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GLOBAL SOLUTIONS FOR 2D COUPLED
BURGERS-COMPLEX-GINZBURG-LANDAU EQUATIONS

HONGJUN GAOQO, LIN LIN, YAJUN CHU

ABSTRACT. In this article, we study the periodic initial-value problem of the
2D coupled Burgers-complex-Ginzburg-Landau (Burgers-CGL) equations. Ap-
plying the Brezis-Gallout inequality which is available in 2D case and estab-
lishing some prior estimates, we obtain the existence and uniqueness of a global
solution under certain conditions.

1. INTRODUCTION

In this article, we are concerned with the periodic initial-value problem for the
following 2D coupled Burgers-complex-Ginzburg-Landau (Burgers-CGL) equations:

P, =¢P + (14 iu)AP — (1 +)|P|?P — VP -VQ — rPAQ + f(z),

(z,t) € Q x R, (1.1)

Q1 :mAQ—%|VQ|2—w|P|2+g(x), (z,t) € Q x RT, (1.2)

P(x; +2L,t) = P(z,t), Q(z; + 2L, t) = Q(z4,1), (z,t) € Q2 x R, (1.3)
P(z,0) = Py(z), Q(z,0) =Qp(z), =€, (1.4)

where Q = [—L, L] x[—L, L], 2L is the period, f(z) and g(z) are given real functions.
The complex function P(z,t) is the rescaled amplitude of the flame oscillations, the
real function Q(z,t) is the deformation of the first front. The Landau coefficients
u, v are real and the coefficients £, m are positive, while the coupling coefficients
w>0and r =ry +irs.

The coupled Burgers-CGL equations was derived from the nonlinear evolution of
the coupled long-scale oscillatory and monotonic instabilities of a uniformly prop-
agating combustion wave governed by a sequential chemical reaction, having two
flame fronts corresponding to two reaction zones with a finite separation distance
between them (see [2] [9] [12] [16] [I7, [I8]). It describes the interaction of the excited
oscillatory mode and the damped monotonic mode, that is & > 0, m > 0.

Let us recall some previous works which are related to our results. If there
are no terms involved Q in , then reduces to the well-known complex
Ginzburg-Landau equation (CGL) that describes the weakly nonlinear evolution of
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a long-scale instability (see [I5]). Many results on the well-posedness and global
attractors for the CGL equation have been established, one can find the details in
[6 [7, 18, 13, [14] [19]. And if taking the coupling coefficient w = 0, would be
the well-known Burgers equation (see [3]). There are also many works concerning
the Burgers equation, one can see [4, [20] and so on. So far, the mathematical anal-
ysis and physical study about the coupled Burgers-CGL have been done by a few
researchers. For the periodic initial-value problem of the 1-D Burgers-Ginzburg-
Landau equation, well-posedness and global attractors are obtained in [I0]. By
some prior estimates and so-called continuity method, the authors in [II] firstly
showed the global existence of solutions and attractors to 1-D coupled Burgers-
CGL equations for flames governed by sequential reaction, and then obtained the
existence of the global attractor A C H?(Q) x H3(2) for the problem. In addition,
they established the estimates of the upper bounds of Hausdorff and fractal dimen-
sions for the attractors. However, to our knowledge, there is few work on the 2D
coupled Burgers-CGL equations. We will prove global well-posedness of problem
(LI)-(T.4) as conjectured in [II]. The method used here is well established but
need to be applied skillfully to get the desired result.

The purpose of this article is to study the global solutions of —. The
existence and uniqueness of the global solutions to — is obtained by virtue
of the Brezis-Gallout inequality, which is available in the 2D case. The main result
in our paper is as follows.

