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GLOBAL STABILITY OF SIR MODELS WITH NONLINEAR
INCIDENCE AND DISCONTINUOUS TREATMENT

MEI YANG, FUQIN SUN

Abstract. In this article, we study an SIR model with nonlinear incidence

rate. By defining the Filippov solution for the model and constructing suitable
Lyapunov functions, we show that the global dynamics are fully determined by

the basic reproduction number R0, under certain conditions on the incidence

rate and treatment functions. When R0 ≤ 1 the disease-free equilibrium is
globally asymptotically stable, and when R0 > 1 the unique endemic equilib-

rium is globally asymptotically stable.

1. Introduction

The asymptotic behavior of SIR models with the general nonlinear incidence rate
have been studied by many researchers; see for example [5, 6, 7, 9, 11, 12] and the
references therein. One of the basic SIR epidemic models is described as follows:

dS
dt

= µ− f(S(t), I(t))− µS(t),

dI
dt

= f(S(t), I(t))− (µ+ σ)I(t),

dR
dt

= σI(t)− µR(t),

where the host population size is constant and is divided into three classes: sus-
ceptible, infectious and recovered. We denote these classes by S(t), I(t) and R(t),
respectively (that is, S + I + R = 1). The positive constant µ represents the
birth/death rate and the positive constant σ represents the recovery rate. The
function f(S, I) denotes the nonlinear incidence rate. It is assumed that all new-
borns are susceptible, and the immunity received upon recovery is permanent. A
number of works display the threshold behavior of the model. That is, for a basic
reproduction number R0 of some form, the disease dies out for R0 ≤ 1, whereas it
is permanent for R0 > 1.

Note that treatment is an essential measure for the precautions taken of some
disease (e.g. measles, phthisis, influenza). In [10], the SIR model with a limited re-
source for treatment is studied. In [11], the SIR model with a constant removal rate
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of infective individuals is analyzed. Many classic epidemic models with treatment
are modelled by continuous systems. However, it is known that the therapeutic
measures vary from each period of the transmission. For example, a small number
of infectives can not get treatment timely and completely during the early spread
for lacking of high attention paid by the society. After a period of time, when peo-
ple are aware of the seriousness, the therapeutic measures would be enhanced and
improved sharply. The treatment function related to the number of the infective
should be piecewise continuous. Thus, it is meaningful to introduce discontinu-
ous treatment into classical infectious disease model to reinforce the efficacy on
prevention and treatment of the epidemic.

In this article, we consider the following 2-dimensional SIR model with a class
of nonlinear incidence rate of S(t)g(I(t)) and discontinuous treatment:

dS
dt

= µ− S(t)g(I(t))− µS(t),

dI
dt

= S(t)g(I(t))− (µ+ σ)I(t)− h(I(t)),
(1.1)

where the function h(I) denotes the removal rate of infective individuals because
of the treatment of infectives. The initial condition for system (1.1) is

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, (1.2)

The purpose of our study is to show the threshold behavior of system (1.1) using
stability theory based on the Filippov solution [1, 2, 3, 4].

The article is organized as follows. In Section 2, some elementary assumptions
on the functions g and h will be given, and the basic reproduction number R0

is provided. After defining the Filippov solution for a given initial condition, the
equilibrium points are discussed. The local and global stability of equilibrium points
are analyzed in Sections 3 and 4, respectively.

2. Basic reproduction number and Equilibrium

To define the basic reproduction number R0 and indicate the existence of equi-
libriums, we give some hypotheses.

(H1) h(I(t)) = ϕ(I) · I, where ϕ : R+ → R+ is piecewise continuous and mono-
tone nondecreasing; that is ϕ is continuous apart from a countable number
of isolated points {ξk}, ϕ(ξ+k ) > ϕ(ξ−k ) holds, where ϕ(ξ−k ) and ϕ(ξ+k ) rep-
resent the left and right limits of ϕ at {ξk}, respectively, and have only
finite number of discontinuous points in any compact subset of R+. We
assume that ϕ is continuous for I = 0.

(H2) g(0) = 0, g′(I) > 0 and g′′(I) ≤ 0 for I ≥ 0. Furthermore, we assume that
the function φ(I) = g(I)/I is bounded.

Remark 2.1. (1) We modify the definition of treatment rate to be h(I(t)) = ϕ(I)I,
which means that the treatment rate is proportional to the number of the infectives.

