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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF POSITIVE
SOLUTIONS FOR A SECOND-ORDER BOUNDARY-VALUE

PROBLEM

RAMZI S. ALSAEDI

Abstract. We study the boundary-value problem

1

A(t)
(A(t)u′(t))′ = λf(t, u(t)) t ∈ (0,∞),

lim
t→0+

A(t)u′(t) = −a ≤ 0, lim
t→∞

u(t) = b > 0,

where λ ≥ 0 and f is nonnegative continuous and nondecreasing with respect to

the second variable. Under some assumptions on the nonlinearity f , we prove

the existence of a positive solution for λ sufficiently small. Our approach is
based on the Schauder fixed point theorem.

1. Introduction

The second-order differential equation
1

A(t)
(A(t)u′(t))′ = g(t, u(t)), t ∈ (a, b) (1.1)

has been extensively studied on both bounded and unbounded intervals with differ-
ent boundary values (see for example [1, 3, 13, 14, 15, 16, 17, 19] and the reference
therein). Many results of existence and uniqueness of positive bounded solutions or
unbounded ones have been obtained in the literature. Most of these results treat
the case where the nonlinearity g is negative and A(t) = 1 or A(t) = tn−1 with
n ≥ 3. Boundary-value problems for differential equations of type (1.1) play a very
important role in both theory and applications. They are used to describe a large
number of physical, biological and chemical phenomena.

Recently in [9], the authors considered the density profile equation

ψ′′(r) +
n− 1
r

ψ′(r) = 4λ(ψ(r) + 1)ψ(r)(ψ(r)− ξ), r ∈ (0,∞),

ψ′(0) = 0 , ψ(∞) = ξ ,

where ψ(r) stands for the density of a fluid. This equation has the origins in
the Cahn-Hillard theory which is used in hydrodynamics to study the behavior
of nonhomogeneous fluids. Analytical aspects concerning this equation, i.e, the
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existence and uniqueness of strictly increasing solutions, their asymptotic behavior
at infinity, as well as a various numerical solutions were thoroughly carried out in
[10, 11, 12].

In this article, we study the existence of positive solutions for the boundary-value
problem

1
A(t)

(A(t)u′(t))′ = λf(t, u) t ∈ (0,∞),

Au′(0) = lim
t→0

A(t)u′(t) = −a , u(∞) = lim
t→∞

u(t) = b ,
(1.2)

where λ ≥ 0, a ≥ 0, b > 0 and the function f is nonnegative, continuous and
nondecreasing with respect to the second variable and satisfies some integrabil-
ity condition. Throughout this article, the function A is assumed to satisfy the
following condition:

(A1) A is a continuous function on [0,∞), differentiable and positive on (0,∞)
such that ∫ ∞

1

dt

A(t)
<∞.

For a function A satisfying (A1), the Green’s function of the operator Lu = 1
A (Au′)′

on (0,∞) with Dirichlet boundary conditions Au′(0) = 0 , u(∞) = 0 is

G(x, t) = A(t)
∫ ∞
x∨t

1
A(s)

ds , for x, t ∈ ((0,∞))2 ,

where x ∨ t = max(x, t).
To state our main result, we adopt the following notation. We denote by

B((0,∞)) the set of Borel measurable functions on (0,∞) and by B+((0,∞)) the
set of nonnegative ones. Also we refer to C([0,∞]) the collection of all continuous
functions u in [0,∞) such that limx→∞ u(x) exists and C0([0,∞)) the subclass of
C([0,∞]) consisting of functions which vanish continuously at ∞.

We refer to the Green potential of a function h ∈ B+((0,∞)) by

V h(x) =
∫ ∞

0

G(x, t)h(t)dt =
∫ ∞
x

1
A(t)

(∫ t

0

A(s)h(s)ds
)
dt.

We denote by K the set of functions defined by

K =
{
ϕ ∈ B+(0,∞) : V ϕ(0) =

∫ ∞
0

G(0, t)ϕ(t)dt <∞
}
.

Finally, we denote by ω(x) = a
∫∞
x

1
A(t) dt+ b. Taking into account these notations,

we assume that the function f satisfies the following assumptions:
(A2) f : (0,∞) × [0,∞) → [0,∞) is continuous and nondecreasing with respect

to the second variable.
(A3) The function t 7→ q(t) = f(t,ω(t))

ω(t) is nontrivial nonnegative and belongs to
the class K.

Our main result is the following.

Theorem 1.1. Assume that (A1)–(A3) are satisfied. Then there exists λ0 > 0
such that for each λ ∈ [0, λ0), problem (1.2) has a positive solution u ∈ C2((0,∞))
satisfying (

1− λ0

λ

)
ω(x) ≤ u(x) ≤ ω(x), for x ∈ (0,∞).
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Remark 1.2. When a = 0 the solution given in the previous theorem is bounded,
while this solution is unbounded near 0 when a > 0 and

∫ 1

0
dt
A(t) diverges.

Our paper is organized as follows. In section 2, we give some properties related
to the Green’s function G(x, y). Section 3 is devoted to the proof of Theorem 1.1
and to the study of an example that illustrates our result.