Theorem 1.1. Suppose that Py(z) € H*(Q), Qo(x) € H*(Q), f(x) € HY(Q) and
g(z) € H%(Q), for any given T > 0, then (L.1)-(1.4) has the unique solution P(x,t)
and Q(z,t) satisfying
P(z,t) € L>(0,T; H*()), Pi(z,t) € L=(0,T; L* (),
Q(z,t) € L=(0,T; H*(Q)), Qu(z,t) € L>(0,T; H'()).
The rest of this article is organized as follows. In section 2, we briefly give some
preliminaries. Some prior estimates for the solutions to (1.1))-(1.2]) are established

in section 3. Then, by the standard method, we can extend the local solutions to
global solutions and subsequently the proof of Theorem [1.1]is presented.

2. PRELIMINARIES

In this section, We firstly recall some concepts and conventional notation. Let
W*P(Q) denote the usual kth order Sobolev space with its norm

1/p
= (stzc Jo [D*ul? dw) , 1<p<oo,

HUHWk»p(Q)
2 la|<k €SSSUPq [D%ul, p = 00.

When p = 2, we denote |[uf ) = |Jullwr2). The inner product in L*() is
defined by

(u,v) = Re/gu(x)f)(x)dx.

For simplicity, we write ||u|| = ||Ju||z2. Without any ambiguity, we denote a generic
positive constant by C which may vary from line to line. The following inequalities
play an important role in the proof of the main results in R2.
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Lemma 2.1 (Gagliardo-Nirenberg inequality [5]). Let Q be a bounded domain with
OQ in C™, and let u be any function in W™"(Q) N L1(Q), 1 < gq,r < co. For any
integer j, 0 < j < m, and for any number a satisfying j/m < a <1, set

1 ] 1 m 1
- = l+a(———) +(1—a)-.
p n T on q
If m — j — n/r is not a non-negative integer, then

ID7ullze < Cllullfym.« lull 7z (2.1)

Ifm—j—n/r is a non-negative integer, then (2.1)) holds for a = j/m. The constant
C depends only on Q,r,q,7 and a.

Lemma 2.2 (Brezis-Gallout inequality [1]). Let Q be a bounded domain in R?, and
let u be any function in H*(Q). If ||ul|gr < 1, then there holds

Jullz < C(1+ v/log(1 + [lulla)). (2.2)

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section, we firstly establish some prior estimates for the solutions to
(1.1)-(L.4) which guarantee the existence of the global solutions.

Lemma 3.1. Assume that g(z) € L%(2), then for the problem (1.1)-(1.4)), it holds
that

d
g(IIQHQ) < Eo(1+1og(1 + [[P|lgz + 1Qllas)) (1P + 1@l %) + En,
where Ey, 1 are constants.

Proof. Multiplying (1.2) by @ and integrating with respect to = over 2 gives
d
QI =~V - [ 1VQPQas 20 [ |PRQas+2 [ gQdr 1)
Q

Applying the Brezis-Gallout inequality (Lemma and Holder inequality, we de-
duce that

|- [ IvQrQuas| < Qi IVQI?
< O(1+VIog(1+ [Qllx) ) IVQ? (3:2)
< O (1+log(L+ Q=) QU

and

- 2w/Q PPQde| < 20]|Qll~ [P

< ¢ (1+ Vi 1QTm)) 1P| (3:3)
< € (1+log(1 +Qll =) |1 Pl
Since g(z) € L%(£2), obviously

2 / 0Qdz| < QI + llgl? < IIQI? + C1. (3.4)
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Substituting (3.2)-(3.4]) back into (3.1), we infer that

d
F1QI* < —2mlIVQ[* + C (1 + log(1 + [|Qll#2)) 1R 71

+C (1 +log(1+ Q] =) | PII* + Q% + C (3.5)
< C(1+log(1+ P2 + 1Qllms)) (1Pl + Q%) + Ch
= By (1+log(1+ | Plla= + 1Q1 1)) (1 PNz + 1Q1Frs) + B

Thus, the proof is complete. ([l

Lemma 3.2. Assume that f(z) € L*() and g(z) € L*(Q), then for (LI)-(L.4),
we have

