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GLOBAL PHASE PORTRAITS OF QUADRATIC SYSTEMS
WITH AN ELLIPSE AND A STRAIGHT LINE AS INVARIANT

ALGEBRAIC CURVES

JAUME LLIBRE, JIANG YU

Abstract. In this article we study a class of integrable quadratic systems

and classify all its phase portraits. More precisely, we characterize the class
of all quadratic polynomial differential systems in the plane having an ellipse

and a straight line as invariant algebraic curves. We show that this class is

integrable and we provide all the different topological phase portraits that this
class exhibits in the Poincaré disc.

1. Introduction and statement of main results

A planar polynomial differential system is a differential system of the form

ẋ = P (x, y),

ẏ = Q(x, y),
(1.1)

where P and Q are real polynomials. We say that the polynomial differential system
(1.1) has degree n, if n is the maximum of the degrees of the polynomials P and Q.
Usually a polynomial differential system of degree 2 is denoted simply as a quadratic
system. The dot in (1.1) denotes derivative with respect to the independent variable
t.

Let U be a dense and open subset of R2. A non-locally constant function H :
U → R is a first integral of the differential system (1.1) if H is constant on the
orbits of (1.1) contained in U , i.e.

dH

dt
=
∂H

∂x
(x, y)P (x, y) +

∂H

∂y
(x, y)Q(x, y) = 0

in the points (x, y) ∈ U . We say that a quadratic system is integrable if it has a
first integral H : U → R.

Quadratic systems have been studied intensively, and more than one thousand
papers have been published about these polynomial differential equations of degree
2, see for instance the references quoted in the books of Ye [26, 27] and Reyn [22].
But the problem of classifying all the integrable quadratic system remains open.
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For a quadratic system the notion of integrability reduces to the existence of a
first integral, so the following natural question arises:

Given a quadratic system, how to recognize if it has a first integral?
or Given a class of quadratic systems depending on parameters, how
to determine the values of the parameters for which the system has
a first integral?

At this moment these questions do not have a good answer.
Many classes of integrable quadratic systems have been studied, and for them

all the possible global topological phase portraits have been classified. One of the
first of these classes studied was the classification of the quadratic centers and their
first integrals which started with the works of Dulac [5], Kapteyn [9, 10], Bautin
[3], Lunkevich and Sibirskii [15], Schlomiuk [23], Żo la̧dek [29], Wei and Ye [28],
Artés, Llibre and Vulpe [2]. The class of the homogeneous quadratic systems, see
Lyagina [16], Markus [17], Korol [11], Sibirskii and Vulpe [24], Newton [20], Date
[4] and Vdovina [25], Another class is the one formed by the Hamiltonian quadratic
systems, see Artés and Llibre [1], Kalin and Vulpe [8] and Artés, Llibre and Vulpe
[2].

In this article we study a new class of integrable quadratic systems and classify
all its phase portraits. More precisely we analyze the class of all quadratic polyno-
mial differential systems having an ellipse and a straight line as invariant algebraic
curves.

Our first result is to provide a normal form for all quadratic polynomial differ-
ential systems having an ellipse and a straight line as invariant algebraic curves.

Theorem 1.1. A planar polynomial differential system of degree 2 having an el-
lipse and a straight line as invariant algebraic curves, after an affine change of
coordinates, can be written as

ẋ = −cy(x− r),
ẏ = C(x2 + y2 − 1) + cx(x− r),

(1.2)

where c, C ∈ R.

This theorem is proved in section 2. In the next result we present the first
integrals of the polynomial differential system of degree 2 having an ellipse and a
straight line as invariant algebraic curves.

Theorem 1.2. The quadratic polynomial differential systems (1.2) have the fol-
lowing first integrals:

(a) H = x2 + y2 if C = 0 and c 6= 0;
(b) H = x if C 6= 0 and c = 0;
(c) H = (x− r)2C/c(x2 + y2 − 1) if Cc 6= 0.

Moreover, the quadratic polynomial differential systems (1.2) have no limit cycles.

