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SINGULAR CRITICAL ELLIPTIC PROBLEMS WITH
FRACTIONAL LAPLACIAN

XUEQIAO WANG, JIANFU YANG

ABSTRACT. In this article, we consider the existence of solutions of the critical
problem with a Hardy term for fractional Laplacian
s u 21 .
(=A) uf,u‘xlk =u’s in Q,
u>0 in €,
u=0 on 01,

where Q C RV is a smooth bounded domain and 0 € Q, p is a positive param-
eter, N > 2s and s € (0,1), 2% = NQiVQS is the critical exponent. (—A)® stands
for the spectral fractional Laplacian. Assuming that 2 is non-contractible, we
show that there exists pp > 0 such that 0 < g < po, there exists a solution.

We also discuss a similar problem for the restricted fractional Laplacian.

1. INTRODUCTION

In this article, we consider the existence of solutions for the critical problem with
a Hardy term and fractional Laplacian

s U *— :
(=A)u — M|x|25 =u?"1 in Q,
>0 in, (L.1)

u=0 on 0N

in a smooth bounded domain Q C R and 0 € Q, where p is a positive parameter,
N >2s and s € (0,1), 2 = 285 is the critical exponent. The operator (—A)* is
the spectral Laplacian defined in section 2.

In the case s = 1, such a problem has been extensively studied, see [8], 1T, T4 16,
211, 27] etc. It is known that problem with s = 1 has no nontrivial solutions
if 4 > 0 and Q is star shaped [2]. However, the situation becomes different if
the domain € has nontrivial topology. In [I7], a nontrivial solution was found for
problem (1.1)) with s = 1 and p = 0, if  is an annulus. Then it was shown in
[3] that there exists a nontrivial solution of with s = 1 and p = 0, if Q has
nontrivial topology. If 4 > 0, there is a Hardy term in with s = 1. In [I5],
it proved that problem with s = 1 admits a solution in a non-contractible
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domain. Since (1.1) with s = 1 is a critical problem, it involves the ground state
solution of the problem in the whole space

—Au — ML =u¥~' inRV,
|z[?

u>0 inRY.
The ground state solutions of (|1.2) are found in [25] for 4 = 0 and in [27] for p # 0.
Recently, Secchi et al [22] proved that Coron type problem admits a solution
for problem (1.1) with ;& = 0 and the restricted fractional Laplacian; see section 2

for a definition. Similarly, the argument in [22] relies on, among other things, the
explicit form of the minimizer of the problem

Jan [(=08)u(2)|? da

2 dr) 2/25 7

(1.2)

A= inf
u€H® (RN ),uz0 (f]RN |u(z)

(1.3)

where the space H*(RY) is defined as the completion of C§°(RY) under the norm
[ullfe @ry = [ 1€ 1a(E)] g, (1.4)
@) = |y

here @ denotes the Fourier transform of w. In RN, the operator (—A)S/Z, seRis
defined by the Fourier transform

((ZA)72u)(€) = ¢ a€) (1.5)

for u € C§°(RY). Therefore, for s > 0, we have
A s/2 22 Ny = 25|~ 2d. 1.6
=AY 2ullaan, = [P la) ds (1.6

For N > 2s, the minimizing problem Ay in (1.3) is related to the fractional

Sobolev embedding H*(RN) — L& (RY). The continuity of this inclusion cor-
responds to the inequality

Hul|i2§(RN) < As_lHu”ip(RN) (17)

The best constant Ay in was computed in [I0]. A minimizer u of Ay weakly
solves the problem

(=A)*u = |u|*«"2u in RN (1.8)
up to a multiplying constant. Using the moving plane method for integral equations,
Chen et al [J] classified the solutions of an integral equation, which is related to
problem . Positive regular solutions of , and then the minimizers of A,
are precisely given by

N—2s

Vo) = () (1.9)

g2+ |z — xo|?

for ¢ > 0 and zo € RY.