% (IPIIP +1IVQIP) < B2 (1 +1log(1 + [Pllg= + 1@l =) (I1PIIF= + Q%) + Es,
where Ey, F3 are constants.
Proof. By differentiating with respect to =z and setting
W =VQ, (3.6)
Equations — become
Po=¢(P+(1+iu)AP—(1+iv) |P*P—-VP-W —rPdiviW + f,  (3.7)

Wy = mV(div W) — %V(wﬂ) _WV(IPP) + V. (3.8)

Multiplying (3.7) by P, integrating with respect to x over © and taking the real
part gives

1d —
51 IPIP = €1PIE = IVPI = [Pl ~ Re [ VP WPz
2dt o
—Re/ r|P|2didex+Re/ fPdz,
Q Q
where

—Re/ VP-W?dxz—l/ W.V(|P|2)dm:1/ |P|?divWdz.  (3.10)
Q 2 Q 2 Q

While multiplying (3.8) by W and integrating over 2 yields

1d 1
§&I\Wll2 = —ml divIWV|? - 5/ V(W2)~de+/ Vg Wdx
@ @ (3.11)
fw/ V(|P)?) - W da,
Q
where

—w/ V(|P|2)-de:w/ |P|? div W da. (3.12)
Q Q
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Combining (3.9) with (3.12)), we arrive at
d
—(IPII* + |W|)?
3 UIPIE+1IWI%)
= 2P| = 2| VP|* — 2m]| div W |* = 2||P|| 74 dz
—|—(2w—|—1—2r1)/ |P|2didex—/ V(W?) - Wdx
Q Q
5
+2Re/fﬁdx+2/vg.wc1z =y I
Q2 Q i=1
where
I = 26| P[> = 2|V P|[* — 2m| div W ||* = 2[|P|| 74 ,

IL=Q2uw+1- 27"1)/ |P]2divWdz, I3= —/ V(W?) - W da,
Q Q

I4:2Re/fﬁdx, I5:2/Vg-de.
Q Q

(3.13)

(3.14)

We now estimate each term on the right-hand side of (3.13)). By the Brezis-Gallout

inequality and Holder inequality, I and I3 can be estimated as follows

L] < |20+ 1 — 27| P||2 < |2 div W |

IN

m, ..
5 1 div | + C|lP|| 2~

m .
< Dl div WP + C(1 + y/iog(1+ [Pa))’

S div W2 4+ C(1+log>(1+[|P] 42))

INIA

IN

S div W2+ [Pl + C
< C(L+1og(L+ [Pz + W lz=)) (IPN72 + W F2)
+ %HdivWHZJrC’
and

| 13]

IA

. m., ..
W e [ W div W] < [l div W12 + CIW |7 W]

IN

m., ..
S 1A W2 4+ C(1+log (1 + [|W ][ =) [ W]

m., ..
< C(U+log(1+ [Pl + [Wla2))(I1Pl5z + 1WIE=) + 5 || div 2.

For I4 and I5, one can deduce that
[La] < |[PIP + £ < |1 Pllgz + Cy
< (L +1log(L+ ||Pllgz + [Wlla2)) (1P| + [IWI[F2) + Co

and

151 < 2|lgllll div W || < ml| div W[ + Cs,

(3.15)

(3.16)

(3.17)

(3.18)
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provided f(z) € L%(2) and g(x) € L?(Q). Substituting the above estimates (3.15)—
(3.18) back into (3.13]) leads to

d
S (1P + 1w P)

< 2|P|)? - 2|V P|* ~ 2/Q |PI* de + C (1 +log(1 + [|Pllaz + [Wlla2)) (3.19)

< (IPIZ + W iZ2) +C + Ca + Cs
= By (L +log(1+||Pllaz + [Wlla2)) (IPI7: + [WE2) + Es.

