t)da− cV (t)
)

= − d

T (t)
(T (t)− T ∗)2 + kT ∗

V ∗

1 + αV ∗
− kT ∗ T ∗V ∗

T (t)(1 + αV ∗)
− kT (t)

V (t)
1 + αV (t)

+ kT ∗
V (t)

1 + αV (t)
− 1
N

∫ a†

0

α(a)
(

1− i∗(a)
i(a, t)

)(∂i(a, t)
∂a

+ δ(a)i(a, t)
)
da

+
1
N

∫ a†

0

p(a)i(a, t)da− cV (t)
N
− 1
N

V ∗

V (t)

∫ a†

0

p(a)i(a, t)da+
cV ∗

N
.

It is useful to note that
d

da

( i(a, t)
i∗(a)

− 1− ln
i(a, t)
i∗(a)

)
=
(

1− i∗(a)
i(a, t)

)( ia(a, t)
i∗(a)

− i(a, t)i∗a(a)
[i∗(a)]2

)
, (5.2)

and
i∗a(a) = −δ(a)i∗(a). (5.3)

It follows that(
1− i∗(a)

i(a, t)

)∂i(a, t)
∂a

= i∗(a)
d

da

( i(a, t)
i∗(a)

− 1− ln
i(a, t)
i∗(a)

)
+ δ(a)i∗(a)− δ(a)i(a, t).

Using integration by part, we have∫ a†

0

α(a)
(

1− i∗(a)
i(a, t)

)∂i(a, t)
∂a

da (5.4)
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=α(a)i∗(a)
( i(a, t)
i∗(a)

− 1− ln
i(a, t)
i∗(a)

)∣∣∣a=a†
a=0

(5.5)

−
∫ a†

0

( i(a, t)
i∗(a)

− 1− ln
i(a, t)
i∗(a)

)
(α′(a)i∗(a) + α(a)i∗a(a)) da (5.6)

+
∫ a†

0

α(a)(δ(a)i∗(a)− δ(a)i(a, t))da. (5.7)

We infer from

α(0) = N, α(a†) = 0,

i∗(0) = kT ∗
V ∗

1 + αV ∗
, i(0, t) = kT (t)

V (t)
1 + αV (t)

,

i∗a(a) = −δ(a)i∗(a), α′(a) = δ(a)α(a)− p(a)

that

α(0)i∗(0)
( i(0, t)
i∗(0)

− 1− ln
i(0, t)
i∗(0)

)
= NkT ∗

V ∗

1 + αV ∗
g
(T (t)V (t)(1 + αV ∗)
T ∗V ∗(1 + αV (t))

)
,

α(a†)i∗(a†)
( i(a†, t)
i∗(a†)

− 1− ln
i(a†, t)
i∗(a†)

)
= 0, α′(a)i∗(a) + α(a)i∗a(a) = −p(a)i∗(a).

Hence, it follows that∫ a†

0

α(a)
(

1− i∗(a)
i(a, t)

)(∂i(a, t)
∂a

+ δ(a)i(a, t)
)
da

= −NkT ∗ V ∗

1 + αV ∗
g
(T (t)V (t)(1 + αV ∗)
T ∗V ∗(1 + αV (t))

)
+
∫ a†

0

( i(a, t)
i∗(a)

− 1− ln
i(a, t)
i∗(a)

)
p(a)i∗(a)da.

(5.8)

Note that kT ∗ = c(1+αV ∗)
N and

∫ a†
0
p(a)i∗(a)da = NkT ∗ V ∗

1+αV ∗ , one gets

dU2(t)
dt

= − d

T (t)
(T (t)− T ∗)2 + kT ∗

V ∗

1 + αV ∗
− kT ∗ T ∗V ∗

T (t)(1 + αV ∗)

+ kT ∗
V (t)

1 + αV (t)
− kT (t)

V (t)
1 + αV (t)

+ kT ∗
V ∗

1 + αV ∗
g
(T (t)V (t)(1 + αV ∗)
T ∗V ∗(1 + αV (t))