This theorem is proved in section 2.
In the next theorem we present the topological classification of all the phase

portraits of planar polynomial differential system of degree 2 having an ellipse and
a straight line as invariant algebraic curves in the Poincaré disc. For a definition of
the Poincaré compactification and Poincaré disc see section 3, and for a definition
of a topological equivalent phase portraits of a polynomial differential system in
the Poincaré disc see sections 3 and 4.
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Figure 1. Phase portraits of systems (1.2)

Theorem 1.3. Given a planar polynomial differential system of degree 2 having
an ellipse and a straight line as invariant algebraic curves its phase portrait is
topological equivalent to one of the 18 phase portraits of Figure 1.

This theorem is proved in section 5.
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2. Proofs of Theorems 1.1 and 1.2

Suppose that a polynomial differential system in the plane has an invariant
ellipse and an invariant straight line. Then, first we do an affine transformation
that changes the ellipse to a circle and of course the straight line to another straight
line, second we translate the center of the circle to the origin of coordinates, third we
rescale the coordinates in order that the circle has radius one, and finally we rotate
the coordinates around the origin until the straight line takes the form x − r = 0
with r ≥ 0. Hence, we can assume that the systems having an ellipse and a straight
line as invariant algebraic curves, without loss of generality, these curves are

f1(x, y) = x2 + y2 − 1 = 0 and f2(x, y) = x− r = 0, r ≥ 0.

We shall need the following result which is a consequence of [14, Corollary 6],
which characterizes all rational differential systems having two curves f1 = 0 and
f2 = 0 as invariant algebraic curves. Since this result plays a main role in this work
and its proof given in [13, Theorem 2.1] is shorter, for completeness we present it
here.

Theorem 2.1. Let f1 and f2 be polynomials in R[x, y] such that the Jacobian
{f1, f2} 6≡ 0. Then any planar polynomial differential system which admits f1 = 0
and f2 = 0 as invariant algebraic curves can be written as

ẋ = ϕ1{x, f2}+ ϕ2{f1, x}, ẏ = ϕ1{y, f2}+ ϕ2{f1, y}, (2.1)

where ϕ1 = λ1f1 and ϕ2 = λ2f2, with λ1 and λ2 being arbitrary polynomial func-
tions.

Proof. Consider the vector fields

{∗, f2} = det

(
∂∗
∂x

∂∗
∂y

∂f2
∂x

∂f2
∂y

)
and {f1, ∗} = det

(
∂f1
∂x

∂f1
∂y

∂∗
∂x

∂∗
∂y

)
.

Using this notation and denoting by X the vector field associated to system (2.1),
we have

X(∗) = ϕ1{∗, f2}+ ϕ2{f1, ∗}. (2.2)
In this way

X(f1) = ϕ1{f1, f2}+ ϕ2{f1, f1} = λ1f1{f1, f2} = Kf1.

Hence f1 = 0 is an invariant algebraic curve of the polynomial vector field X
associated to system (2.1) with cofactor K = λ1{f1, f2}. Analogously we can show
that f2 = 0 is also an invariant algebraic curve of X.

Now we prove that the vector field X is the most general polynomial vector
field which admits f1 = 0 and f2 = 0 as invariant algebraic curves. Indeed let
Y = (Y1(x, y), Y2(x, y)) be an arbitrary polynomial vector field having f1 = 0 and
f2 = 0 as invariant algebraic curves. Then taking

ϕ1 =
Y (f1)
{f1, f2}

and ϕ2 =
Y (f2)
{f1, f2}

and substituting the expressions of ϕ1 and ϕ2 in the expression (2.2) of the vector
field X we obtain for an arbitrary polynomial F that

X(F ) = Y (f1)
{F, f2}
{f1, f2}

+ Y (f2)
{f1, F}
{f1, f2}

.
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Substituting

Y (f1) = Y1
∂f1
∂x

+ Y2
∂f1
∂y

and Y (f2) = Y1
∂f2
∂x

+ Y2
∂f2
∂y

in X(F ) we have that X(F ) = Y (F ). Therefore the theorem is proved, because of
the arbitrariness of the function F . �

Using this theorem we have the following proof.