Noting (3.6)), we finally obtain

d
3 (PP +1vel?)
< By (1+1log(1+ [[Pllm2 + [Qllu2)) (IPl7= + 1QUs) + Bs,

(3.20)

which is the desired result. (I

To obtain the higher order estimates with the complex amplitude of the flame
oscillations P(z,t) and the deformation of the first front Q(z,t), we can use the
transformed equations (3.7)-(3.8) and have the following lemmas.

Lemma 3.3. Assume that f(z) € L*(Q2 and g(z) € H*(Q), then for the problem
(L.1)-(1.4), we have

LA+ 1aQpP)

dt

< By (1+log(1 +[|Pllgz + [Qllus)) (1Pl + Q%) + Es,
where Ey, E5 are constants.

Proof. Multiplying (3.7) by (—AP), integrating with respect to x over Q and taking
the real part, we obtain

1d —
s3IV =&IvPIP - ap|® +Re/(1 +iv)|P|PP AP dzx
Q
+Re/ vp.wﬁdxme/rpdivwﬁdx (3.21)
Q Q
—Re/fﬁdx.
Q

On the other hand, multiplying (3.8]) by (—V(div W)) and integrating with respect
to x over € yields

1d 1
—— || divW||? = —m||V(div W)||* + f/ V(W?) - V(divIV)dx
2dt 2 Jo (3.22)

—&-w/ﬂV(\PP)-V(divW)dx—/QVg-V(divW)dx.
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Adding (3.22) and (3.21)), one has
d 2 - 2
< (IVPI? + [div w]?)
= 26||VP|* - 2| AP|* — 2m||V (div W)||*

+2Re/(1+iv)\P|2Pﬁdx+2Re/ VP -WAPdx

Q Q

+2Re/ rPdivWAPdz + [ V(W?)-V(divW)dx
Q Q

+2w/ V(|P|2)-V(divW)dx—2Re/ fAPdx
Q Q
8
—2/ Vg-V(divIV)de =Y J;,
Q2 i=1
where

Ji = 26| VP = 2|AP|* — 2m|V (div W) %,

T zzRe/<1+w)|p|2pﬁdz, Ty :Re/ VP.WAPdz,
Q Q
Ji= 2Re/ rPdivWAPdz, J;= / V(W?2) - V(div W) dz,
Q Q
Jg = w/ V(|P|2) V(divW)dz, J;=-2 Re/ fﬁdx,
Q Q

Jg = —2/ Vg - V(divW)dz.
Q

(3.23)

(3.24)

We now estimate J; (i =2,...,8) in (3.23). From Lemma[2.2] it follows that

2| < 21+ | [ Pl[Z< | PIHIAP| < C||Pll7e 1P 72
< C(1+1log(L+[|Pllg2)) | PllZe
< C(1+log(1+||Pllaz + [Wlla2)) (IPIZ: + IWE:) .

| Js| < 2[[W|l< VP AP| < 2|W | < || Pl|F-
< C(1+log(1 + W 52)) 1Pl Z
< C(L+1log(1+ [Pl + [Wlla2)) (1P + W 152)
and

| Jal < 2[r(|| Pz || div W|AP|| < C|IP|[ < [AP|* + || div W2

2
< C (1+Viog(L+ [Pll2)) AP|2 + | div W
< C(1+10g(1 + [[Pl|2)) [ Pllz= + ClW | g
< C(1+log(1+ [ Pllgz + W =) (1PUz + W 2)

(3.25)

(3.26)

(3.27)
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where we used the Brezis-Gallout and Holder inequalities. By direct computations,
we have

| J5]
. 1 .
< 2[[W || e [V V(div W) < %IIWII%WHVWII2 +m||V(div W)|?