)
− 1
N

∫ a†

0

( i(a, t)
i∗(a)

− 1− ln
i(a, t)
i∗(a)

)
p(a)i∗(a)da

+
1
N

∫ a†

0

p(a)i(a, t)da− kT ∗V (t)
1 + αV ∗

− 1
N

V ∗

V (t)

∫ a†

0

p(a)i(a, t)da+
kT ∗V ∗

1 + αV ∗

= − d

T (t)
(T (t)− T ∗)2 − 1

N

∫ a†

0

p(a)i∗(a)g
( V ∗i(a, t)
V (t)i∗(a)

)
da

− 1
N

∫ a†

0

p(a)i∗(a)g
( T ∗
T (t)

)
da− 1

N

∫ a†

0

p(a)i∗(a)g
(1 + αV (t)

1 + αV ∗

)
da

+
1
N

∫ a†

0

p(a)i∗(a)
(
− 1− 1 + αV (t)

1 + αV ∗
+
V (t)(1 + αV ∗)
V ∗(1 + αV (t))

− V (t)
V ∗

)
da
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= − d

T (t)
(T (t)− T ∗)2 − 1

N

∫ a†

0

p(a)i∗(a)g
( V ∗i(a, t)
V (t)i∗(a)

)
da

− 1
N

∫ a†

0

p(a)i∗(a)g
( T ∗
T (t)

)
da− 1

N

∫ a†

0

p(a)i∗(a)g
(1 + αV (t)

1 + αV ∗

)
da

− 1
N

∫ a†

0

p(a)i∗(a)
α(V (t)− V ∗)2

V ∗(1 + αV (t))(1 + αV ∗)
da.

Hence, positive-definite function U2(t) has negative derivative dU2(t)
dt with the prop-

erty of function g(z) = z − 1 − ln z. Furthermore, one can obtain the equality
dU2(t)
dt = 0 holds if and only if (T (t), i(a, t), V (t) = T ∗, i∗(a), V ∗). Hence, from the

invariance principle for relatively compact orbit {Φ(t,X0) : t ≥ 0} (see [20, The-
orem 4.2 of Chapter IV]), the infection equilibrium E∗1 is globally asymptotically
stable whenever it exists. �

Discussion

Considering age as a continuous variable will leads to partial differential equa-
tions (PDEs) formulation, where age is defined as the time that has passed since the
infection of the cell. Due to the greater flexibility, both experimentally and math-
ematically, Nelson et al. [15] formulated an age-structured model of HIV infection
allowing for death rate and virus production rate of infected cells are infection-age-
dependent variable. With a specific form of the viral production function and con-
stant death rate of infected cells, they studied local stability of the model without
or with drug treatment, respectively utilizing the Jacobian matrix to calculate the
characteristic equation. Actually, global stability is one of the challenging problems
in the analysis of biological models and it is essential to rule out other dynamical
scenarios such as periodic solutions. Huang et al [4] established global dynamical
properties of model in [15] without (or with) drug treatment by constructing suit-
able Lyapunov functions. However, for the proof of the global stability of endemic
equilibrium, we have to show first the relative compactness of the orbit generated
by model in order to make use of the invariance principle. Furthermore, uniform
persistence of system must be shown, which is extremely important in constructing
the Lyapunov functional. The main contribution of this paper has twofold. First,
we give analytic result on the global stability of endemic equilibrium, that is, the
relative compactness of the orbit generated by model and uniform persistence of
system. Second, we perform a rigorous mathematical analysis on the global dynam-
ics for a continuous age-structured HIV infection model with saturation infection
rate. The results obtain in this paper can be regarded as a supplement and ex-
tension to [4] and [15]. According to [18], system (1.1) with (1.2) can be used to
study the possible impact of drug treatment of HIV-1 infections on evolution of the
pathogen. The impact of combination therapy using RT and protease inhibitors
on the emergence of drug-resistant HIV-1 strains and the effect of drug efficacy on
viral dynamics by numerical simulations will be left as future work.
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