Proof of Theorem 1.1. Noting that

{x, f2} = 0, {y, f2} = −1, {f1, x} = −2y, {f1, y} = 2x,

and applying Theorem 2.1 we can write systems (1.1) of degree less than or equalt
2 having an ellipse and a straight line as invariant algebraic curves as

ẋ = −2λ2y(x− r),
ẏ = −λ1(x2 + y2 − 1) + 2λ2x(x− r),

where λ1, λ2 are arbitrary constants. Then we have system (1.2). �

Proof of Theorem 1.2. Statements (a) and (b) follow easily. It is immediate that
the function H given in statement (c) on the orbits of system (5.1) satisfies

dH

dt
=
∂H

∂x
(−cy(x− r)) +

∂H

∂y
(C(x2 + y2 − 1) + cx(x− r)) = 0.

So H is a first integral of system (5.1), and this proves statement (c).
Since both first integrals are defined in the whole plane except perhaps on the

invariant straight line x = r, the system has no limit cycles. This completes the
proof of the theorem. �

3. Poincaré compactification

Let
X = P (x, y)

∂

∂x
+Q(x, y)

∂

∂y
be the planar polynomial vector field of degree n associated to the polynomial
differential system (1.1) of degree n. The Poincaré compactified vector field p(X )
associated to X is an analytic vector field on S2 constructed as follows (see, for
instance [7], or Chapter 5 of [6]).

Let S2 = {y = (y1, y2, y3) ∈ R3 : y2
1 + y2

2 + y2
3 = 1} (the Poincaré sphere) and

TyS2 be the tangent plane to S2 at point y. We identify the plane R2 where we
have our polynomial vector field X with the tangent plane T(0,0,1)S2. Consider the
central projection f : T(0,0,1)S2 → S2. This map defines two copies of X , one in the
northern hemisphere and the other in the southern hemisphere. Denote by X ′ the
vector field Df ◦ X defined on S2 except on its equator S1 = {y ∈ S2 : y3 = 0}.
Clearly the equator S1 is identified to the infinity of R2. In order to extend X ′ to a
vector field on S2 (including S1) it is necessary that X satisfies suitable conditions.
In the case that X is a planar polynomial vector field of degree n then p(X ) is the
only analytic extension of yn−1

3 X ′ to S2. On S2\S1 there are two symmetric copies
of X , and knowing the behaviour of p(X ) around S1, we know the behaviour of X
at infinity.

The projection of the closed northern hemisphere of S2 on y3 = 0 with the
mapping (y1, y2, y3) 7→ (y1, y2) is called the Poincaré disc, and it is denoted by D2.
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The Poincaré compactification has the property that S1 is invariant under the flow
of p(X ).

We say that two polynomial vector fields X and Y on R2 are topologically equiva-
lent if there exists a homeomorphism on S2 preserving the infinity S1 carrying orbits
of the flow induced by p(X ) into orbits of the flow induced by p(Y), preserving or
reversing simultaneously the sense of all orbits.

As S2 is a differentiable manifold, for computing the expression for p(X ), we can
consider the six local charts Ui = {y ∈ S2 : yi > 0}, and Vi = {y ∈ S2 : yi < 0}
where i = 1, 2, 3; and the diffeomorphisms Fi : Ui → R2 and Gi : Vi → R2 for
i = 1, 2, 3 are the inverses of the central projections from the planes tangent at
the points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1) respectively.
If we denote by (u, v) the value of Fi(y) or Gi(y) for any i = 1, 2, 3 (so (u, v)
represents different things according to the local charts under consideration), then
some easy computations give for p(X ) the following expressions:

vn∆(u, v)
(
Q
(1
v
,
u

v

)
− uP

(1
v
,
u

v

)
,−vP

(1
v
,
u

v

))
in U1, (3.1)

vn∆(u, v)
(
P
(u
v
,

1
v

)
− uQ

(u
v
,

1
v

)
,−vQ

(u
v
,

1
v

))
in U2, (3.2)

∆(u, v)(P (u, v), Q(u, v)) in U3,

where ∆(u, v) = (u2 + v2 + 1)−(n−1)/2. The expression for Vi is the same as that
for Ui except for a multiplicative factor (−1)n−1. In these coordinates for i = 1, 2,
v = 0 always denotes the points of S1. In what follows we omit the factor ∆(u, v)
by rescaling the vector field p(X ). Thus we obtain a polynomial vector field in each
local chart.

