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DIFFERENTIAL OPERATORS OVER PARTICULAR ELLIPTIC
CURVES SPACES WITH CRYPTOGRAPHIC APPLICATIONS

OANA ADRIANA ŢICLEANU

Abstract. Finding optimal implementations to solve differential equations in

the case of boundary conditions is an open problem. In the particular case of
using nonsupersingular elliptic curves there are applications in the asymmetric

encryption field. Starting from the general implementations, we constructed

solutions for the nonsupersingular elliptic curves case. Our developments are
of high interest in the domain of nonlinear cryptography and have a good

resistance for differential cryptanalysis.

1. Introduction

The study of elliptical curves has a rich history and proves once again the beauty
of pure, theoretical mathematics and the way its applicability emerges in time.

Some properties of systems based on elliptical spaces date from the previous
century. Foundations in this sense were dated long before, by the study of diophan-
tine equations (3th century, Hellenic mathematician A. Diophantus). This domain
was highlighted with articles of mathematicians Koblitz ([4]) and Miller ([7]) which
gave a brand new applicability of those equations in the domain of asymmetric
cryptosystems.

2. Elliptic equations analysis

We start by defining a set of elliptic curves given by Weierstrass’s equation

E : y2 = a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.1)

where ai ∈ K and K is the space where curve E is defined.
Those curves can be divided in two classes namely: supersingular and nonsuper-

singular ([1]). Modern applicability of this concepts can be found in [13].
(1) A supersingular curve (zero j-invariant) is the solution set of equation:

y2 = x3 + ax+ b (2.2)

where a, b ∈ GF (2k), and the discriminant is ∆ = 4a3 + 27b2 6= 0, together
with the point O at infinite.
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(2) A nonsupersingular elliptical curve (nonzero j-invariant) is the solution set
of equation

y2 + xy = x3 + ax2 + b (2.3)
where a, b ∈ GF (2k), and the discriminant is ∆ 6= 0, together with the
point O at infinite.

The pairs of points which are found on this kind of curves that have a particular
set of properties, together with a scalar, are the asymmetric keys used in modern
cryptography. Given this fact many mathematicians have studied ways to obtain
spaces with properties in this sense [1, 9, 11] and model optimizations, by adding
new boundary conditions for nonlinear equations systems ([2]).

Essentially, beyond optimal implementations, algorithmic complexity and com-
puting power, it is a proven fact that the only models which are resistant to crypto-
graphic attacks were those that had a mathematical outfit based on the construction
of subspaces with particularities. Those subspaces have a solution set characterized
by a diferential equation system which is defined over elliptic curves through the
Frobenius isomorphisms [14, 10].

There are existing methods available to compute the involved parameters and
isomorphisms that define parts of the models. In the domain described above
we studied, build, developed and implemented proprietary solutions for unsolved
problems from the field of applied mathematics in cryptography, which rely on
nonsupersingular elliptic curves.

3. Nonlinearities on elliptic curves. Study implementation for
nonsupersingular case

After classifying the construction methods of the fields over which are defined
classical elliptical curves, we will describe optimized personal solutions to compute
the parameter p of an elliptical curve (algorithm 1).

Let Γ be a subset of points over an elliptical curve for which the inverse was
computed, χ the inverse of a number φ, t the differentiation level (which defines
the safety degree of the generated system).

Algorithm 1 Differential calculation of the parameter p of an elliptic curve

(1) φ0 ← bχ/btc, φ0 ← φ− θ0b
t, φ← φ0, i← 0, ξ ← φ0

(2) while ξ > 0 do
(3) θi+1 ← bθi/ξtc, φi+1 ← θia− θi+1

bt

ξ

(4) i← i+ 1, φ← φ+ φi, ξ ← b b
t

φi
c

(5) while φ ≥ p do φ← φ− b pχc

4. Boundary solutions on particular subspaces on nonsupersingular
elliptic curves

To have an increased resistance to differential attacks in cryptography it is nec-
essary to perform an optimal number of operations over elliptic curves, which were
achieved in the implementation 1.

