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SINGULAR CRITICAL ELLIPTIC PROBLEMS WITH
FRACTIONAL LAPLACIAN

XUEQIAO WANG, JIANFU YANG

Abstract. In this article, we consider the existence of solutions of the critical
problem with a Hardy term for fractional Laplacian

(−∆)su− µ
u

|x|2s
= u2∗s−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain and 0 ∈ Ω, µ is a positive param-

eter, N > 2s and s ∈ (0, 1), 2∗s = 2N
N−2s

is the critical exponent. (−∆)s stands

for the spectral fractional Laplacian. Assuming that Ω is non-contractible, we
show that there exists µ0 > 0 such that 0 < µ < µ0, there exists a solution.

We also discuss a similar problem for the restricted fractional Laplacian.

1. Introduction

In this article, we consider the existence of solutions for the critical problem with
a Hardy term and fractional Laplacian

(−∆)su− µ u

|x|2s
= u2∗s−1 in Ω,

u > 0 in Ω,
u = 0 on ∂Ω

(1.1)

in a smooth bounded domain Ω ⊂ RN and 0 ∈ Ω, where µ is a positive parameter,
N > 2s and s ∈ (0, 1), 2∗s = 2N

N−2s is the critical exponent. The operator (−∆)s is
the spectral Laplacian defined in section 2.

In the case s = 1, such a problem has been extensively studied, see [8, 11, 14, 16,
21, 27] etc. It is known that problem (1.1) with s = 1 has no nontrivial solutions
if µ ≥ 0 and Ω is star shaped [2]. However, the situation becomes different if
the domain Ω has nontrivial topology. In [17], a nontrivial solution was found for
problem (1.1) with s = 1 and µ = 0, if Ω is an annulus. Then it was shown in
[3] that there exists a nontrivial solution of (1.1) with s = 1 and µ = 0, if Ω has
nontrivial topology. If µ > 0, there is a Hardy term in (1.1) with s = 1. In [15],
it proved that problem (1.1) with s = 1 admits a solution in a non-contractible
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domain. Since (1.1) with s = 1 is a critical problem, it involves the ground state
solution of the problem in the whole space

−∆u− µ u

|x|2
= u2∗−1 in RN ,

u > 0 in RN .
(1.2)

The ground state solutions of (1.2) are found in [25] for µ = 0 and in [27] for µ 6= 0.
Recently, Secchi et al [22] proved that Coron type problem admits a solution

for problem (1.1) with µ = 0 and the restricted fractional Laplacian; see section 2
for a definition. Similarly, the argument in [22] relies on, among other things, the
explicit form of the minimizer of the problem

Λs = inf
u∈Ḣs(RN ),u6≡0

∫
RN |(−∆)s/2u(x)|2 dx( ∫

RN |u(x)|2∗s dx
)2/2∗s , (1.3)

where the space Ḣs(RN ) is defined as the completion of C∞0 (RN ) under the norm

‖u‖2
Ḣs(RN )

=
∫

RN
|ξ|2s|û(ξ)|2 dξ, (1.4)

here û denotes the Fourier transform of u. In RN , the operator (−∆)s/2, s ∈ R is
defined by the Fourier transform

( ̂(−∆)s/2u)(ξ) = |ξ|sû(ξ) (1.5)

for u ∈ C∞0 (RN ). Therefore, for s > 0, we have

‖(−∆)s/2u‖2L2(RN ) =
∫

RN
|ξ|2s|û(ξ)|2 dξ. (1.6)

For N > 2s, the minimizing problem Λs in (1.3) is related to the fractional
Sobolev embedding Ḣs(RN ) ↪→ L

2N
N−2s (RN ). The continuity of this inclusion cor-

responds to the inequality

‖u‖2
L2∗s (RN )

≤ Λ−1
s ‖u‖2Ḣs(RN )

. (1.7)

The best constant Λs in (1.7) was computed in [10]. A minimizer u of Λs weakly
solves the problem

(−∆)su = |u|2
∗
s,α−2u in RN (1.8)

up to a multiplying constant. Using the moving plane method for integral equations,
Chen et al [9] classified the solutions of an integral equation, which is related to
problem (1.8). Positive regular solutions of (1.8), and then the minimizers of Λs
are precisely given by

