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FRACTIONAL-ORDER BOUNDARY VALUE PROBLEM WITH
STURM-LIOUVILLE BOUNDARY CONDITIONS

DOUGLAS R. ANDERSON, RICHARD I. AVERY

Abstract. Using the new conformable fractional derivative, which differs
from the Riemann-Liouville and Caputo fractional derivatives, we reformu-

late the second-order conjugate boundary value problem in this new setting.
Utilizing the corresponding positive fractional Green’s function, we apply a

functional compression-expansion fixed point theorem to prove the existence

of a positive solution. We then compare our results favorably to those based
on the Riemann-Liouville fractional derivative.

1. Introduction

The search for the existence of positive solutions and multiple positive solu-
tions to nonlinear fractional boundary value problems has expanded greatly over
the past decade; for some recent examples please see [3-9,11,14,15,17-20]. In all of
these works and the references cited therein, however, the definition of the fractional
derivative used is either the Caputo or the Riemann-Liouville fractional derivative,
involving an integral expression and the gamma function. Recently [10, 11, 14] a
new definition has been formulated and dubbed the conformable fractional deriva-
tive. In this paper, we use this fractional derivative of order α, given by

Dαf(t) := lim
ε→0

f(teεt
−α

)− f(t)
ε

, Dαf(0) = lim
t→0+

Dαf(t); (1.1)

note that if f is differentiable, then

Dαf(t) = t1−αf ′(t), (1.2)

where f ′(t) = limε→0[f(t+ ε)− f(t)]/ε. Using this new definition of the fractional
derivative, we investigate a conformable fractional boundary value problem with
Sturm-Liouville boundary conditions. With the fractional differential equation and
fractional boundary conditions established, we find the corresponding Green’s func-
tion and prove its positivity under appropriate assumptions. This work thus sets
the stage for employing a functional compression-expansion fixed point theorem to
prove the existence of a positive solution to the special case of conjugate boundary
conditions. We then compare our existence result to that of Bai and Lü [3].
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2. Two Iterated Fractional Derivatives

We begin by considering two iterated fractional derivatives in the differential op-
erator, together with two-point boundary conditions, as illustrated in the nonlinear
boundary value problem

−DβDαx(t) = f(t, x(t)), 0 ≤ t ≤ 1, (2.1)

γx(0)− δDαx(0) = 0 = ηx(1) + ζDαx(1), (2.2)

where α, β ∈ (0, 1] and the derivatives are conformable fractional derivatives (1.1),
with γ, δ, η, ζ ≥ 0 and d := ηδ + γζ + γη/α > 0. Note that if x is α-differentiable
and t1−αx′ is β-differentiable, then using (1.2) we could rewrite (2.1) as

−t1−β
(
t1−αx′(t)

)′
= f(t, x(t)), 0 ≤ t ≤ 1,

where the prime indicates the derivative d/dt. Before we find Green’s function for
(2.1), (2.2), and prove that it is positive, we first define the β-fractional integral.

Definition 2.1. Let β ∈ (0, 1] and 0 ≤ a < b. A function f : [a, b] → R is
β-fractional integrable on [a, b] if the integral∫ b

a

f(s)dβs :=
∫ b

a

f(s)sβ−1ds

exists and is finite. Thus the integral can be interpreted either as a Riemann-
Stieltjes integral or an improper Riemann integral.

Theorem 2.2. Let α, β ∈ (0, 1]. The corresponding Green’s function for the ho-
mogeneous problem

−DβDαx(t) = 0
satisfying the boundary conditions (2.2) is given by

G(t, s) =

{
1
d [δ + γ

αs
α][ζ + η

α (1− tα)], s ≤ t,
1
d [δ + γ

α t
α][ζ + η

α (1− sα)], t ≤ s,
(2.3)

where we assume the parameters satisfy γ, δ, η, ζ ≥ 0 and d = ηδ + γζ + γη/α > 0.

Proof. We will show that

x(t) =
∫ 1

0

G(t, s)h(s)dβs,

for G given by (2.3), is a solution to the linear boundary value problem

−DβDαx(t) = h(t)

with boundary conditions (2.2).
For any t ∈ [0, 1], using the branches of (2.3) we have

x(t) =
1
d

[ζ +
η

α
(1− tα)]

∫ t

0

[δ +
γ

α
sα]h(s)dβs

+
1
d

[δ +
γ

α
tα]
∫ 1

t

[ζ +
η

α
(1− sα)]h(s)dβs.

