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HÖLDER CONTINUITY OF BOUNDED WEAK SOLUTIONS TO
GENERALIZED PARABOLIC p-LAPLACIAN EQUATIONS I:

DEGENERATE CASE

SUKJUNG HWANG, GARY M. LIEBERMAN

Abstract. Here we generalize quasilinear parabolic p-Laplacian type equa-

tions to obtain the prototype equation

ut − div
“g(|Du|)
|Du|

Du
”

= 0,

where g is a nonnegative, increasing, and continuous function trapped in be-

tween two power functions |Du|g0−1 and |Du|g1−1 with 2 ≤ g0 ≤ g1 < ∞.

Through this generalization in the setting from Orlicz spaces, we provide a
proof for the Hölder continuity of such solutions which has much in common

with that proof of Hölder continuity of solutions of singular equations.

1. Introduction

In 1957, DeGiorgi [5] showed that bounded weak solutions of linear elliptic partial
differential equations are Hölder continuous, and his method was used by Ladyzhen-
skaya and Ural’tseva in [15] to show that bounded weak solutions of the quasilinear
elliptic equation

divA(x, u,Du) = 0
are Hölder continuous if there are positive constants p > 1, C0, and C1 such that

A(x, u, ξ) · ξ ≥ C0|ξ|p, |A(x, u, ξ)| ≤ C1|ξ|p−1

for all ξ ∈ RN , where N is the number of space dimensions. (The theorem of De
Giorgi is really just the case p = 2 here.) For parabolic equations

ut − divA(x, t, u,Du) = 0, (1.1)

Ladyzhenskaya and Ural’tseva followed De Giorgi’s method with some modifications
but they were only able to prove Hölder continuity under the structure conditions

A(x, t, u, ξ) · ξ ≥ C0|ξ|p, |A(x, u, ξ)| ≤ C1|ξ|p−1 (1.2)

when p = 2.
There was little progress on the Hölder continuity of solutions when p 6= 2 until

1986, when DiBenedetto [7] proved the Hölder continuity result for p > 2. A key
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new step was his introduction of the concept of intrinsic scaling (first introduced in
a simpler setting in [6]), which has since become an important aspect in the theory
and which is discussed at great length in [23]. It took several more years until the
joint work of Chen and DiBenedetto [2, 3] showed that bounded weak solutions are
Hölder continuous also for p < 2. Unfortunately, these proofs are quite technical and
their exposition (for example, [8, Chapters III and IV]) is quite long. More recently,
Gianazza, Surnachev, and Vespri [11] developed a more geometric approach to the
Hölder continuity of solutions to equations when p > 2; their proof is simpler and
more natural than the original one, but several issues from that proof still remain
that we address here.

The more important ones are related to the distinction between the cases p > 2
and p < 2. All previously published proofs of Hölder continuity have treated these
cases separately because of different qualitative behavior of solutions in the two
cases. For example, any nonnegative solution of (1.1) which vanishes at a point
(x0, t0) also vanishes in any cylinder with top center point (x0, t0) if p ≥ 2; however,
when p < 2, nonnegative solutions generally become zero in finite time. (We refer
the reader to [8, Sections VI.2, VII.2, and VII.3] for a more complete discussion of
these phenomena.) Such behavior must be accounted for, but our proof points out
some significant common elements. A further issue is that the newer proofs (see the
Remark on [11, page 278] for the case p > 2 and [10, Section 4] for a related result
in case p < 2) give a Hölder exponent which degenerates as p approaches 2; in both
cases, the proof must be further modified for p close to 2 if the Hölder exponent is
to remain positive near p = 2 even though the original proof of Hölder continuity
for degenerate equations in [7] allowed a stable Hölder exponent in this case.

In this paper and its companion [13], we take a more general approach to the
problem: We study (1.1) when there is an increasing function g such that

A(x, t, u, ξ) · ξ ≥ C0G(|ξ|), (1.3a)

|A(x, t, u, ξ)| ≤ C1g(|ξ|) (1.3b)

for some positive constants C0 and C1, where G is defined by

G(σ) =
∫ σ

0

g(s) ds,

and we assume that there are constants g0 and g1 satisfying 1 < g0 ≤ g1 <∞ such
that

g0G(σ) ≤ σg(σ) ≤ g1G(σ) (1.4)
for all σ > 0. (The two inequalities in (1.4) are essentially the ∆2 and ∇2 conditions
in Orlicz space theory as in [14, Sections I.3 and I.4] and in [22, Section 2.3]. The
precise connection between (1.4) and these conditions is the topic of [20].) Our
primary concern here is with the case g0 ≥ 2 and the companion paper [13] is
concerned with the case 1 < g0 ≤ g1 ≤ 2, but since many of our intermediate
results are true (with the same proof) for the full range of g0 and g1, we shall
pay attention to these two possibilities carefully. The case g0 ≥ 2 is known as
the degenerate case, and the case 1 < g0 ≤ g1 ≤ 2 is known as the singular case.
In [13], we analyze the singular case, taking advantage of the results from the
degenerate case that are still relevant to that one. The structure (1.2) is contained
in this model as the special case g(s) = sp−1 for p ≥ 2, in which case we may take
g0 = g1 = p, and p = 2 will fit into the degenerate structure studied here as well as
the singular structure from [13]. In addition, our structure allows consideration of
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more general equations; as shown in [18, pages 313 and 314], for any α and β with
1 < α < β <∞, we can find a function g satisfying (1.4) such that

lim sup
s→∞

g(s)
sβ

> 0, lim inf
s→∞

g(s)
sα

<∞,

so we consider a class of structure functions g much wider than that of just power
functions. In this way, we obtain a uniform proof of Hölder continuity (with ap-
propriate uniformity of constants) for all p ∈ [2,∞) at once under the structure
condition (1.2) as well as a proof of Hölder continuity under more general struc-
ture conditions. We note especially that our main estimates do not depend on g0