4. Separatrices and canonical regions

Let p(X ) be the Poincaré compactification in the Poincaré disc D of the polyno-
mial differential system (1.1) defined in R2, and let Φ be its analytic flow. Following
Markus [18] and Neumann [19] we denote by (U,Φ) the flow of a differential system
on an invariant set U ⊂ D under the flow Φ. Two flows (U,Φ) and (V,Ψ) are topo-
logically equivalent if and only if there exists a homeomorphism h : U → V which
sends orbits of the flow Φ into orbits of the flow Ψ either preserving or reversing
the orientation of all the orbits.

The flow (U,Φ) is said to be parallel if it is topologically equivalent to one of the
following flows:

(i) The flow defined in R2 by the differential system ẋ = 1, ẏ = 0, called strip
flow.

(ii) The flow defined in R2 \ {(0, 0)} by the differential system in polar coordi-
nates ṙ = 0, θ̇ = 1, called annular flow.

(iii) The flow defined in R2 \ {(0, 0)} by the differential system in polar coordi-
nates ṙ = r, θ̇ = 0, called spiral or radial flow.

It is known that the separatrices of the vector field p(X ) in the Poincaré disc D
are:

(I) all the orbits of p(X ) which are in the boundary S1 of the Poincaré disc
(i.e. at the infinity of R2),

(II) all the finite singular points of p(X ),
(III) all the limit cycles of p(X ), and
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(IV) all the separatrices of the hyperbolic sectors of the finite and infinite singular
points of p(X ).

Moreover such vector fields p(X ), coming from polynomial vector fields (1.1) of R2

having finitely many singular points finite and infinite, have finitely many separa-
trices. For more details see for instance [12].

Let S be the union of the separatrices of the flow (D,Φ) defined by p(X ) in the
Poincaré disc D. It is easy to check that S is an invariant closed set. If N is a
connected component of D \ S, then N is also an invariant set under the flow Φ of
p(X ), and the flow (N,Φ|N ) is called a canonical region of the flow (D,Φ) .

Proposition 4.1. If the number of separatrices of the flow (D,Φ) is finite, then
every canonical region of the flow (D,Φ) is parallel.

For a proof of this proposition see [19] or [12]. The separatrix configuration Sc

of a flow (D,Φ) is the union of all the separatrices S of the flow together with an
orbit belonging to each canonical region. The separatrix configuration Sc of the
flow (D,Φ) is said to be topologically equivalent to the separatrix configuration S∗c
of the flow (D,Φ∗) if there exists an orientation preserving homeomorphism from
D to D which transforms orbits of Sc into orbits of S∗c , and orbits of S into orbits
of S∗.

Theorem 4.2 (Markus–Neumann–Peixoto). Let (D,Φ) and (D,Φ∗) be two com-
pactified Poincaré flows with finitely many separatrices coming from two polynomial
vector fields (1.1). Then they are topologically equivalent if and only if their sepa-
ratrix configurations are topologically equivalent.

For a proof of this result we refer the reader to [18, 19, 21]. It follows from the
previous theorem that in order to classify the phase portraits in the Poincaré disc
of a planar polynomial differential system having finitely many separatrices finite
and infinite, it is enough to describe their separatrix configuration. This is what we
have done in Figure 1, where we also have added the invariant straight line x = r
with r ≥ 0 and the invariant circle x2 + y2 = 1.

5. Phase portraits

It is clear that the phase portrait of the quadratic polynomial differential system
(1.2) with C = 0, if formed by all the invariant circles centered at the origin of
coordinates, intersected with the invariant straight line x = r filled of equilibria,
providing the two first phase portraits of Figure 1.

In what follows we shall study the phase portraits of system (1.2) with C 6= 0.
Doing the rescaling of the time τ = Ct, and renaming c/C again by c, we have the
quadratic system

ẋ = −cy(x− r),
ẏ = x2 + y2 − 1 + cx(x− r),

(5.1)

with c ∈ R and r ≥ 0.

Remark 5.1. System (5.1) is reversible because it does not change under the
transformation (x, y, t) → (x,−y,−t). Hence we know that the phase portrait of
system (5.1) is symmetric with respect to the x−axis.

The way for studying the phase portraits of systems (5.1) is the following. First
we shall characterize all the finite equilibria of those systems together with their
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local phase portraits. After we do the same for the infinite equilibria, and finally
using this information on the equilibria and the existence of the invariant straight
line x = r with r ≥ 0, and of the invariant ellipse x2 + y2 = 1 we shall provide the
classification of all the phase portraits of systems (5.1).