Taking the α-fractional derivative yields

Dαx(t) = −η
d

∫ t

0

[δ +
γ

α
sα]h(s)dβs+

γ

d

∫ 1

t

[ζ +
η

α
(1− sα)]h(s)dβs.
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Checking the first boundary condition, we see that

γx(0)− δDαx(0) = 0.

Moreover, in checking the second boundary condition we get

ηx(1) + ζDαx(1) = 0.

Taking the β-fractional derivative of the α-fractional derivative yields

DβDαx(t) = −η
d

[δ +
γ

α
tα]h(t)tβ−1t1−β − γ

d
[ζ +

η

α
(1− tα)]h(t)tβ−1t1−β

= −1
d
h(t)[ηδ + γζ +

γη

α
] = −h(t),

which is what we set out to prove. �

Corollary 2.3 (Fractional conjugate and right-focal problems). Let α, β ∈ (0, 1].
The corresponding Green’s function for the homogeneous problem

−DβDαx(t) = 0

satisfying the conjugate boundary conditions x(0) = x(1) = 0 is given by

G(t, s) =

{
1
αs

α(1− tα), s ≤ t,
1
α t
α(1− sα), t ≤ s,

(2.4)

and the corresponding Green’s function for the homogeneous problem

−DβDαx(t) = 0

satisfying the right-focal-type boundary conditions x(0) = Dαx(1) = 0 is given by

G(t, s) =

{
1
αs

α, s ≤ t,
1
α t
α, t ≤ s.

(2.5)

Remark 2.4. Note that the conformable fractional Green’s function based on
(1.1) and given above for the conjugate boundary conditions in (2.4) differs from
that found for example in Bai and Lü [3], where the Riemann-Liouville fractional
derivative is used.

Theorem 2.5 (Bounds on Green’s function). For G(t, s) given in (2.3), we have
the following bounds. First,

g1(t)G(s, s) < G(t, s) ≤ G(s, s) (2.6)

for t, s ∈ [0, 1], where

g1(t) := min
{αδ + γtα

αδ + γ
,
αζ + η(1− tα)

αζ + η

}
. (2.7)

Next, for integers n ≥ 3,

min
1
n≤t≤1− 1

n

G(t, s) ≥ g2(s)G(s, s) (2.8)

for g2 given by

g2(s) :=


αζ+η(1−(1−1/n)α)

αζ+η(1−sα) , s ∈ [0, r]
αδ+γ(1/n)α

αδ+γsα , s ∈ [r, 1]
(2.9)
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for the constant

r =
( αγζ + γη + αδη(n− 1)α

(αδη + αγζ + γη)nα − γη(n− 1)α + γη

)1/α

∈ (
1
n
, 1− 1

n
], (2.10)

where r = 1− 1/n if γ = 0. Finally, we also have

min
1
n≤t≤1− 1

n

G(t, s) ≥ g3G(s, s) (2.11)

for the constant g3 given by

g3 ≡ min
{αζ + η (1− (1− 1/n)α)

αζ + η
,
αδ + γ(1/n)α

αδ + γ

}
(2.12)

for all α ∈ (0, 1].

Proof. It is straightforward to see that

G(t, s)
G(s, s)

=


ζ+ η

α (1−tα)

ζ+ η
α (1−sα) , s ≤ t,

δ+ γ
α t
α

δ+ γ
α s

α , t ≤ s;
(2.13)

this expression yields both inequalities in (2.6) for g1 as in (2.7).
Next, let

u(t, s) =
1
d

[δ +
γ

α
tα][ζ +

η

α
(1− sα)],

so that

G(t, s) =

{
u(s, t), s ≤ t,
u(t, s), t ≤ s.