For the developed models we studied endomorphisms over finite fields and the
implications given by the differential equations involved in the nonlinear analysis
of the cryptographic system [12].
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4.1. Transformation of nonsupersingular elliptic curve Zpq for invariant j.
From equations described by [6] can be concluded that Jacobian matrix is invertible
over field Zq and δ = ((DΘ)−1Θ)(x0, x1, . . . , xn−1) ∈ Znq , because

(DΘ)(x0, . . . , xn−1) (mod p)

is the matrix’s diagonal with nonzero elements. It is obvious that the Gauss method
can be applied in order to solve the equation

(DΘ)(x0, . . . , xn−1)δ = Θ(x0, . . . , xn−1)

because diagonal elements are reversible. It will be computed on each line, by
moving the low-left item, Φ′p(x0, xn−1), to right. After performing k operations of
this kind, the item can be written as:

(−1)kΦ′p(x0, xn−1)
k−1∏
i=0

Φ′p(xi+1, xi)
Φ′p(xi, xi+1)

,

and it can be proven that it is divisible with pk from Φ′p(xi+1, xi) ≡ 0 (mod p).
The transformation of the nonsupersingular elliptic curve is described in algorithm
2.

Algorithm 2 Transformation of nonsupersingular elliptic curve Zpq
Input: System jPi ∈ FPq \Fp2 with Φp(jPi , j

P
i+1) ≡ 0 (mod p) for 0 ≤ i ≤ n′ with

precision [m/n].
Output: System jqi ∈ Zq with Φp(JPi , J

P
i+1) ≡ 0 (mod pm) and Jqi ≡ ji (mod p) for

any 0 ≤ i < n′.
(1) for m = 1 to n′ do
(2) if jmi 6= 0 then
(3) Ji ← jmi
(4) else
(5) m′ ← dm2 e · d

p
2e,M ← m′, M ′ ← P

q .
(6) (JP0 , . . . , J

P
n′−1) will be determined by the canonical inverse of

((jP0 , . . . , j
P
n′−1),m′).

(7) for i = 0 to n′ − 2 do
(8) t← Φ′p(J

P
i , J

P
i+1)−1 (mod pM ); Di ← tΦ′p(J

P
i+1, J

P
i ) (mod pM ).

(9) Pi ← t((Φp(JPi , J
P
i+1) (mod pm))/pM · 1

pM′
) (mod pM )

(10) R← Φ′p(J
P
0 , J

P
n−1) (mod pM

′
).

(11) S ← (((Φp(JPn−1, J
P
0 ) (mod pM

′
)))/pM

′
) (mod pM ).

(12) if S 6= 0 then
(13) for i = n′ − 2 to 0 by step −1 do
(14) ϕi ← ϕi −Di P

P
i+1 (mod pM

′
)

(15) else
(16) for i = 0 to m′ − 1 do JPi → JPi − pM

′
PPi (mod pM

′
)

(17) return (JP0 , . . . , J
P
n′−1).
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5. Nonlinear method for computing the number of points with
cryptographic proprieties - SatOT

Starting from the proof of Satoh’s model, we developed a computing method for
elliptic curves subspaces with parameter p and a number of points characterized
by FOT : E(Fq) → E(Fq) : (x, y) 7−→ (xqp, y

q
p). We define cryptographic points

of degree 1 as the set of potential keys for ECC systems. The method ensures
that a subspace has a lower computational complexity to generate such points,
furthermore, it keeps the attack complexity on ECDLP at the same level with the
general case (implementation 3).

Algorithm 3 Nonlinear method to compute the number of points with crypto-
graphic properties - SatOT

Input: Nonsupersingular elliptic curve Ep, derived from E : y2 = x3 + ax + b

defined over subspace Fqpn , j(EOT ) /∈ Fp2 .
Output: Cryptographic points of degree 1 from a nonsupersingular elliptic curve

E(Fqpn).

(1) For each point from E, compute subset Ep, as an isomorphism, using algo-
rithm 2.

(2) if m has value 1 then
(3) For i = 0 to n− 1 do
(4) Ji ← jqi
(5) else
(6) m′ ← dm2 e d

p
2e,

M ′ ← (m−m′) (mod q).
(7) (Jq0 , . . . , J

q
n−1) 2←−− ((jq0 , . . . , j

q
n−1),M ′).