5.1. The finite singular points. The finite singular points of system (5.1) are
characterized in the next result.

Proposition 5.2. System (5.1) has the following finite singular points:
(a) if c = 0 all the points of circle x2 + y2 = 1;
(b) if c /∈ {−1, 0} the singular points are

M± =
(
r,±

√
1− r2

)
if 0 ≤ r < 1,

M = (1, 0) if r = 1,

N± = (x∗±, 0) =
(cr ±√∆

2(c+ 1)
, 0
)

if ∆ > 0,

N = (x∗, 0) =
( cr

2(c+ 1)
, 0
)

if ∆ = 0,

(5.2)

where ∆ = c2r2 + 4(c+ 1);
(d) if c = −1 the singular points are

(0,±1) if r = 0,(1
r
, 0
)

and (r,±
√

1− r2) if 0 < r < 1,(1
r
, 0
)

if r ≥ 1.

(5.3)

Proof. The proof follows easily studying the real solutions of the system cy(x−r) =
0, x2 + y2 − 1 + cx(x− r) = 0. �

→

↑r
R8 L8 R7 R6

L7 P2 L6 L5 L4

P1 1

R3

R5 L3 R4 L2 L1 R2 R1

∆ = 0

−2 P3 0 c

Figure 2. Bifurcation diagram

We write the curve ∆ = 0 in the strip {(c, r) : c ∈ R, 0 ≤ r ≤ 1} as

c±(r) =
−2± 2

√
1− r2

r2
. (5.4)
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Obviously c−(r) ≤ −2 ≤ c+(r).
Now we define the regions

R1 ={(c, r) : 0 ≤ r < 1, c > 0},
R2 ={(c, r) : 0 ≤ r < 1, −1 < c < 0},
R3 ={(c, r) : 0 < r < 1, c+(r) < c < −1},
R4 ={(c, r) : 0 ≤ r < 1, c−(r) < c < c+(r)},
R5 ={(c, r) : 0 < r < 1, c < c−(r)},
R6 ={(c, r) : 1 < r, c > 0},
R7 ={(c, r) : 1 < r, −1 < c < 0},
R8 ={(c, r) : 1 < r, c < −1},

the curves

L1 ={(c, r) : 0 < r < 1, c = −1},
L2 ={(c, r) : 0 < r < 1, −2 < c = c+(r)},
L3 ={(c, r) : 0 < r < 1, c = c−(r) < −2},
L4 ={(c, r) : r = 1, 0 < c},
L5 ={(c, r) : r = 1, −1 < c < 0},
L6 ={(c, r) : r = 1, −2 < c < −1},
L7 ={(c, r) : r = 1, c < −2},
L8 ={(c, r) : r > 1, c = −1},
L9 ={(c, r) : r ≥ 0, c = 0}.

and the points P1(c, r) = (−1, 1), P2(c, r) = (−2, 1) and P3(c, r) = (−1, 0). See
Figure 2.

For definitions of elliptic and hyperbolic sectors, cusp, and hyperbolic, semi-
hyperbolic and nilpotent singular points see [6].

Proposition 5.3. System (5.1) has the following finite singular points if its pa-
rameters (c, r) are in

(R1) two hyperbolic saddles M± and two centers N±.
(R2) four hyperbolic singular points: M+ is an unstable node, M− is a stable

node, and N± are saddles.
(R3) three hyperbolic singular points: M+ is an unstable node, M− is a stable

node, and N+ is saddle; and a center N−.
(R4) two hyperbolic singular points: M+ is an unstable node, and M− is a stable

node.
(R5) three hyperbolic singular points: M+ is an unstable node, M− is a stable

node, and N− is saddle; and a center N+.
(R6,7) one hyperbolic saddle N+ and a center N−.

(R8) two centers N±.
(L1) three hyperbolic singular points: M+ is an unstable node, M− is a stable

node, and N is a saddle.
(L2,3) two hyperbolic singular points: M+ is an unstable node and M− is a stable

node, and a nilpotent cusp N .
(L4) M = (1, 0) is a nilpotent saddle and N = (−1/(c+ 1), 0) is a center.
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(L5) M = (1, 0) is a nilpotent singular point formed by one elliptic sector and
one hyperbolic sector, and N = (−1/(c+ 1), 0) is a hyperbolic saddle.