Let r be given by (2.10). Then we have

min
1
n≤t≤1− 1

n

G(t, s) =


u(s, 1− 1/n), s ∈ [0, 1/n],
min{u(s, 1− 1/n), u(1/n, s)}, s ∈ [1/n, 1− 1/n],
u(1/n, s), s ∈ [1− 1/n, 1],

=

{
u(s, 1− 1/n), s ∈ [0, r],
u(1/n, s), s ∈ [r, 1],

=

{
1
d [δ + γ

αs
α][ζ + η

α (1− (1− 1/n)α)], s ∈ [0, r],
1
d [δ + γ

α (1/n)α][ζ + η
α (1− sα)], s ∈ [r, 1],

where r is given in (2.10). By the monotonicity of G(t, s), we have

max
0≤t≤1

G(t, s) = G(s, s) =
1
d

[δ +
γ

α
sα][ζ +

η

α
(1− sα)], s ∈ [0, 1].

Therefore if we take g2 as in (2.9), then G(t, s) satisfies (2.8). Now since

αζ + η (1− (1− 1/n)α)
αζ + η(1− sα)

≥ αζ + η (1− (1− 1/n)α)
αζ + η

, s ∈ [0, r]

and
αδ + γ(1/n)α

αδ + γsα
≥ αδ + γ(1/n)α

αδ + γ
, s ∈ [r, 1],

we could in (2.8) use the constant g3 given in (2.12) instead of (2.9). This constant
is well defined and strictly positive, since d > 0 in (2.3) implies neither δ and γ nor
η and ζ can simultaneously be zero. �
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Remark 2.6. For conjugate boundary conditions, γ = η = 1 and δ = ζ = 0; if
α = 1 and n = 4, then g3 ≡ 1/4, the constant used in [13, (3.4)]. For right-focal
boundary conditions, γ = ζ = 1 and δ = η = 0, so that clearly g3 ≡ (1/n)α for all
α ∈ (0, 1] and all integers n ≥ 3. In the conjugate case specifically, the constant
bound (2.12) is new for fractional derivatives, as the standard Riemann-Liouville
fractional derivative does not allow one to calculate a single constant bound; see
[3, Remark 2.2].

The following corollary is needed in Section 4 for the main existence theorem
and example found there.

Corollary 2.7. Let α, β ∈ (0, 1]. For every s ∈ [0, 1] we have

max
t∈[0,1]

G(t, s) ≤
( 1

1− (3/4)α
)

min
t∈[1/4,3/4]

G(t, s),

where G(t, s) is the Green’s function (2.4) for the homogeneous problem

−DβDαx(t) = 0

satisfying the conjugate boundary conditions x(0) = x(1) = 0.

Proof. By (2.4), maxt∈[0,1]G(t, s) = G(s, s). Then

min
t∈[ 14 ,

3
4 ]

G(t, s)
G(s, s)

=

{
1−tα
1−sα , 0 ≤ s ≤ t ≤ 3/4
tα

sα , 1/4 ≤ t ≤ s ≤ 1

≥


1−(3/4)α

1−(0)α , 0 ≤ s ≤ 3/4
(1/4)α

(1)α , 1/4 ≤ s ≤ 1

= 1− (3/4)α,

since (1/4)α ≥ 1−(3/4)α for all α ∈ (0, 1]. One could also use (2.11) and (2.12). �

3. Fixed point preliminaries

In this section we will state the fixed point theorem and the definitions that
are used in the fixed point theorem which will be used to verify the existence of
a positive solution to the fractional-order boundary value problem with conjugate
boundary conditions.

Definition 3.1. Let E be a real Banach space. A nonempty closed convex set
P ⊂ E is called a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;
(ii) x ∈ P,−x ∈ P implies x = 0.

Every cone P ⊂ E induces an ordering in E given by

x ≤ y if and only if y − x ∈ P.

Definition 3.2. An operator is called completely continuous if it is continuous and
maps bounded sets into precompact sets.

Definition 3.3. A map ξ is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if ξ : P → [0,∞) is continuous and

ξ(tx+ (1− t)y) ≥ tξ(x) + (1− t)ξ(y)
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for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map φ is a nonnegative
continuous convex functional on a cone P of a real Banach space E if φ : P → [0,∞)
is continuous and

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y)
for all x, y ∈ P and t ∈ [0, 1]. We say the map ψ is a sub-linear functional if

ψ(tx) ≤ tψ(x) for all x ∈ P, t ∈ [0, 1].