< C(1+log(L+ [Wl|z2)) W2 +m|[V(div W)|*
< C(1+1og(L+ | Pllzz + [Wllz2) (IPl72 + W E2) +ml|V(div W)

(3.28)

and

. 8w?
|J6| < dw||P[| L[|V P||[|V(div W)|| < WHPII%MIVPH2

+ SV div )2
< O (L+log(L+ [ Pll2)) [ Pl= + 1|V (div W) (3.29)
< C(1+log(1+ [Pll= + W [a2)) (I1PI2 + W [%2)
+ %||V(divW)||2.
In addition, J7 and Jg can be estimated as follows
[T < JAP|* + I £I* < |[1PlI72 + Ca (3.30)
< (1+1og(L+ 1Pz + [Wllz2)) (1P11> + [WE2) + Ca

and

. m R 2
|Js| < 2[[Vg[lIV(div W) < 5|IV(dle)H2 + —[[Vg|?
m m (3.31)
< S IV (v W)|P + Cs.

Substituting the above estimate (3.25))-(3.31]) into (3.23]) leads to

v PP+ v W)
< VP~ 20API + (€ + (1 +log(1 + [Pl + W) (339
< (IPll7r + WlE2) + Ca + Cs
< Ey(1+1og(L+ [[Pllz + [Wllz2))(1PN7 + W 32) + Es.
From the transformation , we finally obtain
LUvPIR+ 1aQl?)
< Ey(1+1og(1+ [P gz + 1Q) =) (1 Pllzr + [QIa) + Es,

which completes the proof of this lemma. O

(3.33)

Lemma 3.4. Assume that f(z) € HY(Q) and g(x) € H?(Q), then for the problem
(1.1)-(1.4), we have

d
= (IAPI? + [VAQI?)

< Bg (1 +1log(1 + [|Pllzz + 1Qllz2)) (I Pll7 + QN F) + B,

where Eg and E; are constants.
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Proof. Multiplying (3.7) by A2P, integrating with respect to  over 2 and taking

the real part gives

1d

iaHAPH? =¢||AP|? - [VAP|? - Re/ (1 +iv)|P|*PA2P dz
Q

- Re/ VP WA2Pdz — Re/ rPdivWA2Pdzx
Q Q

+ Re/ FAZP da.
Q

Taking the inner product of (3.8) with VA(div W) over €2, one has
Ld
2dt
= —m||A(divIW)]||? — %/ V(W?) - VA(div W) dz

Q

IV (div w)]*

—w/ V(\P\Q)-VA(divW)da:—&—/ Vg - VA(div W) dz.
Q Q

Adding (3.35)) and (3.34]), we have
d .
T (IAPI7 + [V (divIv)|[)
= 26| AP|]* = 2| VAP|* — 2m||A(div W)]|?

—2Re/(1+iv)\P\2PA2de—2Re/ VP -WA2Pd

Q Q

—QRe/rPdivWAQdef/ V(W?) - VA(div W) dz
Q Q

wi/ V(|P|2)~VA(divW)dx+2Re/ fA2Pdx
Q Q

8
+2/ Vg VA(divIW)de =: Y K,
Q

i=1
where

Ky = 26| AP — 2 VAP - 2m||A(div W)

Ky = —2Re/(1 +iv)|PPPA?Pdz, Kj=—-2 Re/ VP -WA?Pd,
Q Q

Ky = 72Re/ rPdivWA2Pdz, Ks= 7/ V(W?) - VA(div W) dx
Q Q

K¢ = —2w/ V(|P)?) - VA(divIWV)dz, Ky :QRe/ fAZPdaz,
Q Q

Kg = 2/ Vg - VA(div V) da.
Q

(3.34)

(3.35)

(3.36)

(3.37)

Next we analyze the each integrand in (3.36)). It follows from Lemmas that

: 1
|[Ko| < 6|1+ || P2 IVPIVAP| < S VAP|? + C|| P2 VP|*

1
< SIVAPI? +C (1+1og® (1 + [|P[2)) | Pl AP]
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1
< §HVAPII2 + CA+ IPla) | PP 2
1 1
< §HVAPII2 +C||P| 32 + CIQIZ (| Pl Lo || Pl

1
< SIVAP? +C (1 +log(1+ | Plla2)) 1P|I72
C (1 +1og(L+ [[Pllgz + [Wllg2)) (1Pl + W)