(L6,7) M = (1, 0) is a nilpotent singular point formed by one elliptic sector and
one hyperbolic sector, and N = (−1/(c+ 1), 0) is a center.

(L8) N(1/r, 0) is a center.
(L9) all the points of circle x2 + y2 = 1 are singular points.
(P1) M = (1, 0) is a nilpotent singular point formed by one elliptic sector and

one hyperbolic sector.
(P2) M = (1, 0) is a degenerated singular point formed by the union of two

elliptic sectors.
(P3) two hyperbolic singular points: M+ is an unstable node and M− is a stable

node.

Proof. On the curve L9 we have that c is zero, so the straight lines x = constant
are invariant by system (5.1), see the phase portrait L9 in Figure 1.

In the following we always assume c 6= 0. We distinguish two cases in the study
of the finite singular points of system (5.1).

Case 1: Singular points on the invariant straight line x = r. Clearly system (5.1)
has no singular point on x = r when r > 1, a unique singular point M when r = 1,
and the singular points M± for 0 ≤ r < 1, see (5.2).

Subcase 1.1: 0 ≤ r < 1. The eigenvalues of the Jacobian matrix of system (5.1)
at M+ are −c

√
1− r2 and 2

√
1− r2, and at M− are c

√
1− r2 and −2

√
1− r2.

Therefore, M± are hyperbolic saddles if c > 0; and M+ is an unstable hyperbolic
node and M− is a stable hyperbolic node if c < 0, see for more details Theorem
2.15 of [6] where are described the local phase portraits of the hyperbolic singular
points.

Subcase 1.2: r = 1. The Jacobian matrix of system (5.1) at M(1, 0) is

JM =
(

0 0
c+ 2 0

)
.

Subcase 1.2.1: c 6= −2. So M is a nilpotent singular point. Using [6, Theorem
3.5] for studying the local phase portraits of the nilpotent singular points we get
that M a nilpotent saddle if c > 0, and if c < 0 and different from −2 is reunion of
one elliptic sector with one hyperbolic sector.

Subcase 1.2.2: c = −2. Using the polar blowing-up centered at M , i.e. x =
ρ cos θ + 1 and y = ρ sin θ, system (5.1) becomes

ρ̇ = ρ2 sin θ,

θ̇ = −ρ cos θ.
(5.5)

The singular points of (5.5) on {ρ = 0} are located at θ = ±π/2. Then (0, π/2)
is an unstable hyperbolic node and (0,−π/2) is a stable hyperbolic node. Doing a
blowing down we obtain that M is formed by the union of two elliptic sectors. See
picture P2 in Figure 1.

Case 2: Singular points on the straight line y = 0.
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Subcase 2.1: ∆ > 0 and c 6= −1. Then system (5.1) has two singular points
N± = (x∗±, 0), see (5.2). The Jacobian matrix of system (5.1) at the points N± is

J =
(

0 −c(x∗± − r)
±
√

∆ 0

)
. (5.6)

It is easy to check that

(x∗+ − r)(x∗− − r) =
r2 − 1
c+ 1

, (x∗+ − r) + (x∗− − r) = − (c+ 2)r
c+ 1

.

Subcase 2.1.1: 0 ≤ r < 1. Then we have x∗− < r < x∗+ when c > −1, and x∗± > r
when −2 ≤ c < −1, and x∗± < r when c ≤ −2. Using the facts that system (5.1)
is reversible with respective to x–axis, and the eigenvalues of the Jacobian matrix
(5.6), we obtain that N± are centers when c > 0, and saddles when −1 < c < 0.
Moreover, N+ is saddle and N− a center when −2 < c < −1; N+ is center and N−
is saddle when c < −2.

Subcase 2.1.2: r > 1. Then x∗± < r when c > −1; x∗+ < r < x∗−when c < −1.
Since system (5.1) is reversible with respective to x–axis, using the eigenvalues of
the Jacobian matrix (5.6) we get that N+ is a saddle and N− a center when c > 0;
N− is a saddle and N+ a center when −1 < c < 0; and N± are centers when c < −1.