Uε(x) =
( ε

ε2 + |x− x0|2
)N−2s

2
(1.9)

for ε > 0 and x0 ∈ RN .
In this paper, we consider the existence of solutions of problem (1.1) with 0 <

µ < µH and s ∈ (0, 1) in a non-contractible domain Ω, where µH is the best constant
in the Hardy inequality. Problem (1.1) is related to the variational problem

Λs,µ = inf
u∈Ḣs(RN ),u 6≡0

‖(−∆)s/2u‖2L2(RN ) − µ
∫

RN
|u(x)|2
|x|2s dx( ∫

RN |u(x)|2∗s dx
) 2

2∗s

. (1.10)
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Although minimizers of Λ1,µ were found explicitly in [27] for s = 1, it is not the
case for s ∈ (0, 1). So in our argument, we need to avoid using it. Our main result
for the spectral Laplacian is as follows.

Theorem 1.1. Suppose Ω is not contractible. Then, there exists 0 < µ0 < µH
such that for each µ ∈ (0, µ0), there exists a solution of (Ps,µ).

For the restricted fractional Laplacian (−∆|Ω)s, we consider the problem

(−∆|Ω)su− µ u

|x|2s
= u2∗s−1 in Ω,

u > 0 in Ω,

u = 0 on RN \ Ω.

(1.11)

Similarly, we have the following result.

Theorem 1.2. Suppose Ω is not contractible. Then, there exists 0 < µ0 < µH
such that for each µ ∈ (0, µ0), there exists a solution of (1.11).

The article is organized as follows. After some preparations in section 2, we
prove Theorems 1.1 and 1.2 in section 3.

2. Sobolev-Hardy inequality

In this section, we develop some properties of minimizers of Λs,µ, and give the
definition of fractional operator (−∆)s. First, we define for each s ≥ 0, the frac-
tional Sobolev space

Hs(RN ) = {u ∈ L2(RN ) : |ξ|sû(ξ) ∈ L2(RN )}
via the Fourier transform

û(ξ) =
1

(2π)N/2

∫
RN

e−ix·ξu(x) dx.

For s ∈ (0, 1), it is known from [19] that there holds∫
RN
|ξ|2s|û(ξ)|2 dξ = Cs,N

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy, (2.1)

where Cs,N is a positive constant. This provides an alternative norm

‖u‖Ḣs(RN ) =
(∫

RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

on Ḣs(RN ). If N > 2s, the optimal constant µs,N was found in [28] for the
fractional Hardy inequality

µH

∫
RN

|u(x)|2

|x|2s
dx ≤

∫
RN
|ξ|2s|û(ξ)|2 dξ, (2.2)

where u ∈ C∞0 (RN ). By a denseness argument, we have

µH

∫
RN

|u(x)|2

|x|2s
dx ≤

∫
RN
|(−∆)s/2u(x)|2 dx (2.3)

for u ∈ Ḣs(RN ), where µH = 4s Γ2(N+2s
4 )

Γ2(N−2s
4 )

. If 0 < µ < µH , we may verify that

|u|Ḣs(RN ) :=
(
‖(−∆)s/2u‖2L2(RN ) − µ

∫
RN

|u(x)|2

|x|2s
dx
)1/2
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defines an equivalent norm on Ḣs(RN ). Therefore, there exists C > 0 such that for
any u ∈ Ḣs(RN ),(∫

RN
|u(x)|2

∗
s dx

) 2
2∗s ≤ C

[ ∫
RN
|(−∆)s/2u(x)|2 dx− µ

∫
RN

|u(x)|2

|x|2s
dx
]
, (2.4)

where 2∗s = 2N
N−2s . Define

Λs,µ = inf
u∈Ḣs(RN ),u 6≡0

|u|2
Ḣs(RN )( ∫

RN |u(x)|2∗s dx
) 2

2∗s

. (2.5)

It is proved in [13] that Λs,µ > 0 is achieved if µ ≥ 0.
We remark that any minimizer of Λs,µ does not change sign, and is radially

symmetric. Indeed, let u be a minimizer. By formula (A.11) in [23],∫
RN
|(−∆)s/2|u||2 dx ≤

∫
RN
|(−∆)s/2u|2 dx.