(8) For i = 0 to n− 2 do
(9) t← Φ′p(J

q
i , J

q
i+1)−1 (mod pM

′
).

(10) Di ← tΦ′p(J
q
i+1, J

q
i ) (mod pM

′
).

(11) Pi ← t((Φp(J
q
i , J

q
i+1) (mod pM

′
)) (mod pm)).

(12) R← Φ′p(J
q
0 , J

q
n−1) (mod pM

′
).

(13) S ← (((Φp(J
q
n−1, J

q
0 ) (mod pM

′
)))/pm) (mod pM ).

(14) If either Di is determined by a point from outside of the nonsupersingular
elliptic curve, that point will be eliminated.

(15) For i = 0 to min(M ′, n− 2) do
(16) S ← S −RPi (mod pM

′
)

(17) R← −RD′i (mod pM
′
)

(18) Rq ← R+ Φ′p(J
q
n−1, J

q
0 ) (mod pM

′
).

(19) P qn−1 ← SR−1 (mod pM
′
).

(20) If any P characterizes a point from outside of the nonsupersingular elliptic
curve, resumes at step 7.

(21) For i = n− 2 to 0 by step -1 do
(22) Pi ← Pi −Di P

q
i+1 (mod pM

′
).

(23) For i = 0 to n− 1 do
(24) Jqi ← Jqi − pM

′ · Pi/D′i (mod pM
′
).

(25) Return (Jq0 , . . . , J
q
n−1).
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5.1. Transformation of the first invariant j. The repeated application of Ver-
cauteren’s property can be used on nonsupersingular elliptic curves spaces F qp to
compute the invariants jq (implementation 4).

Algorithm 4 Converting the first invariant j

Input: jq, invariant j ∈ Fqpn/Fp2 and precision m′ according to the algorithm 2.
Output: Jq ∈ Zq with Jq ≡ jpm−1

(mod p) and Φp(Jq,Σ(Jq)) ≡ 0 (mod pm).
(1) Jq ← jm′ (mod p).
(2) For i = 2 to m do
(3) Jq ← Newton Iteration (Φp(X,J), JpJq (mod p), i).
(4) If Jq have characteristics from outside the nonsupersingular elliptic curve

then
(5) Resume from step 1.
(6) Return Jq.

6. Simplified version of SST for nonsupersingular elliptic curve Fqp
The inverse substitution of Frobenius Σ−1 has as solving method:

Σ−1(α) = Σ−1
(n−1∑

i=0

αit
i
)

=
p−1∑
j=0

( ∑
0≤pk+j<n

αpk+jt
k
)
Cj(t),

where Cj(t) = Σ−1(tj) ≡ tjp
n−1

(mod f(t)). If we first compute Cj(t) for j =
0, . . . , p− 1 then Σ−1(α) for α ∈ Zq will contain only p− 1 multiplications in Zq.

Starting from those, Kim et all [3] highlighted the possibility to use some finite
fields with a Gaussian Normal Base (GNB) of small type. This base can be con-
verted to Zq, thus, optimizing the computations on Frobenius iterations because B
from Qq/Qp is normal if ∃β ∈ Qq such that B = {Λ(β)|Λ ∈ Gal(Qq/Qp)}. From
here can be deduced the next sentence [3].

Proposition 6.1. Let p be a prime number and (n, t) two positive integers such
that (nt+ 1) is prime and other than p. Let γ be a primitive root of order (nt+ 1)
of the unit in an extension of field Qp. If gcd(nt/e, n) = 1, with order e of (p mod
(nt + 1)), then every primitive root of order t of the unit τ in Z/(nt + 1)Z can be
written as

β =
t−1∑
i=0

γτ
i

.

It is an ordinary element and [Qp(β) : Qp] = n. Such a base is called Gaussian
Normal Base of type t.

In [3] there are values for Zq as being elements from the ring

Zp[x]/(xnt+1 − 1).

The multiplication of two elements from Zq/(pmZq) will require a number of oper-
ations with O((nmt)µ) complexity, which according to the proposition 6.1 can be
optimized at t ≤ 2.
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For t = 1 we have β = τ and the minimal polynomial of β is

f(x) =
xn+1 − 1
x− 1

= xn + xn−1 + . . .+ x+ 1.