Subcase 2.1.3: r = 1. This case has been studied inside the Case 1.

Subcase 2.1.3.1: c 6= −2. Then N+ meets with M±, i.e., system (5.1) has the
singular points N+ = M± = M(1, 0) and N− = N(−1/(c + 1), 0). Here we only
need to study the local phase portrait of the singular point N , because the local
phase portrait of M has been study in Case 1. The eigenvalues of the Jacobian
matrix of system (5.1) at N are ±(c + 2)

√
−c/(c+ 1). Therefore N is a saddle if

−1 < c < 0, and N is a linear center for c > 0 or c < −1 and c 6= −2, but N is a
center of system (5.1) because this system is reversible with respect to x–axis.

Subcase 2.1.3.2: c = −2.

Subcase 2.2: ∆ = 0 and c 6= −1, we have from (5.4) that c = c±(r), and from
(5.6) the singular point N = (x∗, 0) is nilpotent. Taking (x, y) = (X +x∗, Y ), after
(X,Y ) = (x, y), and rescaling the independent variable t by τ = rc(c+2)t/(2(c+1)),
we obtain

ẋ = y − 2(c+ 1)
r(c+ 2)

xy,

ẏ =
2(c+ 1)
rc(c+ 2)

(
(c+ 1)x2 + y2

)
.

By [6, Theorem 3.5] the origin of the previous system is a cusp.

Subcase 2.3: c = −1. On y = 0 there is the unique singular point N(1/r, 0) when
r > 0.

Subcase 2.3.1: r /∈ {0, 1}. The eigenvalues of the Jacobian matrix of system (5.1)
at N are ±

√
1− r2, which implies that N is obviously a linear center when r > 1

(and consequently a center because of the reversibility of the system), and N is a
saddle when 0 < r < 1.



12 J. LLIBRE, J. YU EJDE-2015/314

Subcase 2.3.2: r = 1. The unique singular point of the system is (1, 0), the

Jacobian matrix on it is
(

0 0
1 0

)
. So it is a nilpotent singular point. By [6, Theorem

3.5] its local phase portrait is formed by one hyperbolic and one elliptic sector (see
picture P1 in Figure 1).

Subcase 2.3.3: r = 0. No singular points on y = 0.
Finally, taking into account all this information on the finite singular points, we

can organize it, as it appears in the statements of the proposition. �

5.2. The infinite singular points.

Proposition 5.4. The following two statements hold.

(a) If c 6= −1 system (5.1) has a pair of infinite singular points, which are
saddles if c < −1, and nodes if c > −1.

(b) If c = −1 the infinity of system (5.1) is filled of singular points.

Proof. Considering the infinite singular of (5.1), we take

x =
1
v
, y =

u

v
. (5.7)

and the time rescaling t = vτ . Then system (5.1) in the local chart (5.7) is

u̇ = (u2 + 1)(1 + c)− v2 − cr(u2 + 1)v,

v̇ = cu(1− rv)v.
(5.8)

If c 6= −1, there is no singular point of system (5.8) on v = 0. Taking

x =
u

v
, y =

1
v
. (5.9)

and the time rescaling t = vτ . Then system (5.1) in the local chart (5.9) is

u̇ = uv2 + cr(1 + u2)v − u(1 + u2)(1 + c),

v̇ = v(v2 − 1 + cruv − (c+ 1)u2).
(5.10)

If c 6= −1, the origin is a singular point of (5.10). It is easy to get that the
eigenvalues of the Jacobian matrix at the origin are −1 and −(c+1), which implies
that system (5.1) has a pair of infinite saddles if c < −1, and a pair of node if
c > −1.

If c = −1, it is obtained from (5.8) and (5.10) that the infinity v = 0 of the
Poincaré disc is filled with singular points. Furthermore, we reduce (5.8) into

u̇ = −z + r(u2 + 1),

ż = −u(1− rz).
(5.11)

If r = 0, the origin of system (5.11) is a saddle, that is, there is a pair of infinite
singular point of system (5.11). �

According to Theorem 1.2, Proposition 5.3 and Proposition 5.4, and using the
invariant straight line x = 0 with r ≥ 0 and the invariant circle x2 + y2 = 1,
we obtain the global phase portraits of system (5.1) in Poincaré disc described in
Figure 1.
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