Definition 3.4. Let P be a cone in a real Banach space E and Ω be a bounded
open subset of E with 0 ∈ Ω. Then a continuous functional φ : P → [0,∞) is said
to satisfy property (A1) if one of the following conditions hold:

(i) φ is convex, φ(0) = 0, φ(x) 6= 0 if x 6= 0, and infx∈P∩∂Ω φ(x) > 0,
(ii) φ is sublinear, φ(0) = 0, φ(x) 6= 0 if x 6= 0, and infx∈P∩∂Ω φ(x) > 0,

(iii) φ is concave and unbounded.

Definition 3.5. Let P be a cone in a real Banach space E and Ω be a bounded
open subset of E with 0 ∈ Ω. Then a continuous functional φ : P → [0,∞) is said
to satisfy property (A2) if one of the following conditions hold:

(i) φ is convex, φ(0) = 0 and φ(x) 6= 0 if x 6= 0,
(ii) φ is sublinear, φ(0) = 0 and φ(x) 6= 0 if x 6= 0,

(iii) φ(x+ y) ≥ φ(x) + φ(y) for all x, y ∈ P , φ(0) = 0, φ(x) 6= 0 if x 6= 0.

The following theorem is Avery, Henderson, and O’Regan’s functional compres-
sion-expansion fixed point theorem [2], which generalized the functional compres-
sion fixed point theorems of Anderson-Avery [1] and Sun-Zhang [17].

Theorem 3.6. Let Ω1 and Ω2 be two bounded open sets in a Banach Space E such
that 0 ∈ Ω1 and Ω1 ⊆ Ω2 and P is a cone in E. Suppose A : P ∩ (Ω2−Ω1)→ P is
completely continuous, ξ and ψ are nonnegative continuous functionals on P , and
one of the two conditions:

(K1) ξ satisfies property (A1) with ξ(Ax) ≥ ξ(x), for all x ∈ P ∩ ∂Ω1, and ψ
satisfies property (A2) with ψ(Ax) ≤ ψ(x), for all x ∈ P ∩ ∂Ω2 , or

(K2) ξ satisfies property (A2) with ξ(Ax) ≤ ξ(x), for all x ∈ P ∩ ∂Ω1, and ψ
satisfies property (A1) with ψ(Ax) ≥ ψ(x), for all x ∈ P ∩ ∂Ω2,

is satisfied. Then A has at least one fixed point in P ∩ (Ω2 − Ω1).

4. Existence of a positive solution

Let the Banach space E = C[0, 1] be endowed with the maximum norm,

‖x‖ = max
0≤t≤1

|x(t)|,

and define the cone P ⊂ E by

P =
{
x ∈ E : x is nonnegative on [0, 1], and

‖x‖ ≤
( 1

1− (3/4)α
)

min
t∈[1/4,3/4]

x(t)
}
.

Let the nonnegative continuous functionals φ and ψ be defined on the cone P by

ψ(x) = min
t∈[1/4,3/4]

x(t) and (4.1)

φ(x) = max
t∈[0,1]

x(t) = ‖x‖. (4.2)
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The following theorem is our main result.

Theorem 4.1. Let α, β ∈ (0, 1] and suppose there exists positive numbers r and R
such that 0 <

(
1

1−(3/4)α

)
r < R, and suppose f satisfies the following conditions:

(i) f(s, x) ≤ R(α+ β)(2α+ β) for all s ∈ [0, 1] and all x ∈ [0, R],
(ii) f(s, x) ≥ rN for all s ∈ [1/4, 3/4] and for all x ∈ [r, r

1−(3/4)α ],

where

N =
((

1−
(3

4
)α)∫ 3/4

1/4

G(s, s)dβs
)−1

and (
1−

(3
4
)α)∫ 3/4

1/4

G(s, s)dβs =
(

1−
(3

4
)α){(3

4
)α+β[ 1

α+ β
− (3/4)α

2α+ β

]
−
(1

4
)α+β[ 1

α+ β
− (1/4)α

2α+ β

]}
Then, the second order conjugate boundary value problem has at least one positive
solution x∗ such that

r ≤ min
t∈[1/4,3/4]

x∗(t) and max
t∈[0,1]

x∗(t) ≤ R.