In this paper, we consider the existence of solutions of problem with 0 <
< pp and s € (0,1) in a non-contractible domain €, where p7 is the best constant
in the Hardy inequality. Problem is related to the variational problem

u(xr 2
Ay, = inf 1(=2)*2ul o gy = o %dm

u€ Hs(RN),uz0 (f]RN |u(m) 2 dm)%

(1.10)
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Although minimizers of A; , were found explicitly in [27] for s = 1, it is not the
case for s € (0,1). So in our argument, we need to avoid using it. Our main result
for the spectral Laplacian is as follows.

Theorem 1.1. Suppose Q is not contractible. Then, there exists 0 < pg < pg
such that for each p € (0, o), there exists a solution of (Ps,,).

For the restricted fractional Laplacian (—A|q)?, we consider the problem

(—AQ)*u — u% =%t in Q,
w>0 inQ, (1.11)
u=0 onRY\Q.
Similarly, we have the following result.

Theorem 1.2. Suppose Q) is not contractible. Then, there exists 0 < pg < pg
such that for each p € (0, o), there exists a solution of (1.11)).

The article is organized as follows. After some preparations in section 2, we
prove Theorems [I.1] and [I.2] in section 3.

2. SOBOLEV-HARDY INEQUALITY

In this section, we develop some properties of minimizers of A ,, and give the
definition of fractional operator (—A)®. First, we define for each s > 0, the frac-
tional Sobolev space

H*(RY) = {u e L*R") : [¢°a(¢) € L*(RY)}
via the Fourier transform

N 1 —ix
(&) = L /]RN e~ y(x) da.

For s € (0,1), it is known from [19] that there holds

2
/ €12 [a() [ dg = OSN/RN/RN Ty |N+2)8| dz dy, (2.1)

where C y is a positive constant. This pr0v1des an alternative norm

)|2 1/2
l[ull gre vy = / /RN |x— |N+25 dz dy)

on H*(RN). If N > 2s, the optimal constant p, n was found in [28] for the
fractional Hardy inequality

Ju()? N
“H/RN 2] d“/w € a()]? de, (22)

where u € C§°(RY). By a denseness argument, we have
2
H/ (@)l 4, < / (=AY 2u(z)2 da (2.3)
ry|2[* RN

. N+2
for u € H*(RY), where ug = 43W

s u@)]* | \1/2
|U‘H5(RN) = (H(—A) /2UH%2(RN) —M/ dm)

Ry |2[*

If 0 < p < pg, we may verify that
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defines an equivalent norm on H*(RY). Therefore, there exists C' > 0 such that for
any u € H*(RY),

2* % _ANS/2 25 Ju(x)]?
- 2s
(/RN fu(a)]? dr) <c[/RN|( A 2u(z) 2 do ”/RN - d].  (24)

*
where 27 = 5. Define

2
_ inf |U|H5(RN)

We BN W0 ([ ()2 da)

It is proved in [I3] that Ay, > 0 is achieved if p > 0.
We remark that any minimizer of A, , does not change sign, and is radially
symmetric. Indeed, let u be a minimizer. By formula (A.11) in [23],

[ 8y ulpde < [ j-ayup e
RN RN

Hence, |u| is also a minimizer, and we have v > 0. Denote by u* the symmetric-
decreasing rearrangement of u. By strict rearrangement inequalities in [12], u* is
also a minimizer of A ,. Therefore, by strict rearrangement inequalities again,
u(z) = u*(z — A) for some A € RY. Moreover, any minimizer u of Ay, weakly
solves with © = RY up to multiplying a constant. In the case Q = R, since
both u(z) and u*(x) solve equation , and is not translation invariant, we
obtain that A = 0, that is u = u*.

Next, we define fractional Laplacians in a bounded domain. There are two
types of fractional Laplacians in bounded domainds, one is the spectral fractional
Laplacian, another one is the restricted fractional Laplacian.