Hence, |u| is also a minimizer, and we have u > 0. Denote by u∗ the symmetric-
decreasing rearrangement of u. By strict rearrangement inequalities in [12], u∗ is
also a minimizer of Λs,µ. Therefore, by strict rearrangement inequalities again,
u(x) = u∗(x − A) for some A ∈ RN . Moreover, any minimizer u of Λs,µ weakly
solves (1.1) with Ω = RN up to multiplying a constant. In the case Ω = RN , since
both u(x) and u∗(x) solve equation (1.1) , and (1.1) is not translation invariant, we
obtain that A = 0, that is u = u∗.

Next, we define fractional Laplacians in a bounded domain. There are two
types of fractional Laplacians in bounded domainds, one is the spectral fractional
Laplacian, another one is the restricted fractional Laplacian.

In a bounded domain Ω ⊂ RN , we define the spectral fractional Laplacian (−∆)s

as follows. Let {λk, ϕk}∞k=1 be the eigenvalues and corresponding eigenfunctions
of the Laplacian operator −∆ in Ω with zero Dirichlet boundary values on ∂Ω
normalized by ‖ϕk‖L2(Ω) = 1, i.e.

−∆ϕk = λkϕk in Ω; ϕk = 0 on ∂Ω.

For any u ∈ L2(Ω), we may write

u =
∞∑
k=1

ukϕk, where uk =
∫

Ω

uϕk dx.

We define the space

H = {u =
∞∑
k=1

ukϕk ∈ L2(Ω) :
∞∑
k=1

λ2s
k u

2
k <∞}, (2.6)

which is equipped with the norm

‖u‖H =
( ∞∑
k=1

λ2s
k u

2
k

)1/2

.

For any u ∈ H, the spectral fractional Laplacian (−∆)s, is defined by

(−∆)su =
∞∑
k=1

λskukϕk. (2.7)
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The space H defined in (2.6) is the interpolation space (H2
0 (Ω), L2(Ω))s,2, see

[1, 18, 26]. It was shown in [18] that (H2
0 (Ω), L2(Ω))s,2 = Hs

0(Ω) if 0 < s < 1 and
s 6= 1/2; while (H2

0 (Ω), L2(Ω)) 1
2 ,2

= H
1/2
00 (Ω), where

H
1/2
00 (Ω) = {u ∈ H1/2(Ω) :

∫
Ω

u2(x)
d(x)

dx <∞},

and d(x) = dist(x, ∂Ω) for all x ∈ Ω.
Now, using the idea in [7], for any u ∈ Hs

0(Ω), we may define the extension
w = Es(u) of u as the solution w ∈ H1

0,L(CΩ) of the problem

−div(y1−2s∇w) = 0, CΩ = Ω× (0,∞),

w = 0, ∂LCΩ = ∂Ω× (0,∞),

w = u, Ω× {0},
(2.8)

where

H1
0,L(CΩ) =

{
w ∈ L2(CΩ) : w = 0 on ∂LCΩ, κs

∫
CΩ
y1−2s|∇w|2 dx dy <∞

}
is a Hilbert space with the norm

‖w‖2H1
0,L(CΩ) = κs

∫
CΩ
y1−2s|∇w|2 dx dy.

The extension operator E is an isometry between Hs
0(Ω) and H1

0,L(CΩ). That is

‖E(u)‖H1
0,L(CΩ) = ‖u‖Hs0 (Ω). (2.9)

It was shown in [7], see also [5], that

− κs lim
y→0+

y1−2s ∂w

∂y
= (−∆)su, (2.10)

where (−∆)s is the spectral fractional Laplacian. We remark that if Ω = RN , for
any u ∈ Hs(RN ), the extension w = E(u) of u is given by

−div(y1−2s∇w) = 0, RN+1
+ ,

w = u, RN ,
(2.11)

then by [7], problem (2.11) corresponds to the fractional Laplacian given by the
Fourier transform in (1.5), which also satisfies (2.10). In this sense, the fractional
Laplacian given in (1.5) can be approached by the spectral fractional Laplacian
through extending the domain Ω in (2.8) to RN . In the sequel, we use the same
notation (−∆)s to denote these two operators.