(2) Because of (H2), we have that φ(I) is a monotone decreasing function on
I > 0.

(3) By the assumptions, it is easy to find that system (1.1) always has a disease-
free equilibrium point E0 = (1, 0).
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Then we define the basic reproduction number R0 for model (1.1) as

R0 =
g′(0)

µ+ σ + ϕ(0)
.

We shall assume that (H1) and (H2) hold in the rest of this article. Let us recall
the definition of the Filippov solution to system (1.1) with initial condition (1.2).

Definition 2.2 ([1, 2, 3, 4]). A vector function (S(t), I(t)) defined on [0, T ), T ∈
(0,+∞], is called the Filippov solution of (1.1)-(1.2), if it is absolutely continuous
on any subinterval [t1, t2] of [0, T ), S(0) = S0, I(0) = I0, and satisfies the differential
inclusion

dS
dt

= µ− Sg(I)− µS,

dI
dt
∈ Sg(I)− (µ+ σ)I − c̄o[h(I)],

(2.1)

for almost all of t ∈ [0, T ), where c̄o[h(I)] is the interval [h(I−), h(I+)], and h(I−)
and h(I+) represent the left and right limits of function h(·) at I, respectively.

By noting that the equilibrium (S∗, I∗) of (2.1) satisfies

0 = µ− S∗g(I∗)− µS∗,
0 ∈ S∗g(I∗)− (µ+ σ)I∗ − c̄o[h(I∗)],

from the measurable selection theorem (see [2]), there exists a unique constant

ξ∗ = S∗g(I∗)− (µ+ σ)I∗ ∈ c̄o[h(I∗)]

such that

µ− S∗g(I∗)− µS∗ = 0,

S∗g(I∗)− (µ+ σ)I∗ − ξ∗ = 0.

The following proposition shows that for positive initial values, the solution of (1.1)
is positive and is bounded. T =∞ implies that the solution exists globally.

Proposition 2.3. Let (S(t) and I(t)) be the unique solution of (1.1)-(1.2). Then
S(t) and I(t) are positive for all t > 0. Moreover, this solution is bounded and thus
exists globally.

Proof. By the fact dS/(dt)|S=0 > 0 and S0 ≥ 0, we obtain the positivity of S(t).
Since c̄o[h(0)] = {0}, and ϕ is continuous at I = 0, there exists δ > 0 such that
ϕ(I) is continuous for |I| < δ. Also, the second differential inclusion in (2.1) can
be rewritten as

dI
dt

= I
[Sg(I)

I
− (µ+ σ)− ϕ(I)

]
, (2.2)

for |I| < δ. If I0 = 0, we derive that I(t) = 0, for all t ∈ [0, T ). If I0 > 0, then
we claim I(t) > 0, for all t ∈ [0, T ). Otherwise, let t1 = inf{t|I(t) = 0} ∈ [0, T ).
Because of the continuity of I(t) on [0, T ), there exists θ > 0 such that t1 − θ > 0
and 0 < I(t) < δ for t ∈ [t1 − θ, t1). Integrating both sides of (2.2) from t1 − θ to
t1 gives

0 = I(t1) = I(t1 − θ)e
R t
t1−θ

[
Sg(ξ)
ξ −(µ+σ)−ϕ(ξ)]dξ

> 0,
which is a contradiction. Thus, we have I(t) > 0 for t ∈ [0, T ).

Since semi-continuous set-valued mapping (S, I)→ (µ−Sg(I)−µS, Sg(I)−(µ+
σ)I − c̄o[h(I)]) has compact and convex image, we have that (1.1) has a solution
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(S(t), I(t)) defined on [0, t0), which satisfies the initial condition (1.2). From (2.1),
we know that

d(S + I)
dt

∈ µ− µS − (µ+ σ)I − c̄o[h(I)],

for any ν ∈ c̄o[h(I)]. If S + I > 1, then we have µ− µ(S + I)− σI − ν ≤ 0. Thus,
0 ≤ S+ I ≤ max{S0 + I0, 1}, which yields the boundedness of (S(t), I(t)) on [0, t0).
Moreover, (S(t), I(t)) is defined and bounded on [0,+∞). �

The following result concerns the existence and uniqueness of an endemic equi-
librium.

Proposition 2.4. If R0 > 1, then there exists an unique endemic equilibrium E∗.