In a bounded domain 2 C R, we define the spectral fractional Laplacian (—A)®
as follows. Let {\g, pr}72, be the eigenvalues and corresponding eigenfunctions
of the Laplacian operator —A in Q with zero Dirichlet boundary values on 0f2
normalized by |¢xl/z2(0) =1, i.e.

(2.5)

As

—Apr =Aor in€; =0 on 0.

For any u € L%(f2), we may write

o0
u = g Ui, Wwhere wuy :/uapk dx.
k=1 Q2

We define the space

H={u= Zuk@k € L*(Q): Z)\zsui < o0}, (2.6)
k=1 k=1

which is equipped with the norm

> 1/2
el = (3o xgug)
k=1

For any u € H, the spectral fractional Laplacian (—A)?®, is defined by

(—A)*u =" Nurpr. (2.7)
=1
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The space H defined in (2.6) is the interpolation space (H3(£2),L?(2))s,2, see
[T, 18, 26]. It was shown in [I8] that (HZ(Q),L?(2))s2 = HF(Q) if 0 < s < 1 and
s # 1/2; while (H2(Q), L*(Q))1 5 = Hy) (), where

Hyp? () = {u e HY*(Q) - /Q Z((;;)

dzr < oo},

and d(z) = dist(x,00Q) for all z € Q.
Now, using the idea in [7], for any v € H§(£), we may define the extension
w = E,(u) of u as the solution w € Hg ; (Cq) of the problem
—div(y'™?*Vw) =0, Cq = Q x (0,00),
w=0, 0Cq=090x(0,00), (2.8)
w=u, Qx{0},
where

Hj 1 (Co) = {w € L*(Cqa) : w =0 on 0.Cq, HS/ y' | Vw|? de dy < oo}

Ca

is a Hilbert space with the norm
||wH?qé L(Ca) = fis/c y' 72| Vw|? da dy.
' )

The extension operator E is an isometry between Hg(§2) and Hj ;(Cq). That is
||E(u)||H(}’L(CQ) = ||ull s (- (2.9)
It was shown in [7], see also [5], that

ow
: 1-2s s
— KRg ylll’glJr Yy " = (—A) u, (210)

where (—A)® is the spectral fractional Laplacian. We remark that if Q = RV, for
any u € H*(RY), the extension w = E(u) of u is given by
—div(y'"*Vw) =0, RYT

2.11
w=u, RV, ( )

then by [7], problem (2.11)) corresponds to the fractional Laplacian given by the
Fourier transform in ([1.5)), which also satisfies . In this sense, the fractional
Laplacian given in (1.5 can be approached by the spectral fractional Laplacian
through extending the domain Q in (2.8) to RY. In the sequel, we use the same
notation (—A)® to denote these two operators.

Using this sort of extension, we may reformulate the nonlocal problem in
a local way; that is,

—div(y'"*Vw) =0, Ca,
w = 0, 6LCQ7

ow U
1-2s 77 __
K;Sy 61/ :u’|g:|2S

(2.12)

+u®"t Q% {0},

where a% is the outward normal derivative.
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The other type of fractional Laplacian is the restricted fractional Laplacian de-
fined by the following formula:

_ u(z) —u(y)
(—A‘Q)su(x) =cn,s PV. on m dy

for all functions v which are zero outside 2. Similarly, the extension problem is
given as follows.
div(y'?*Vw) =0 in RV,

w=0 inRY\Q,

ow U x
1-229W _ 251
ov M T

(2.13)

on €.

3. EXISTENCE OF SOLUTIONS

In this section, we first show that problem (1.1]) admits a nontrivial solution in
a non-contractible domain. Define the functional

1 s u? 1
1) = 5 [ (8)72uP = ) do = g [

on H§(), where (—A)® is the spectral factional Laplacian defined in (2.7)), and the
functional

2 dx

B =3 [ ey =ty L [
! 2 Jrw |[? 25 Jr
on H*(RY), where (—A)* is given in (L.5)). It is discussed in section 2 the relation
between the spectral factional Laplacian and the fractional Laplacian defined by
the Fourier transform.
We consider the minimizing problem
cp =1inf {J,(u) 1 u € N gn},

where N, o denotes the Nehari manifold

2 dx

u

Noo = {ue Hy()\ {0} /Q ((=2)2uf? — p Y = /Q ful? d).