Using this sort of extension, we may reformulate the nonlocal problem (1.1) in
a local way; that is,

−div(y1−2s∇w) = 0, CΩ,
w = 0, ∂LCΩ,

κsy
1−2s ∂w

∂ν
= µ

u

|x|2s
+ u2∗s−1 Ω× {0},

(2.12)

where ∂
∂ν is the outward normal derivative.
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The other type of fractional Laplacian is the restricted fractional Laplacian de-
fined by the following formula:

(−∆|Ω)su(x) = cN,s P.V.

∫
RN

u(x)− u(y)
|y − x|N+2s

dy

for all functions u which are zero outside Ω. Similarly, the extension problem is
given as follows.

div(y1−2α∇w) = 0 in RN+1,

w = 0 in RN \ Ω,

y1−2α ∂w

∂ν
= µ

u

|x|2s
+ u2∗s−1 on Ω.

(2.13)

3. Existence of solutions

In this section, we first show that problem (1.1) admits a nontrivial solution in
a non-contractible domain. Define the functional

Iµ(u) =
1
2

∫
Ω

(
|(−∆)s/2u|2 − µ u2

|x|2s
)
dx− 1

2∗s

∫
Ω

|u|2
∗
s dx

on Hs
0(Ω), where (−∆)s is the spectral factional Laplacian defined in (2.7), and the

functional

Jµ(u) =
1
2

∫
RN

(
|(−∆)s/2u|2 − µ u2

|x|2s
)
dx− 1

2∗s

∫
RN
|u|2

∗
s dx

on Ḣs(RN ), where (−∆)s is given in (1.5). It is discussed in section 2 the relation
between the spectral factional Laplacian and the fractional Laplacian defined by
the Fourier transform.

We consider the minimizing problem

cµ = inf
{
Jµ(u) : u ∈ Nµ,RN

}
,

where Nµ,Ω denotes the Nehari manifold

Nµ,Ω =
{
u ∈ Hs

0(Ω) \ {0} :
∫

Ω

(
|(−∆)s/2u|2 − µ u2

|x|2s
)
dx =

∫
Ω

|u|2
∗
s dx

}
.

Obviously, we have

cµ = inf
{ s
N

∫
RN

(
|(−∆)s/2u|2 − µ u2

|x|2s
)
dx : u ∈ Nµ,RN

}
We may verify that cµ = s

NΛs,µ. If u is a minimizer of Λs,µ, then v = Λ
N−2s

4s
s,µ u is

a minimizer of cµ, and vice verse. Since minimizers of Λs,µ are radially symmetric,
so are minimizers of cµ. The following result is proved in [20].

Lemma 3.1. Let 0 < s < N
2 and {un} ⊂ Ḣs(RN ) be a bounded sequence such that

inf
n∈N
‖un‖L2∗s ≥ C > 0.

Then up to subsequence, there exist {xn} ⊂ RN , λn ∈ (0,∞) such that

vn ⇀ v 6≡ 0 in Ḣs(RN ),

where vn(x) := λ
N−2s

2
n un(xn + λnx).
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Using Lemma 3.1, we have a description of (PS)c sequences. By a (PS)c se-
quences for Iµ we mean a sequence {un} ⊂ Hs

0(Ω) such that Iµ(un) → c and
I ′µ(un)→ 0.

Proposition 3.2. Let µ ∈ (0, µH) and {un} ⊂ Nµ,Ω be a sequence such that for
0 < c < c0,

lim
n→∞

Iµ(un) = c, lim
n→∞

I ′µ(un) = 0. (3.1)

Suppose problem (1.1) has no nontrivial solutions. Then, there exist {λn} ⊂ RN+}
and {xn} ⊂ RN such that

lim
n→∞

λn = 0, lim
n→∞

xn = 0 and lim
n→∞

‖un − uµλn,xn‖Ḣs = 0,

where uµ is a minimizer of cµ.

Proof. By (3.1) and the Hardy inequality, we know that {un} is bounded in Hs
0(Ω),

and

lim
n→∞

‖un‖L2∗s (Ω) =
cN

s
> 0. (3.2)

Therefore, we have

un ⇀ u in Hs
0(Ω), un → u in L2∗s−1(Ω), un → u a.e. Ω.