It is possible to reduce the complexity of the computation from the Frobenius
substitution by using a redundant representation based on an inclusion (Zq from

Zp[x]/(xn+1−1)) which concludes in α =
n−1∑
i=0

αiβ
i and α(x) =

n−1∑
i=0

αix
i+0xn. Then

Σk(β) = βp
k

leads to

Σk(α(x)) =
n∑

i=0

αix
ipk = a0 +

n∑
j=1

αj/pk(mod (n+ 1))x
j

.

The obtained result will lead to Σk(α) operations by permuting its coefficients α(x).
This determines the computation method for Satoh-Skjernaa-Taguchi-systems types
over elliptical curves which contain cryptographic points of degree 1.

If we consider Γ(X,Σ(X)) = 0, and x ∈ Zq a root for Γ(X,Y ) ∈ Zq[X,Y ], we
compute an approximation xm ≡ x (mod pm) and define δm = (x − xm)/pm. By
constructing the Taylor series expansion for xm, will result:

0 = Γ(x,Σ(x)) = Γ(xm + pmδm,Σ(xm + pmδm))

≡ Γ(xm,Σ(xm)) + pm(δn∆x + Σ(δm)∆y) (mod p2m),
(6.1)

where

∆x ≡
∂Γ
∂X

(xm,Σ(xm)) (mod pm),

∆y ≡
∂Γ
∂Y

(xm,Σ(xm)) (mod pm)Γ(xm,Σ(xm)) ≡ 0 (mod pm)

Simplifying with pm we obtain the relation
Γ(xm,Σ(xm))

pm
+ δm∆x + Σ(δm)∆y ≡ 0 (mod pm) (6.2)

for δm mod pm.
To obtain first degree points it is sufficient to have ordp(∆y) = 0, which means

that ∆y is a unit in Zq and ordp(∆x) > 0. Performing the reduction operation
modulo p for equation (6.2) we get the next result:

δpm = −Γ(xm,Σ(xm))
pm∆y

(mod p) (6.3)

which has a unique root of order p: δm ∈ Fq. This is an approximation of x, given
by xm + pmδm ≡ x(mod pm+1). The root of order p has a compute complexity
of a grater order. There were given simplified solutions from Satoh, Skjernaa and
Taguchi, by replacing the equation Γ(X,Σ(X)) = 0 with Γ(Σ−1(X), X) = 0. Thus,
δm will be defined as:

δm ≡ −
Γ(Σ−1(xm), xm)

pm ∂Γ
∂Y (Σ−1(xm), xm)

(mod p).

From Γ(Σ−1(xm), xm) ≡ 0 (mod pm) it is necessary only to compute the inverse of
( ∂Γ
∂Y (Σ−1(xm), xm) mod p). Therefore, it can replace Satoh’s classical method [8]

for nonsupersingular elliptic curve Fqp (our solution can be found in the algorithm
5).
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Algorithm 5 SST’s simplified version for nonsupersingular elliptic curve Fqp
Input: Polynomial Γ(X,Y ) ∈ Zq, item x0 ∈ Zq which satisfies Γ(Σ−1(x0), x0) ≡ 0

(mod p) and the precision m.
Output: Item xm ∈ Zq with Γ(Σ−1(xm), xm) ≡ 0 (mod pm) and xm ≡ x0 (mod p).

(1) For i = 2 to m do
(2) xqm(i)← ALG 4(xm,m)
(3) If xqm(i) is not included in the nonsupersingular elliptic curve then
(4) resumes on step 1
(5) d←

(
∂Γ
∂Y (Σ−1(x0), x0)

)−1
(mod p).

(6) y ← x0 (mod p).
(7) For i=0 to m do
(8) x← bΣ−1(y) (mod pi)

xqm(i)
c.

(9) y ← y − dΓ(x, y) (mod pi).
(10) Return y.