||

Obviously, we have

u2
2s

Cu :inf{% (\(—A)S/2u|2—,u

Ydz:u €N, gn}
RN || -

N-—2s
We may verify that ¢, = {7 A, ;. If u is a minimizer of A, ,, then v = As ° w is

a minimizer of ¢,, and vice verse. Since minimizers of A, , are radially symmetric,
so are minimizers of ¢,. The following result is proved in [20].

Lemma 3.1. Let 0 < s < & and {u,} C H*(RN) be a bounded sequence such that

inf [l 2 = C > 0.

Then up to subsequence, there exist {x,} C RN, X\, € (0,00) such that
v, =~ v#0 in H*RY),

N-—2s
where v, (z) := A 2 Up(Tp + Anx).
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Using Lemma we have a description of (PS). sequences. By a (PS),. se-
quences for I, we mean a sequence {u,} C H{(Q?) such that I,(u,) — ¢ and
I (un) — 0.

Proposition 3.2. Let p € (0, un) and {u,} C N, o be a sequence such that for
0<c<cg,

lim I,(un) =c¢, lim I} (u,) = 0. (3.1)
Suppose problem (1.1) has no nontrivial solutions. Then, there exist {\,} C Rf}
and {z,} C RN such that

lim A, =0, lim z, =0 and lim [u, —u} Iz =0,
n— 00 n— 00 n—oo nsTn 1 H

where ut is a minimizer of c,,.

Proof. By (3.1)) and the Hardy inequality, we know that {uy} is bounded in H{ (),

and
. cN
lim |un| 725 ) = - 0. (3.2)

n—oo

Therefore, we have
U, = u in Hy(Q), u, —u in L2:_1(Q)7 Uy, — u  a.e. Q.

By the assumption that problem (I.1) does not have nontrivial solution, we have
u = 0. Extend u,, to be zero outside 2, then the extension of u,, belongs to H*(RY),
see [1, Theorem 7.40]. By (3.2]) and Lemma there exist {z,,} C RV, \,, € (0,00)
such that
vy —v#0 in H¥(RY),
N —2s

where v, (2) := Ap 2 up(2, + Anz), and u, has been extended to RY by setting
u, = 0 outside . We also have v,, € H§(£2,), where Q,, = {x e RN : z,, + N,z €
Q}. Moreover, v,, satisfies

2
Anin 271

(—=A)*v,, — M T T 0 (3.3)
and
25,2
;/Qn (|(—A)s/2vn|2 _ um):ix\q}:xPS) dx — % N (o | da o
B %/ﬂ (|(_A)S/2“n|2 - U;és) dx — 2155/9 un|? do — ¢
as n — oo.

We may assume that \,, — A\g > 0. If Ay > 0, since u,, — 0 in HS(RN), we have
v, — 0 in H*(RY), which is a contradiction.

We may assume, up to a sequence, ;—Z — z9 € RN or \f—z| — o0 as n — oo. If
\f—:| — 00 as n — 00, by , we see that the limit function v satisfies

(=A)*v =v%"1 inRV. (3.5)
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Thus, equations (3.3)) and (3.4) imply

o >c= lim {1/ (‘(7A)S/2'U |27 m)dwl/
0 T nSoo 2 " Iu|.’1,‘n+)\ JJ|23 2% Q

li 9/2 2 Ao vn
:anm / ’Un| —Mm) dx
> N/ S/QU\Zda:>co
which is impossible.
So we have {* — xo € RY | which yields lim,, . |7,| = 0. It follows that v

satisfies

v 1.