Proof. We look for solutions (S∗, I∗) of the differential inclusion dS/(dI) = 0 and
0 ∈ dI/(dt):

S∗ =
µ

µ+ g(I∗)
,

0 ∈ µg(I∗)
[µ+ g(I∗)]I∗

− (µ+ σ) ∈ c̄o[ϕ(I∗)].

Let

L(I) =
µg(I)

[µ+ g(I)]I
− (µ+ σ) ∈ c̄o[ϕ(I)].

If R0 > 1, then g′(0) > µ+ σ + ϕ(0) so that

L(0) = g′(0)− (µ+ σ) > ϕ(0) ≥ 0.

A direct calculation gives

L′(I) =
µ

[µ+ g(I)]2I2
[µg′(I)I − µg(I)− g2(I)]

=
µ

[µ+ g(I)]2I2
[g′(I)µI − µg′(ξ)I − g2(I)],

where, ξ ∈ (0, I). Observe that g(0) = 0 and g′′(I) ≤ 0 for I > 0, we have
L′(I) < 0. That is, L(I) is monotonously decreasing on I > 0. Since ϕ(I) is
nondecreasing for I > 0, and L(I) ≤ 0 for I ≤ (µ + σ)[µ + g(I)]/[µg(I)], the set
{I|L(I) ≥ ϕ(I+), I > 0} should be bounded. Let Ĩ = sup{I|L(I) ≥ ϕ(I+), I > 0},
then L(Ĩ) ≥ ϕ(Ĩ−). We claim that L(Ĩ) ∈ [ϕ(Ĩ−), ϕ(Ĩ+)]. Suppose on the contrary,
there exists a constant δ > 0 such that L(Ĩ + δ) > ϕ(Ĩ + δ) = ϕ((Ĩ + δ)+), which
contradicts to the definition of Ĩ. This leads to L(Ĩ) ∈ [ϕ(Ĩ−), ϕ(Ĩ+)] and Ĩ is a
positive solution to L(I) ∈ c̄o[ϕ(I)].

Next, we prove the uniqueness of E∗. Let I1 = Ĩ and I2 6= I1 is another solution
to L(I) ∈ c̄o[ϕ(I)]. There exist ηi ∈ c̄o[ϕi(I)] (i = 1, 2) satisfying

µm1

(µ+m1)I1
− (µ+ σ)− η1 = 0,

µm2

(µ+m2)I2
− (µ+ σ)− η2 = 0,

where we denote mi = g(Ii) (i = 1, 2) for convenience such that

µ = (µ+ σ + η1)
(
1 +

µ

m1

)
I1,

µ = (µ+ σ + η2)
(
1 +

µ

m2

)
I2.
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Thus, we have
0 = (µ+ σ)(I1 − I2) + η1(I1 − I2) + I2(η1 − η2)

+ µ(µ+ σ)
( I1
m1
− I2
m2

)
+ µ

(η1I1
m1
− η2I2

m2

)
= [(µ+ σ) + η1 + I2H1 + µ(µ+ σ)H2 + µH3](I1 − I2),

(2.3)

where

H1 = (η1 − η2)/(I1 − I2),

H2 = (I1/m1 − I2/m2)/(I1 − I2),

H3 = (η1I1/m1 − η2I2/m2)/(I1 − I2).

Note that H1 ≥ 0 for the monotonicity of ϕ, H2 ≥ 0 for the monotonicity of x/g(x),
and H3 ≥ 0 for the monotonicity of x/g(x) and ϕ(I). This yields a contradiction
for (2.3). Hence, the uniqueness of E∗ is proved. �

3. Local stability of equilibria

In this section, we prove the following results, which guarantee the local asymp-
totical stability of the disease-free equilibrium, and the endemic equilibrium of
(1.1).

Theorem 3.1. If R0 < 1, then the disease-free equilibrium E0 of (1.1) is locally
asymptotically stable.

Proof. The Jacobian matrix of (1.1) at E0 = (1, 0) is

J0 =
[
−µ −g′(0)
0 g′(0)− (µ+ σ)− ϕ(0)

]
.

Let λ1 and λ2 be the characteristic roots of J0. We obtain

λ1 + λ2 = −µ+ (R0 − 1)[µ+ σ + ϕ(0)] < 0,

λ1λ2 = −µ(R0 − 1)[µ+ σ + ϕ(0)] > 0,

for R0 < 1. This proves that E0 is locally asymptotically stable. �

Theorem 3.2. If R0 > 1 and ϕ is differential at I∗, then E0 is unstable and E∗
is locally asymptotically stable.