2. Preliminary results

In this section we give some inequalities on the Green function G(x, y) and
establish some technical results that will play a crucial role in the proof of our main
result. Let A satisfy assumption (A1).

Proposition 2.1. (i) For each x, t, s ∈ (0,∞), we have

G(x, t)G(t, s)
G(x, s)

≤ G(0, t).

(ii) For each x, t ∈ (0,∞), we have

G(x, t)ω(t)
ω(x)

≤ G(0, t).

Proof. (i) For x, t, s ∈ (0,∞), we have

G(x, t)G(t, s)
G(x, s)

=
A(t)

( ∫∞
x∨t

1
A(r) dr

)( ∫∞
t∨s

1
A(r) dr

)
∫∞
x∨s

1
A(r) dr

≤
A(t)

( ∫∞
x∨s

1
A(r) dr

)( ∫∞
t

1
A(r) dr

)
∫∞
x∨s

1
A(r) dr

= G(0, t).

(ii) Let h(t) =
∫∞
t

1
A(r) dr for t > 0. Since h is non-increasing on (0,∞), it

follows that

h(x ∨ t) (ah(t) + b) = a h(x ∨ t)h(t) + b h(x ∨ t) ≤ h(t) (ah(x) + b) .

This proves that for each x, t ∈ (0,∞), we have

G(x, t)ω(t)
ω(x)

=
A(t)h(x ∨ t) (ah(t) + b)

ah(x) + b
≤ A(t)h(t) = G(0, t).

�

Proposition 2.2. Let q be a nonnegative function in K and let

αq = sup
x,s∈(0,∞)

∫ ∞
0

G(x, t)G(t, s)
G(x, s)

q(t)dt.

Then we have
(i) αq = ‖V q‖∞ = V q(0).
(ii) V (qω)(x) ≤ αqω(x) for each x ∈ (0,∞).

Proof. (i) Using Proposition 2.1 (i), we obtain∫ ∞
0

G(x, t)G(t, s)
G(x, s)

q(t)dt ≤
∫ ∞

0

G(0, t)q(t)dt.

Hence
αq ≤ V q(0) = ‖V q‖∞. (2.1)
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On the other hand, since for each x, t ∈ (0,∞) we have lims→∞
G(t,s)
G(x,s) = 1, Using

Fatou’s lemma, we have

V q(x) =
∫ ∞

0

G(x, t)q(t)dt

=
∫ ∞

0

lim
s→∞

G(x, t)G(t, s)
G(x, s)

q(t)dt

≤ lim inf
s→∞

∫ ∞
0

G(x, t)G(t, s)
G(x, s)

q(t)dt ≤ αq.

This shows that
V q(0) = ‖V q‖∞ ≤ αq. (2.2)

Combining (2.1) and (2.2), we obtain that αq = ‖V q‖∞ = V q(0).
(ii) Using assertion (i) and Proposition 2.1 (ii), we obtain∫ ∞

0

G(x, t)ω(t)
ω(x)

q(t)dt ≤
∫ ∞

0

G(0, t)q(t)dt = V q(0) = αq.

Hence V (qω)(x) ≤ αq ω(x). �

The following continuity result will be used in the proof of Theorem 1.1.

Proposition 2.3. Let q be a nonnegative function in K. Then the family of func-
tions

Sq =
{
x 7→ 1

ω(x)

∫ ∞
0

G(x, t)ϕ(t)ω(t)dt : ϕ ∈ B((0,∞)) and |ϕ| ≤ q
}

is relatively compact in C0([0,∞)).

Proof. Since b > 0, then for each x, t ∈ (0,∞) we have G(x,t)
ω(t) ≤

G(0,t)
b . Hence∣∣ 1

ω(x)
V (ϕω)(x)

∣∣ ≤ 1
b
V q(0).

This shows that Sq is uniformly bounded. Next, we consider x, x′ ∈ [0,∞). Then
we have∣∣ 1

ω(x)
V (ϕω)(x)− 1

ω(x′)
V (ϕω)(x′)

∣∣ ≤ ∫ ∞
0

∣∣G(x, t)ω(t)
ω(x)

− G(x′, t)ω(t)
ω(x′)

∣∣q(t)dt.
Using the continuity of the function x 7→ G(x,t)

ω(x) on [0,∞) for each t ∈ [0,∞), Propo-
sition 2.1 (ii) and the fact that q ∈ K, we deduce from the dominated convergence
theorem, the equicontinuity of Sq on [0,∞). Moreover, since b > 0 and A satisfies
(A1), we have

lim
x→∞

G(x, t)
ω(x)

= lim
x→∞

A(t)
∫∞
x∨t

1
A(s) ds

b+ a
∫∞
x

1
A(s) ds

= 0.

This and Proposition 2.1 (ii) shows that

lim
x→∞

∣∣ 1
ω(x)

V (ϕω)(x)
∣∣ = 0 , uniformly in ϕ.