(—A)v — ,UJW =v%71 in RV,

By the translation, we may assume o = 0. Indeed, let @, (x) = v,(z — ). Then
o, — 0 in H*(RY). By (B.3), @, satisfies

as n — oo and ¥ satisfies

Now, we prove that

lim [(=A)*"2(5,, — 0) > dx = 0.

n—0 RN

Suppose on the contrary that

lim |(=A)2(5, — 0))? dx > 0.

n—oo [pN

Noting

lim |(—A)S/2(17n—f;)|2dm+/ |(=A)*/%5) 2 da
RN

n—oo [pN

= lim [(—A)*/25,|? du,

n—oo [pN

and by the Brézis-Lieb lemma [6],

lim ||o, %4 19))% = lim s,

— 00 — 00

~ ~12 ~12 2
lim [6n 2”' d +/ O 4y = tim [nl”
n—oo Jpn  |z[ ry |]2 n—oco Jpn |z|?s

we find from (3.6 that

~12
lim (J(=A) 2By, — D) — p—g — |0y — 0% dz = 0. (3.7)

n—oo gy ||
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That is, 0, —? is close to the manifold NV}, g~ . Let t,, be such that ¢, (0, —7) € N}, g~ .
By (3.7), we can show that t, — 1 asn — oco. Hence, J,,(0,—0)—J,(t,(0,—0)) — 0
as n — 00. But J,(tn (0, — 7)) > ¢y, it yields
liminf J, (0, — 0) > ¢y,
and then
liminf J,(9,) > liminf J, (9, — 0) + J,(?) > 2¢,.

n—oo n—oo
This is a contradiction. Consequently, %, — @ strongly in H*(RY) and J,(?) = c,.
The proof is complete. O

In the case p = 0, we have the following result, its proof is similar to that of
Proposition [3.2]

Proposition 3.3. Let{u,} C Noq be a sequence such that
lim I(u,) <cg, lim I'(u,) =0. (3.8)

n—oo

Then, there exist {\,} C RY} and {x,,} C RN such that

i =0,

nsTn

lim A\, =0, lim z,=0, lim |u, —u$
n—oo n—oo n—oo

0

where u” is a minimizer of cg.

For each set A C RY and each point z € RY, d(z, A) denotes the distance
between x and A. For each d > 0, we denote Q; = {z € RN : d(z,Q) < d} and
Q) = {z € Q:d(z,00) > d}. For subsets A, B C RN, A = B stands for that A
and B are homotopy equivalent.

Now, we choose d > 0 so that Qg = Q. Let

Ja z|(—A)3?u)? da
 fo (=) da

B(u) for u € H5(Q) \ {0}.
Lemma 3.4. There exists jig € (0, ppr) such that for each p € (0, o) and v € Ny
with I(u) < ¢g, B(u) € Qq.

Proof. Suppose on the contrary that there exist u,, € Ry and u,, € N, o such that
limy, o0 ftn = 0, Iy, (un) < ¢o and B(uy,) & Qg for all n > 1. We may assume that
B(un) — 29 € RN \ Q4. Since p,, — 0, by the Hardy inequality,

2

u.
i [ i 40

as n — 0o0. Hence,
lim [ [(=A)*/?u,|?dz = lim / |,

lim I, (un) < co.

n—oo

By Proposition there exist sequences {\,} and {z,,} C RY such that

.
% da,

lim A\, =0 and lim |u, fug\n el gs = 0.
n—o0 P

n—oo

By the assumption, we have lim, ., , = xg. However, xy & 4, we have that
limy, oo [|un — S, |lgs # 0. This is a contradiction. The assertion follows. [
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Now, we choose d; > 0 such that Q = th. Let

1
|z[2s

Let £ € C*°(R;) be such that £(¢) =1 for t € [0, ‘12—1] and £(t) = 0 for t € [dy,00).
For each (g,2) € Ry x RV, we define

We (7)) = e ¢(x — 2)Ue(z — 2)
for z € RV, where U, is given in (|1.9) and 7. . is a positive constant such that w, .

satisfying
[y = ydo = [ o
It is proved in [4] that if 0 € 2,
€U0 = 1255y + O 2);

U200 = Ce?s + O(e%), if N > 4s,
SIE2) T ) 025 10g e + O(g?%), if N = 4s,
1€U:

A = inf{ cx € Q4.