Proof. The Jacobian matrix of system (1.1) at E∗ is

J∗ =
[
−µ− g(I∗) −S∗g′(I∗)
g(I∗) S∗g′(I∗)− (µ+ σ)− ϕ(I∗)− ϕ′(I∗)I∗

]
.

Observe that system (1.1) at E∗ can be rewritten into the form

0 = µ− S∗g(I∗)− µS∗,

0 =
S∗g(I∗)
I∗

− (µ+ σ)− ϕ(I∗).

Let α1 and α2 be the characteristic roots of J∗. According to the second equality
of the above system, since g′′(I) < 0, we can obtain that

α1 + α2 = S∗g′(I∗)− S∗g(I∗)
I∗

− µ− g(I∗)− ϕ′(I∗)I∗

= S∗
[I∗g′(I∗)− g(I∗)

I∗

]
− µ− g(I∗)− ϕ′(I∗)I∗



6 M. YANG, F. SUN EJDE-2015/304

= S∗[g′(I∗)− g′(ξ)]− µ− g(I∗)− ϕ′(I∗)I∗ < 0,

where ξ ∈ (0, I∗).

α1α2

= µ
S∗g(I∗)
I∗

− µS∗g′(I∗) + g(I∗)[(µ+ σ) + ϕ′(I∗)I∗ + ϕ(I∗)] + µϕ′(I∗)I∗

= µS∗[g′(ζ)− g′(I∗)] + g(I∗)[(µ+ σ) + ϕ′(I∗)I∗ + ϕ(I∗)] + µϕ′(I∗)I∗ > 0,

where ζ ∈ (0, I∗). Hence, E∗ is locally asymptotically stable. �

4. Global stability of equilibria

In this section, we discuss the global stability of disease-free equilibrium E0 and
endemic equilibrium E∗. The following theorem indicates that the disease can be
eradicated in the host population if R0 ≤ 1, while R0 > 1, the disease is permanent.

Theorem 4.1. If R0 ≤ 1, then E0 is globally asymptotically stable.

Proof. We move E0 to the origin firstly by setting x = S − 1. Then, system (2.1)
becomes

dx

dt
= −µx− xg(I)− g(I),

dI

dt
∈ xg(I) + g(I)− (µ+ σ)I − c̄o[ϕ(I)]I.

We now consider the Lyapunov function V1(x, I) = x2/2 + I. We can calculate
that ∇V1 = (x, 1). Then, the constant l, which means that the set Ll = {(x, I) ∈
R1 ×R1|V1(x, I) ≤ l} can be arbitrarily large. Let

G(x, I) =
[

−µx− xg(I)− g(I)
xg(I) + g(I)− (µ+ σ)I − c̄o[ϕ(I)]I

]
.

It is clear that semi-continuous and set-valued mapping G has compact and convex
image. For each ν = (ν1, ν2) ∈ G(x, I), there exists a measurable function η(t) ∈
c̄o[ϕ(I)] corresponding to (x(t), I(t)); that is,

ν =
[

−µx− xg(I)− g(I)
xg(I) + g(I)− (µ+ σ)I − η(t)I

]
.

We now calculate the derivative of V1(x, I) by

〈∇V1, ν〉 = −µx2 − x2g(I) + g(I)− (µ+ σ)I − η(t)I

= −µx2 − x2g(I) +
[g(I)
I
− (µ+ σ)− η(t)

]
I.

It follows from Remark 2.1 that

g(I)/I ≤ lim
I→0+

g(I)/I = g′(0).

Using η(t) > ϕ(0), we have

〈∇V1, ν〉 ≤ −µx2 − x2g(I) + [µ+ σ + ϕ(0)](R0 − 1)I.

Since R0 ≤ 1, we claim 〈∇V1, ν〉 ≤ 0. Observe that if R0 < 1, then ZV1 =
{(x, I) ∈ R1 × R1|〈∇V1, ν〉 = 0} = {(0, 0)}. That is, if R0 = 1, then ZV1 =
{(0, 0)}∪{(0, I)|η(t) = ϕ(0), I 6= 0}. In addition, if x = x(t) ≡ 0, then I = I(t) ≡ 0.
Thus, {(0, 0)} is the largest weak invariant subset of Z̄V1 ∩ Ll for all l > 0, which
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leads to the global asymptotical stability of {(0, 0)} due to the invariance theorem
(see [2]), and thus E0 is globally asymptotical stable. �

Theorem 4.2. If R0 > 1, then the unique endemic equilibrium E∗ is globally
asymptotical stable.