By the assumption that problem (1.1) does not have nontrivial solution, we have
u = 0. Extend un to be zero outside Ω, then the extension of un belongs to Hs(RN ),
see [1, Theorem 7.40]. By (3.2) and Lemma 3.1, there exist {xn} ⊂ RN , λn ∈ (0,∞)
such that

vn ⇀ v 6≡ 0 in Ḣs(RN ),

where vn(x) := λ
N−2s

2
n un(xn + λnx), and un has been extended to RN by setting

un = 0 outside Ω. We also have vn ∈ Hs
0(Ωn), where Ωn = {x ∈ RN : xn + λnx ∈

Ω}. Moreover, vn satisfies

(−∆)svn − µ
λ2s
n vn

|xn + λnx|2s
− v2∗s−1

n → 0 (3.3)

and

1
2

∫
Ωn

(
|(−∆)s/2vn|2 − µ

λ2s
n v

2
n

|xn + λnx|2s
)
dx− 1

2∗s

∫
Ωn

|vn|2
∗
s dx

=
1
2

∫
Ω

(
|(−∆)s/2un|2 − µ

u2
n

|x|2s
)
dx− 1

2∗s

∫
Ω

|un|2
∗
s dx→ c

(3.4)

as n→∞.
We may assume that λn → λ0 ≥ 0. If λ0 > 0, since un ⇀ 0 in Ḣs(RN ), we have

vn ⇀ 0 in Ḣs(RN ), which is a contradiction.
We may assume, up to a sequence, xn

λn
→ x0 ∈ RN or |xnλn | → ∞ as n → ∞. If

|xnλn | → ∞ as n→∞, by (3.2), we see that the limit function v satisfies

(−∆)sv = v2∗s−1 in RN . (3.5)



8 X. WANG, J. YANG EJDE-2015/297

Thus, equations (3.3) and (3.4) imply

c0 > c = lim
n→∞

{1
2

∫
Ωn

(
|(−∆)s/2vn|2 − µ

λ2s
n v

2
n

|xn + λnx|2s
)
dx− 1

2∗s

∫
Ωn

|vn|2
∗
s dx

}
=

s

N
lim
n→∞

∫
Ωn

(
|(−∆)s/2vn|2 − µ

λ2s
n v

2
n

|xn + λnx|2s
)
dx

≥ s

N

∫
Ωn

|(−∆)s/2v|2 dx ≥ c0,

which is impossible.
So we have xn

λn
→ x0 ∈ RN , which yields limn→∞ |xn| = 0. It follows that v

satisfies

(−∆)sv − µ v

|x0 + x|2s
= v2∗s−1 in RN .

By the translation, we may assume x0 = 0. Indeed, let ṽn(x) = vn(x− xn
λn

). Then
ṽn ⇀ ṽ in Ḣs(RN ). By (3.3), ṽn satisfies

(−∆)sṽn − µ
ṽn
|x|2s

− ṽ2∗s−1
n → 0 (3.6)

as n→∞ and ṽ satisfies

(−∆)sṽ − µ ṽ

|x|2s
= ṽ2∗s−1 in RN .

Now, we prove that

lim
n→0

∫
RN
|(−∆)s/2(ṽn − ṽ)|2 dx = 0.

Suppose on the contrary that

lim
n→∞

∫
RN
|(−∆)s/2(ṽn − ṽ)|2 dx > 0.