IN

1
+ 5|\VAP||2. (3.38)
With respect to the term K3, by direct computation, one has

| K| = ‘QRQ/(DQP'W-VAP+VP~VW-VAP)dx
Q

< 2| Wiz |D*PI[VAP| + [[VP| s [ VW 4 [ VAP

1 (3.39)
< SIVAPI? + 4|W L [[D*PI* + VPl [V WV 24
< SIVAPI? + 4| WIR|D*PI? + SIVPIL. + S IV
Applying the Gagliardo-Nirenberg inequality, it is sufficient to see that
VPl < IPI*IAPI?, (3.40)
which enable us to estimate K3 as
| K|
< SIVAPI? + 4 WIR<ID*PI2 + SIPIe P13 + 5 IW 1 71
< %HVAPH2 +C (1 +log(1 + [Wllg2)) 1Pl (3.41)
+C (1 +1log(L+ [[Pllr2)) [PlF + C (1 +log(1 + [|W|[=)) [W[Z-
< C (1 +1log(L + [[Pllzz + [1Wlk2)) (1PI7 + [WIIF2) + %IIVAPIIQ-
Similarly to (3.41)), we have
| K4
= |2Re/ﬂr(divWVP-W+PV(divW) - VAP) dz|
< 20r[[[div Wl s [V P[4 [VAPI 4 2[r[[| Pl| o= [V (div W) [ VAP]]
< SIVAPIP 4+ CINW IRV PR+ CIP V(i )P .42)

IN

1
S IVAPI? + CIIVW |14 + CIVPI|s + Cl P2 W[

IN

1
SIVAPIE + CIW 5= W2 + ClPIG= I Pl + CIPI L W

1
< C (1 +log(L+ [ Pllaz + [Wla2) (1P + W) + S IVAP?.
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To estimate K5, we denote W = (W?, W?2) for simplicity. Note that

| / A(W?)A(div V) dz|
Q
.y /Q @WLWL LW WD+ 2WE W2 4 2WPWR
+2W, W+ 2WW, 4 2W2 W2, + 2W2W2 ) A(div W) dz|

<| /Q (W W +2W2 W2 +2W, W, +2W2 W2 )A(div W) dz|

+2WPW2 ) A(div W) dz

< 8| VWI[Lal|A(div W] + 8|[W || o« | D*W | A(div W)
By (3.43), we find that

|Ks5| = \/ A(W?)A(div W) da|
Q
< 8|[VWI[La | A(div W)|| + 8] W[ L~ [ D*W || A(div W)
m 96 96
< FIAV )P + W52 Wz + — WL [[W 172
m .
< C (1 +log(1+ (W[ 2)) [IW 7= + | A(div )|
< C (1 +1log(L+[1Pllzz + W) (IPI7= + I1W[72)
+ A v )|

For the last three terms of (3.36)), we have

K| = |20 / (APP 4 2VP - VP + PAP) A(div W) dz|
Q
< 40||Pl| < | AP | A(div W)|| + 40|V P|34]| A(div W)
m .
< AWy W) + CIPG< | Ple + CIPI3: Pl
< C (1 +1og(1+ [ Pllaz + W la2) (I1PI= + 1WI12)
+ Ay W2,

1
K7 < 2| VIIVAP| < SVAP|* + Cq

and

. m .
|Ks| < 2] Agl[|A(div W) < | AdivIV)|* + C7

11

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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because f(z) € H'(Q) and g(z) € H?(2). Substituting (3.38))-(3.47) into (3.36]),

we obtain the following estimates
d .
T (IAPI* + [V (div W)]1?)
< C (U +log(L+[|1Pllzz + W =) (I1Pl7: + IWIlE=) + 26IAPI* - (3.48)

+ Cs + Cr
< Bg (1+1og(1+ [|Pll a2 + W[ z2)) (1Pl + W I32) + B,
where ||AP|| < ||P||gz and Eg = 2§ + C, E; = Cs + Cf. O

Under the conditions of Lemmas we have the following result.