2 dx.

*_ N—-2
f-1 N-2s

2 .
L2100 >(Ce 2 if N > 2s.

Let
1

Q) =3 [ 1Ay =3y s = - [ fu

Then, we may verify that

Q(ws,z) = {

2% d.

co — ACe?® + 0(g2%), if N > 4s,
co + Ce?loge + O(e%), if N = 4s,
for all z € Qilﬂ it implies that for all z € th,
Q(we,2) < co (3.9
if £ > 0 small enough.
Lemma 3.5. Let p € (0,up). Then for e > 0 small, there holds
sup{ (tw. . uwe:) 1 2 € Uy } < co.
Proof. Let t = t,, . Since # > Aforz e,

t2 2,2 2 £ 2 2 Wi
el G e [ e L
2 Q 2 Q ‘£E|
12 .
= 5 /ngfz dz
12
- / (1(=A) 2w, .2 — M2 ) da.
Q
Therefore, ¢ < 1. It results from (3.9) that
st? s/2 2 wg,z
I (tw, ») = A (I(=A) / We,z|" — /'L‘x|25) dx
< %/ (|(—A)S/2w5’z|2 — )\wgz) dx < cp.
Q

The assertion follows. O
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Proof of Theorem[I.1. We argue by contradiction. For fixed pu € (0, p10), assume
problem has no solutions. Hence, we know from [24] that there exists a pseudo-
gradient flow 7 : [0,00) X N}, 0 — N, o associated with I,,, such that the function
n satisfies for s,t € Ry with s > ¢ and u € NV, o that

Iu(ﬁ(&“)) < Ill«(n(t7u>)a
Jim I,(n(t,u)) > —oco implies that Jim I (n(t,u)) = 0.

For ¢ given in Lemma [3.5) we set w = {tu, ,we. : z € wj }. By the defini-
tion of we ., we have w, . € H{(Q) for each z € w. Therefore, w C N, o, and
sup{I,(n(t,u) : t > 0)} is bounded from below for each v € w. By Proposition
there exist {(e¢, 2z:} C Ry x Q such that lim; o, 2z = 0 and

. o o
tll)rgo ||77(t’ u) uet,thHs 0.
Since u* is radially symmetric, we have
lim B(n(t,u)) =0¢€ Q
t—oo
for all © € w. On the other hand, by Lemma
{B(t,w) : v e w} C Qq.

Since {B(n(0,u)) : u € w} = Qf , we see that €} is contractible in Q4. This
contradicts to the assumption that Qf;ll =~ ) =~y and that € is not contractible.
This shows that problem (1.I)) possesses a positive solution in N, o. (Il

Proof of Theorem[I.4 We remark that Lemma[3.] can be applied in this case. The
proof of Theorem [T.2]is similar to that of Theorem [I.I] with minor changes, we omit
the details. d

Acknowledgments. This work was supported by the NNSF of China: 11271170
and 11371254, and by the GAN PO 555 program of Jiangxi.