Proof. Define the completely continuous operator A by

Ax(t) =
∫ 1

0

G(t, s)f(s, x(s))dβs

then if we can show that A has a fixed point in P then we have verified the existence
of a positive solution. Let x ∈ P , then from properties of G(t, s) we have that
Ax(t) ≥ 0 and

φ(Ax) = max
t∈[0,1]

∫ 1

0

G(t, s)f(s, x(s))dβs

≤
( 1

1− (3/4)α
)

min
t∈[1/4,3/4]

∫ 1

0

G(t, s)f(s, x(s))dβs

=
( 1

1− (3/4)α
)
ψ(Ax);

thus, Ax ∈ P and we have verified that A : P → P .

For all x ∈ P we have ψ(x) ≤ φ(x), thus if we let

Ω1 = {x : ψ(x) < r} and Ω2 = {x : φ(x) < R}

we have that 0 ∈ Ω1 and Ω1 ⊆ Ω2, since if x ∈ Ω1 then

min
t∈[1/4,3/4]

x(t) ≤ r

hence since x ∈ P we have

max
t∈[0,1]

x(t) ≤
( 1

1− (3/4)α
)

min
t∈[1/4,3/4]

x(t) ≤
( 1

1− (3/4)α
)
r < R.

Clearly Ω1 and Ω2 being bounded open subsets of P .
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Claim 1: If x ∈ P ∩ ∂Ω2, then φ(Ax) ≤ φ(x). Let x ∈ ∂Ω2, thus φ(x) = R hence
by condition (i) we have

φ(Ax) = max
t∈[0,1]

∫ 1

0

G(t, s)f(s, x(s))dβs

≤ R(α+ β)(2α+ β)
∫ 1

0

G(s, s)dβs

= R = φ(x).

Claim 2: If x ∈ P ∩ ∂Ω1, then ψ(Ax) ≥ ψ(x). Let x ∈ ∂Ω1, thus ψ(x) = r and
‖x‖ ≤ r

1−( 3
4 )α , hence by condition (ii) we have

ψ(Ax) = min
t∈[1/4,3/4]

∫ 1

0

G(t, s)f(s, x(s))dβs

≥ rN
(

1−
(3

4
)α)∫ 3/4

1/4

G(s, s)dβs

= r = ψ(x).

Clearly φ satisfies property (A1)(i) and ψ satisfies property (A2)(iii) thus the hy-
pothesis (K1) of Theorem 3.6 is satisfied, and therefore A has a fixed point in
Ω2 − Ω1. �

Example 4.2. To compare our results with those in [3, Example 3.1], where the
authors use the Riemann-Liouville fractional derivative of order 3/2 ∈ (1, 2], we
take α = 1, β = 1/2, r = 11/1000, R = 9/25, and f(s, x) = 1 + (1/4) sin s + x2 in
Theorem 4.1 to get the following. One can check that 0 < 4r < R, and f satisfies
the following conditions:

(i)

f(s, x) ≤ 15
4
R =

27
20

for all s ∈ [0, 1] and all x ∈ [0, 9/25],
(ii)

f(s, x) ≥ 960r
33
√

3− 17
=

264
25(33

√
3− 17)

for all s ∈ [1/4, 3/4] and for all x ∈ [r, 4r].
Thus by Theorem 4.1 the 3

2 -order conjugate boundary value problem

−D0.5x′(t) = 1 +
1
4

sin t+ x(t)2, x(0) = x(1) = 0

has at least one positive solution x∗ such that
11

1000
≤ min
t∈[1/4,3/4]

x∗(t) and max
t∈[0,1]

x∗(t) ≤ 9
25
.

In [3, Example 3.1], the result is the existence of a positive solution x† such that
1
14
≤ max
t∈[0,1]

x†(t) ≤ 1,

with no information on the minimum value of the function.
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Addendum posted on February 4, 2016

In response to a question from a reader, we clarify that “conformable fractional
derivative” means “at α = 1 only”; i.e. as α approaches 1, we recover the full de-
rivative. It obvious that as α approaches 0, we do not recover the identity operator.
End of addendum
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