Then by Ascoli’s theorem, we deduce that Sq is relatively compact in C0([0,∞)).
�
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3. Proof of main result

Lemma 3.1. If f satisfies (A3), then

λ0 := inf
x∈(0,∞)

ω(x)
V (f(., ω))(x)

> 0.

Proof. Since f satisfies (A3), the function q = f(.,ω)
ω belongs to K. It follows from

Proposition 2.2 that

V (f(., ω))(x) = V
(f(., ω)

ω
ω
)

(x) ≤ αq ω(x).

Or equivalently
ω(x)

V (f(., ω))(x)
≥ 1
αq
.

This shows that λ0 ≥ 1
αq

> 0. �

Proof of Theorem 1.1. Let λ0 be the positive constant given in Lemma 3.1. For
λ ∈ [0, λ0), we consider the nonempty closed convex set

Λ =
{
v ∈ C([0,∞]) : (1− λ

λ0
) ≤ v ≤ 1

}
and define the operator T on Λ by

Tv(x) = 1− λ

ω(x)

∫ ∞
0

G(x, t)f(t, ω(t)v(t))dt = 1− λ

ω(x)
V (f(., ω))(x).

Since f is non-decreasing with respect to the second variable, then for each v ∈ Λ
and x > 0, we have

0 ≤ 1
ω(x)

V (f(., ω v))(x) ≤ 1
ω(x)

V (f(., ω))(x) ≤ 1
λ0
.

This shows that (1 − λ
λ0

) ≤ Tv ≤ 1 for each v ∈ Λ. On the other hand since
f(.,ω)
ω ∈ K, it follows from Proposition 2.3 that the family { 1

ωV (f(., ω v)) : v ∈ Λ}
is relatively compact in C0([0,∞)). Hence TΛ ⊂ Λ and TΛ is relatively compact
in C([0,∞]).

Next, we prove the continuity of the operator T in Λ in the supremum norm.
Let (vk)k be a sequence in Λ which converges uniformly to a function v ∈ Λ. Then
we have

|Tvk(x)− Tv(x)| ≤ λ

ω(x)
|V (f(., ω vk))(x)− V (f(., ω v))(x)|

≤ λ

ω(x)

∫ ∞
0

G(x, t)|f(t, ω(t)vk(t))− f(t, ω(t)v(t))| dt.

From the monotonicity of f with respect to the second variable, we have

|f(t, ω(t)vk(t))− f(t, ω(t)v(t))| ≤ 2f(t, ω(t)).

Since by Proposition 2.3 and (A3), the function V (f(., ω))/ω ∈ C0([0,∞)), using
the continuity of f with respect to the second variable and the dominated conver-
gence theorem, we conclude that

Tvk(x)→ Tv(x) as k →∞.
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Consequently, as TΛ is relatively compact in C([0,∞]), we deduce that pointwise
convergence implies uniform convergence, namely

‖Tvk − Tv‖∞ → 0 as k →∞ .

Therefore T is a continuous mapping from Λ to itself. Since TΛ is relatively compact
in C([0,∞]), it follows that T is a compact mapping on Λ. Finally, the Schauder
fixed point theorem implies the existence of v ∈ Λ such that

v(x) = 1− λ

ω(x)

∫ ∞
0

G(x, t)f(t, ω(t)v(t))dt.

Put u(x) = ω(x)v(x) for x ∈ (0,∞). Then u ∈ C((0,∞)) and

(1− λ

λ0
)ω(x) ≤ u(x) ≤ ω(x) for x ∈ (0,∞).

Moreover u satisfies the integral equation

u(x) = ω(x)− λV (f(., u))(x)

= ω(x)− λ
∫ ∞
x

1
A(t)

(∫ t

0

A(s)f(s, u(s))ds
)
dt.

(3.1)

Now, since 0 ≤ u ≤ ω,

lim
x→∞

1
ω(x)

∫ ∞
0

G(x, t)f(t, u(t))dt = 0.

This limit implies limx→∞
∫∞
0
G(x, t)f(t, u(t))dt = 0; consequently limx→∞ u(x) =

limx→∞ ω(x) = b. On the other hand, using (3.1), we obtain

A(x)u′(x) = −a+
∫ x

0

A(s)f(s, u(s))ds.

This and limx→0

∫ x
0
A(s)f(s, u(s))ds = 0 imply that limx→0A(x)u′(x) = 0. �

Example 3.2. Let α > 1, σ ≥ 0 and p : (0,∞)→ [0,∞) be a nontrivial nonnega-
tive continuous function satisfying∫ 1

0

t1−(α−1)(σ−1)p(t)dt+
∫ ∞

1

tp(t)dt <∞.

Then there exists λ0 > 0 such that for each λ ∈ [0, λ0), the problem

u′′ +
α

x
u′ = λp(x)uσ(x) , x ∈ (0,∞)

lim
x→0

, xαu′(x) = −a < 0 , lim
x→∞

u(x) = b > 0 ,

has a positive solution u ∈ C2((0,∞)) satisfying(
1− λ

λ0

)( a

(α− 1)xα−1
+ b
)
≤ u(x) ≤

( a

(α− 1)xα−1
+ b
)
,

for x ∈ (0,∞).
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