Lemma 3.5. Assume that f(z) € HY(Q) and g(x) € H?(QQ), then for the problem
(1.1)-(1.4), there exist positive constants E,E', E",E"" such that for any T > 0,

1Pz < E” exp (L BT+ 0Pl ma-+1Qollro))
< 5 7
1Q 1 < E" exp (leETJrE'(HPoHH2+HQ0HH3))'
o 2
Proof. From Lemmas 3.1 it is easy to show that

d
I (IQI*+1PI* + Vel + IVPI* + [|AQ|* + [AP|* + [[VAQ]?)
< (Bo+ Bz + Ea+ Eg) (1 +1og(1+ | Pllg= + Q=) (IPI7= + 1Q1I%s) (3.49)
+ Es+ Es + Er
= Eg (14+10g(1+ [|Pllz> + QI ms)) (1 Pll7= + 1QII7s) + Eo.
Denote
1QI* + IVQI* + AQI* + IVAQI? = [Q)s,
IPI> +[[VP|? + [AP|* = [P]%-.

Inequality (3.49)) becomes

d 2 2
(Pl + [QFo) 550

< Bs(1+log(1+ [Pl gz + Qllas)) (I Pl + Q1 F2) + Eo.

We always use the notation || - ||g= = (Zla\<s |3Q|Lz)1/2, thus [-]g2 and [|gs are
equivalent norms to || - |2 and || - || gs respectively. Furthermore, there exists
a positive constant Cg such that || - ||z < Cs[]gs, s = 2,3. Applying Cauchy
inequality, from it follows that

4 (1Pl + QL)
< Bg (1 +1og(1 + Cs[P g2 + Cs[Qlys)) (C3[P)3= + C3[Q)%s) + Eo
< C3Es (1+1og(1+ C§ + [P32 + C5 + [Q1%)) ([Pﬁﬂ + [Qﬁ{?) + Ey (3.51)
< C3Es (1+log(1+2C%)) (1 +log(1 + [Pli + [QlF2)) ([Pli= + [QlFs)
+ Eg

= E1o (1 +1og(1 + [P)72 + Q) ([Pl32 + [Q)Fs) + Eo.
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If there exists a positive constant N such that [P]3. + [Q]3: < N for all T > 0,
then Lemma holds. Otherwise, there exists a positive constant F such that

%([P]ira +1Ql7s) < E([PF2 + [Q3s) log([PlF + [QlF), (3.52)

which implies that
loglog([P)%: + [Q)%:) < ET + loglog([P]%2(0) + [Q]%:(0))

) (3.53)
< ET + E'(|Poll a2 + [|Qoll m2)-
Therefore,
[Py < exp (%eEﬂE'(nPo|\Hz+quan>)7
Qs < exp (%eET-FE’(HPO\|H2+||Q0HH3))'
Namely,
|P|| g2 < E" exp (%eEﬂE'(uPo||Hz+|\Qo\|Hs>)7
Q|| s < E" exp (%eEﬂE’(HPoI\HzHlQouHa)).
This proof is complete. O

Based on the previous lemmas, we are ready to prove the main result.

Proof of Theorem[I.1. From Lemmas|3.]] when Py(z) € H2(2), Qo(x) € H3(Q2),
f(x) € HY(), g(x) € H*(Q) and for any T > 0, we obtain that

1P| sz < E" exp (%eEﬂE/(uPo|\Hz+quuHs)),

1Qll s < B exp (%eEﬂE%uPo|\Hz+quuH3)),

where the positive constant C' depends only on ||Py| gz, ||Qollgs and T. Further-
more, by the standard method, we can extend the local solutions P(z,t) and Q(x,t)
of the periodic initial value problem (L.1)-(L.4) to global solutions. Thus, the proof
is complete. (Il
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