Noting

lim
n→∞

∫
RN
|(−∆)s/2(ṽn − ṽ)|2 dx+

∫
RN
|(−∆)s/2ṽ)|2 dx

= lim
n→∞

∫
RN
|(−∆)s/2ṽn|2 dx,

and by the Brézis-Lieb lemma [6],

lim
n→∞

‖ṽn − ṽ‖2
∗
s + ‖ṽ‖2

∗
s = lim

n→∞
‖ṽn‖2

∗
s ,

lim
n→∞

∫
RN

|ṽn − ṽ|2

|x|2s
dx+

∫
RN

|ṽ|2

|x|2s
dx = lim

n→∞

∫
RN

|ṽn|2

|x|2s
dx,

we find from (3.6) that

lim
n→∞

∫
RN

(
|(−∆)s/2(ṽn − ṽ)|2 − µ |ṽn − ṽ|

2

|x|2s
− |ṽn − ṽ|2

∗
s
)
dx = 0. (3.7)
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That is, ṽn−ṽ is close to the manifoldNµ,RN . Let tn be such that tn(ṽn−ṽ) ∈ Nµ,RN .
By (3.7), we can show that tn → 1 as n→∞. Hence, Jµ(ṽn−ṽ)−Jµ(tn(ṽn−ṽ))→ 0
as n→∞. But Jµ(tn(ṽn − ṽ)) ≥ cµ, it yields

lim inf
n→∞

Jµ(ṽn − ṽ) ≥ cµ,

and then
lim inf
n→∞

Jµ(ṽn) ≥ lim inf
n→∞

Jµ(ṽn − ṽ) + Jµ(ṽ) ≥ 2cµ.

This is a contradiction. Consequently, ṽn → ṽ strongly in Ḣs(RN ) and Jµ(ṽ) = cµ.
The proof is complete. �

In the case µ = 0, we have the following result, its proof is similar to that of
Proposition 3.2.

Proposition 3.3. Let{un} ⊂ N0,Ω be a sequence such that

lim
n→∞

I(un) ≤ c0, lim
n→∞

I ′(un) = 0. (3.8)

Then, there exist {λn} ⊂ RN+} and {xn} ⊂ RN such that

lim
n→∞

λn = 0, lim
n→∞

xn = 0, lim
n→∞

‖un − u0
λn,xn‖Ḣs = 0,

where u0 is a minimizer of c0.

For each set A ⊂ RN and each point x ∈ RN , d(x,A) denotes the distance
between x and A. For each d > 0, we denote Ωd = {x ∈ RN : d(x,Ω) < d} and
Ωid = {x ∈ Ω : d(x, ∂Ω) > d}. For subsets A,B ⊂ RN , A ∼= B stands for that A
and B are homotopy equivalent.

Now, we choose d > 0 so that Ωd ∼= Ω. Let

β(u) =

∫
Ω
x|(−∆)s/2u|2 dx∫

Ω
|(−∆)s/2u|2 dx

for u ∈ Hs
0(Ω) \ {0}.

Lemma 3.4. There exists µ0 ∈ (0, µH) such that for each µ ∈ (0, µ0) and u ∈ Nµ,Ω
with I(u) < c0, β(u) ∈ Ωd.

Proof. Suppose on the contrary that there exist µn ∈ R+ and un ∈ Nµ,Ω such that
limn→∞ µn = 0, Iµn(un) < c0 and β(un) 6∈ Ωd for all n ≥ 1. We may assume that
β(un)→ x0 ∈ RN \ Ωd. Since µn → 0, by the Hardy inequality,

µn

∫
Ω

u2
n

|x|2s
dx→ 0

as n→∞. Hence,

lim
n→∞

∫
Ω

|(−∆)s/2un|2 dx = lim
n→∞

∫
Ω

|un|2
∗
s dx,

lim
n→∞

Iµn(un) ≤ c0.

By Proposition 3.3, there exist sequences {λn} and {xn} ⊂ RN such that

lim
n→∞

λn = 0 and lim
n→∞

‖un − u0
λn,xn‖Ḣs = 0.

By the assumption, we have limn→∞ xn = x0. However, x0 6∈ Ωd, we have that
limn→∞ ‖un − u0

λn,xn
‖Ḣs 6= 0. This is a contradiction. The assertion follows. �
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Now, we choose d1 > 0 such that Ω ∼= Ωid1
. Let

λ = inf{ µ

|x|2s
: x ∈ Ωd}.

Let ξ ∈ C∞(R+) be such that ξ(t) = 1 for t ∈ [0, d1
2 ] and ξ(t) = 0 for t ∈ [d1,∞).

For each (ε, z) ∈ R+ × RN , we define

wε,z(x) = τε,zξ(x− z)Uε(x− z)
for x ∈ RN , where Uε is given in (1.9) and τε,z is a positive constant such that wε,z
satisfying ∫

Ω

(
|(−∆)s/2wε,z|2 − λw2

ε,z

)
dx =

∫
Ω

|wε,z|2
∗
s dx.