REFERENCES

[1] R. A. Adams; Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press,New
York-London, 1975.
[2] J. P. G. Azorero, 1. P. Alonso; Hardy inequalities and some elliptic and parabolic problems,
J. Diff. Equations, 144 (1998), 441-476.
[3] A. Bahri, M. Coron; On a nonlinear elliptic equation involving critical Sobolev exponent:
The effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294.
[4] B. Barrios, E. Colorado, A. De Pablo, U. Sdnchez; On some critical problems for the fractional
Laplacian oprator, J. Diff. Equa., 252 (2012), 6133-6162.
[5] C. Bréndle, E. Colorado, A. De Pablo; A concave-convez elliptic problem involving the frac-
tional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39-71.
[6] H. Brézis, E. Lieb; A relation between pointwise convergence of functions and convergence
of functionals, Proc. Amer. Math, Soc., 88 (1983), 486-490.
[7] L. Caffarelli, L. Silvestre; An extension problem related to the fractional Laplacian, Comm.
Partial Diff. Euqas., 32 (2007), 1245-1260.
[8] P. Caldiroli, A. Malchiodi; Singular elliptic problems with critical growth, Comm. Partial
Diff. Equations, 27 (2002), 847-876.
[9] W. Chen, C. Li, B. Ou; Classification of solutions for an integral equation, Comm. Pure
Appl. Math., 59 (2006), 330-343.
[10] A. Cotsiolis, N. K. Travoularis; Best constants for Sobolev inequalities for higher order frac-
tional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.
[11] A. Ferrero, F. Gazalla; Ezistence of solutions for singular critical growth semilinear elliptic
equations, J. Diff. Equations, 177 (2001), 494-522.



12

X. WANG, J. YANG EJDE-2015/297

[12] R. L. Frank, R. Seiringer; Non-linear ground state representations and sharp Hardy inequal-

ities, Jour. Funct. Anal., 255(2008), 3407-3430.

[13] N. Ghoussoub, S. Shakerian; Borderline variational problems involving fractional Laplacian

and critical singilarities, arXiv:1053.08193v2 (2015).

[14] N. Ghoussoub, C. Yuan; Mutiple solutions for quasi-linear PDEs involving the critical Sobolev

and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.

[15] N. Hirano, N. Shioji; Ezistence of positive solutions for a semilinear elliptic problem with

critical Sobolev and Hardy terms, Proc. Amer. Math. Soc., 134 (2006), 2585-2592.

(16] E. Jannelli; The role played by space dimension in elliptic critical problems, J. Diff. Equations,

156 (1999), 407-426.

[17] J. Kazdan, F. Warner; Remarks on some quasilinear elliptic equations, J. Comm. Pure Appl.

Math., 28 (1975), 567-597.

(18] J.-L. Lions, E. Magenes; Problémes auz limites non homogénes et applications. Vol. 1,

Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968.

[19] E. Di Nezza, G. Palatucci, E. Valdinoci; Hitchhiker’s guide to the fractional Sobolev spaces,

Bull. Sci. Math., 229(2012), 521-573.

[20] G. Palatucci, A. Pisante; Improved Sobolev embeddings, profile decomposition, and

concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equa-
tions, 50 (2014), 799C829.

[21] F. Ruiz, M. Willem; Elliptic problem with critical exponents and Hardy potentials, J. Diff.

Equations, 190 (2003), 524-538.

[22] S. Secchi, N. Shioji, M. Squassina; Coron Problem for fractional equations, arXiv:1041.5967v4

(2014).

[23] R. Servadei, E. Valdinoci; Variational methods for non-local operators of elliptic type, Dis-

crete Contin. Dyn. Syst., 33 (2013), 2105-2137.

[24] M. Struwe; Variational methods, applications to nonlinear partial differential equations and

Hamiltonian systems, Springer, 1996.

[25] G. Talenti; Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
[26] L. Tartar; An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the

Unione Matematica Italiana, vol. 3, Springer, Berlin, 2007.

[27] S. Terracini; On positive entire solutions to a class of equations with singular coeffcient and

critical exponent, Adv. Diff. Equations, 1 (1996), 241-264.

(28] D. Yafaev; Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal, 168 (1999),

121-144.

XUEQIAO WANG

DEPARTMENT OF MATHEMATICS, JIANGXI NORMAL UNIVERSITY, NANCHANG, JIANGXI 330022,
CHINA

E-mail address: wangxueqiao1989@126.com

JIANFU YANG

DEPARTMENT OF MATHEMATICS, JIANGXI NORMAL UNIVERSITY, NANCHANG, JIANGXI 330022,
CHINA

E-mail address: jfyang_2000@yahoo.com



	1. Introduction
	2. Sobolev-Hardy inequality
	3. Existence of solutions
	Acknowledgments

	References