Proof. Denote
η∗ = S∗g(I∗)/I∗ − (µ+ σ) ∈ c̄o[ϕ(I∗)].

We consider

V2 = S −
∫ S

ε

S∗/τdτ + I − I∗ ln I,

where ε is a small unspecified parameter. Note that V2 is well-defined and contin-
uous for all S > ε and I > 0, and ∇V2 = (1− S∗/S, 1− I∗/I). Let

F (S, I) =
[

µ− Sg(I)− µS
Sg(I)− (µ+ σ)I − c̄o[ϕ(I)]I

]
.

It is easy to check that F is a semi-continuous and set-valued mapping, which has
compact and convex image. Thus, for any ω = (ω1, ω2) ∈ F (S, I), there exists a
measurable function η(t) ∈ c̄o[ϕ(I)] such that

ω =
[

µ− Sg(I)− µS
Sg(I)− (µ+ σ)I − η(t)I

]
.

Thus, it follows that

〈∇V2, ω〉 = µ− Sg(I)− µS − µS
∗

S
+ S∗g(I) + µS∗

+
[
Sg(I)− (µ+ σ + η)I − Sg(I)

I∗

I
+ (µ+ σ + η)I∗

]
= [µS∗ + S∗g(I∗)]− µS −

[
µS∗ + S∗g(I∗)

]S∗
S

+ S∗g(I) + µS∗

−
[S∗g(I∗)

I∗
− η∗ + η

]
I − Sg(I)

I∗

I
+
[S∗g(I∗)

I∗
− η∗ + η

]
I∗

= µS∗
(

1− S

S∗
− S∗

S
+ 1
)

+ 2S∗g(I∗)− S∗g(I∗)
S∗

S
+ S∗g(I)

− S∗g(I∗)
I

I∗
+ (η∗ − η)I − Sg(I)

I∗

I
− (η∗ − η)I∗

= µS∗
(

1− S

S∗

)(
1− S∗

S

)
+ 2S∗g(I∗)− S∗g(I∗)

S∗

S
− Sg(I)

I∗

I

− S∗g(I∗)
g(I∗)
g(I)

I

I∗
+ S∗g(I)− S∗g(I∗)

I

I∗
+ S∗g(I∗)

g(I∗)
g(I)

I

I∗

+ (η∗ − η)(I − I∗)

= µS∗(1− S

S∗
)(1− S∗

S
) + S∗g(I∗)

[
3− S∗

S
− Sg(I)
S∗g(I∗)

I∗

I
− g(I∗)

g(I)
I

I∗

]
+ S∗g(I∗)

[
− 1− I

I∗
+

g(I)
g(I∗)

+
g(I∗)
g(I)

I

I∗

]
+ (η∗ − η)(I − I∗)

= µS∗
(

1− S

S∗

)(
1− S∗

S

)
+ S∗g(I∗)

[
3− S∗

S
− Sg(I)
S∗g(I∗)

I∗

I
− g(I∗)

g(I)
I

I∗

]
+ S∗g(I∗)

[ I
I∗
− g(I)
g(I∗)

][g(I∗)
g(I)

− 1
]

+ (η∗ − η)(I − I∗).
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One can see that (
1− S

S∗
)(

1− S∗

S

)
≤ 0.

Since the arithmetic mean is greater than or equal to the geometric mean, we have
S∗

S
+

Sg(I)
S∗g(I∗)

I∗

I
+
g(I∗)
g(I)

I

I∗
≥ 3.

The monotonicity of g(I) and φ(I) (see Remark 2.1) gives
I

I∗
≤ g(I)
g(I∗)

≤ 1 for 0 < I < I∗, 1 ≤ g(I)
g(I∗)

≤ I

I∗
for I ≥ I∗.

Then we have [ I
I∗
− g(I)
g(I∗)

][g(I∗)
g(I)

− 1
]
≤ 0,

for all I > 0. Since (η∗ − η)(I − I∗) ≤ 0 for the monotony of ϕ, we obtain
dV2
dt

∣∣
(2.1)
≤ 0.

Clearly, we see that dV2
dt = 0 holds only when S = S∗, I = I∗ and that E∗ is the

only equilibrium of that system. This implies the globally asymptotical stability of
E∗. �
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