It is proved in [4] that if 0 ∈ Ω,

‖ξUε‖2Hs0 (Ω) = ‖Uε‖2Hs0 (Ω) +O(εN−2s);

‖ξUε‖2L2(Ω) =

{
Cε2s +O(ε2s), if N > 4s,
−Cε2s log ε+O(ε2s), if N = 4s,

‖ξUε‖
2∗s−1

L2∗s−1(Ω)
≥ Cε

N−2s
2 if N > 2s.

Let
Q(u) =

1
2

∫
Ω

(
|(−∆)s/2u|2 − λu2

)
dx− 1

2∗s

∫
Ω

|u|2
∗
s dx.

Then, we may verify that

Q(wε,z) =

{
c0 − λCε2s +O(ε2s), if N > 4s,
c0 + Cε2slogε+O(ε2s), if N = 4s,

for all z ∈ Ωid1
, it implies that for all z ∈ Ωid1

,

Q(wε,z) < c0 (3.9)

if ε > 0 small enough.

Lemma 3.5. Let µ ∈ (0, µ0). Then for ε > 0 small, there holds

sup{I(twε,z,µwε,z) : z ∈ Ωid1
} < c0.

Proof. Let t = twε,z . Since µ
|x|2s > λ for x ∈ Ω,

t2

2

∫
Ω

(
|(−∆)s/2wε,z|2 − λw2

ε,z

)
dx >

t2

2

∫
Ω

(
|(−∆)s/2wε,z|2 − µ

w2
ε,z

|x|2s
)
dx

=
t2
∗
s

2

∫
Ω

w
2∗s
ε,z dx

=
t2
∗
s

2

∫
Ω

(
|(−∆)s/2wε,z|2 − λw2

ε,z

)
dx.

Therefore, t < 1. It results from (3.9) that

Iµ(twε,z) =
st2

N

∫
Ω

(
|(−∆)s/2wε,z|2 − µ

w2
ε,z

|x|2s
)
dx

≤ s

N

∫
Ω

(
|(−∆)s/2wε,z|2 − λw2

ε,z

)
dx < c0.

The assertion follows. �
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Proof of Theorem 1.1. We argue by contradiction. For fixed µ ∈ (0, µ0), assume
problem (1.1) has no solutions. Hence, we know from [24] that there exists a pseudo-
gradient flow η : [0,∞)×Nµ,Ω → Nµ,Ω associated with Iµ, such that the function
η satisfies for s, t ∈ R+ with s > t and u ∈ Nµ,Ω that

Iµ(η(s, u)) < Iµ(η(t, u)),

lim
t→∞

Iµ(η(t, u)) > −∞ implies that lim
t→∞

I ′µ(η(t, u)) = 0.

For ε given in Lemma 3.5, we set ω = {twε,z,µwε,z : z ∈ ωid1
}. By the defini-

tion of wε,z, we have wε,z ∈ Hs
0(Ω) for each z ∈ ω. Therefore, ω ⊂ Nµ,Ω, and

sup{Iµ(η(t, u) : t ≥ 0)} is bounded from below for each u ∈ ω. By Proposition 3.2,
there exist {(εt, zt} ⊂ R+ × Ω such that limt→∞ zt = 0 and

lim
t→∞

‖η(t, u)− uµεt,zt‖Ḣs = 0.

Since uµ is radially symmetric, we have

lim
t→∞

β(η(t, u)) = 0 ∈ Ω

for all u ∈ ω. On the other hand, by Lemma 3.4,

{β(η(t, u)) : u ∈ ω} ⊂ Ωd.

Since {β(η(0, u)) : u ∈ ω} = Ωid1
, we see that Ωid1

is contractible in Ωd. This
contradicts to the assumption that Ωid1

∼= Ω ∼= Ωd and that Ω is not contractible.
This shows that problem (1.1) possesses a positive solution in Nµ,Ω. �

Proof of Theorem 1.2. We remark that Lemma 3.1 can be applied in this case. The
proof of Theorem 1.2 is similar to that of Theorem 1.1 with minor changes, we omit
the details. �
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