The complexity of the classic algorithm is given by the recalculation of Γ(x, y)
after every iteration. Therefore, the values of x and y at step i + 1 are very close
to the values from step i. On the other hand, the result given in algorithm 5 uses
an approximation of the two parameters which simplify the computations. After
determining xW ≡ x (mod pW ) associated to a point W , we select the elements
s ∈ N, for which

Γ(Σ−1(xsW+i), xsW+i) ≡ Γ(Σ−1(xsW ), xsW ) + ∆(mod p(s+1)W ) (6.4)

with

∆ = psW
( ∂Γ
∂X

(Σ−1(xsW ), xsW )Σ−1(δ) +
∂Γ
∂Y

(Σ−1(xsW ), xsW )δ
)
.

Finally, to obtain the solution, we compute the partial derivatives

∂Γ
∂X

(Σ−1(xsW ), xsW ) and
∂Γ
∂Y

(Σ−1(xsW ), xsW )

in (mod pW ) case.
For Γ(Σ−1(xsW ), xsW ) and i < W can be determined Γ(Σ−1(xsW+i), xsW+i),

by using (6.4).

6.1. A variant of SatSk-Taguchi’s algorithm for nonsupersingular elliptic
curves defined over Fq. Starting from the parameter description of the non-
supersingular elliptic curves (algorithm 2) and the method to compute the points
of degree 1, we determined an implementation to compute the elements xm. This
is implemented for the subspaces of invariants which cannot be deduced directly
from cryptographic analysis of the ANG system (illustrated in algorithm 6).

For optimal implementations it is necessary to use only the W points which are
multiples of the processor registry size.

7. Implementation

Based on the illustrated algorithms, we can construct the encryption system for
the case of nonsupersingular elliptic curves. Starting from the Koblitz’s general case
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Algorithm 6 Variant of SatSk-Taguchi’s algorithm for nonsupersingular elliptic
curves defined over Fq
Input: Polynomial Γ(X,Y ) ∈ Zq, item x0 ∈ Zq which satisfy Γ(Σ−1(x0), x0) ≡ 0

(mod p) and precision m. Canonical system (Jq0 , . . . , J
q
n−1), obtained using

algorithm 2.
Output: Item xqm ∈ Zq, with Γ(Σ−1(xqm), xqm) ≡ 0 (mod pm) and xqm ≡ x0 (mod p).

(1) y ← ALG 5(x0,W ).
(2) x← Σ−1 (mod pW ).
(3) ∆x ← ∂Γ

∂X (x, y) (mod pW ).
(4) ∆y ← ∂Γ

∂Y (x, y) (mod pW ).
(5) For s = 1 to b(m− 1)/W c do
(6) x← Σ−1(y)(mod p(s+1)W ).
(7) V ← Γ(x, y)(mod p(s+1)W ).
(8) For i = 0 to W − 1 do
(9) δy ← −dp−(sW+1)V (mod p).

(10) δx ← Σ−1(δy)(mod pW−i).
(11) y ← y + psW+iδy(mod p(s+1)W ).
(12) V ← V + p(sW+i)(∆xδx + ∆yδy)(mod p(s+1)W ).
(13) Return y.

solution ([5]), a particular algorithm is developed with respect to Hensel’s theorem
conditions.

Let be the parameters (F , φ, αE , βE ,Γ, ρ, ξ), η and µ = µ1, . . . , µn the plain
message. For each µj , j = 1, . . . , n, the necessary steps are:

(1) Let µj be an integer which respects the condition: 0 ≤ µj ≤ p
η − 1

(2) Let xi = ηµj + i where i = 0, 1, 2 . . . , (η − 1)

(3) Compute ci = x3
i + αExi + βE using recursive operations until c

φ−1
2

i ≡
1(mod φ)

(4) ALG 6(Γ, ci)
(5) Compute yi =

√
ci

(6) M(xi, yi) = (xi, y
(φ+1)/4
i ) is the point on the elliptical curve that corre-

sponds to the message µj .

Conclusions. In the present paper, starting from the classical algorithms which
offer solutions in the general cases, we developed our own solutions for the particular
case of boundary conditions which are determined by models based on nonsuper-
singular elliptic curves.

This model is resistant to differential analysis due to Frobenius’ isomorphism
that was used to the implementation.

Further research will consist in reducing the computation complexity of partial
differential equations which are involved in the algorithms.
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