(although the condition g0 ≥ 2 will be critical to the results), so our result in this
case is stable as p approaches 2. We also point out that if we replace G and g
by suitable multiples of these functions (and appropriately modifying C0 and C1),
we can achieve any number of normalizations: for example, G(1) = 1, g(1) = 1,
C0 = 1, or C1 = 1. It is interesting to note that our estimates are independent of
the normalization.

The motivation for considering (1.4) comes from [18] in which corresponding
results for elliptic equations were proved. The extension of the methods used in
[18] for proving Hölder continuity of weak solutions to parabolic equations is not
straightforward; this paper and [13] present the only such extensions known to the
authors.

We could consider the full quasilinear equation

ut − divA(x, t, u,Du) = B(x, t, u,Du),

satisfying the structure conditions

A(x, t, u, ξ) · ξ ≥ C0G(|ξ|)− ϕ0(x, t),

|A(x, t, u, ξ)| ≤ C1g(|ξ|) + ϕ1(x, t),

|B(x, t, u, ξ)| ≤ C2G(|ξ|) + ϕ2(x, t)

for constants C0 > 0, C1 ≥ C0, C2 ≥ 0 and suitable nonnegative functions ϕ0,
ϕ1, and ϕ2. In the special case G(σ) = σp, the choice of function spaces (for ϕ0,
ϕ1 and ϕ2) is easily determined from the parabolic Sobolev imbedding theorem.
We refer the reader to the introduction of [7] for a detailed description of these
spaces. In our more general case, the extension is complicated by the lack of a
general parabolic Orlicz-Sobolev imbedding theorem (which would, presumably, be
based on the work of Cianchi [4] for general Orlicz-Sobolev imbedding theorems).
Alternatively, one can use the approach in [18] and use much smaller Lebesgue
spaces. In the first case, the description of the nonhomogeneous terms involves an
unnecessary technical complication, and, in the second case, the nonhomogeneous
terms are handled by a straightforward but messy adaption of the arguments in [7]
and [8]. Hence, we omit this extension.

For our investigation, we also need a suitable definition of weak solution, which
we present here. For an arbitrary open set Ω ⊂ Rn+1, we introduce the generalized
Sobolev space W 1,G(Ω), which consists of all functions u defined on Ω with weak
derivative Du satisfying ∫∫

Ω

G(|Du|) dx dt <∞.
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We say that u ∈ Cloc(Ω) ∩W 1,G(Ω) is a weak supersolution of (1.1) if

0 ≤ −
∫∫

Ω

uϕt dx dt+
∫∫

Ω

A(x, t, u,Du) ·Dϕdxdt

for all ϕ ∈ C1(Ω̄) which vanish on the parabolic boundary of Ω, which we also denote
by ∂PΩ; a weak subsolution is defined by reversing the inequality. A weak solution
is then a function which is both a weak supersolution and a weak subsolution. In
fact, a standard approximation shows that we need only assume that ϕ ∈ L∞(Ω)∩
W 1,G(Ω) with ϕt ∈ L1(Ω).

We mention here the paper [11] of Gianazza, Surnachev, and Vespri, which gave
a different proof for the Hölder continuity from that in [1, 7]. One of the key ideas
in [11] is to use a more geometric approach in place of alternative based on the size
of the set on which |u| is close to its maximum. The geometric approach is very
useful in the study of Harnack estimates, which we do not discuss here: however,
the geometry in [11] will reappear in [13]. Our main justification for avoiding the
geometric simplicity of [11] is that, unlike the alternative approach used here, the
geometric approach must look separately at the cases p large and p close to 2.

We begin by discussing the two alternatives, which refer to nonnegative weak
supersolutions u of (1.1) in a scaled cylinder. The first alternative states that, if
u is large on most of one subcylinder in a suitable family of subcylinders of the
original cylinder, then u is bounded from zero on all of a subcylinder with the same
center-top point as the original cylinder. The second alternative states that, if u
is large on a fixed fraction of every subcylinder in this family of subcylinders, then
u is bounded from zero on all of a subcylinder with the same center-top point as
the original cylinder. Eventually, we shall see the precise quantitative description
of these results.

In Section 2, we provide some preliminary results, mostly involving notation
for our geometric setting. In Section 3, we use the two alternatives to show that
if the oscillation of a solution u of (1.1) over a cylinder is less than or equal to
a number ω appropriately connected to the cylinder, then the oscillation over a
smaller subcylinder is less than or equal to σω with σ ∈ (0, 1); this oscillation control
is then used to prove Hölder continuity. We also prove an oscillation estimate near
the initial surface in this section, and discuss briefly oscillation estimates near the
lateral surface. The reason for discussing initial regularity in detail here is that it
can be proved rather simply while regularity near the lateral boundary is proved (as
shown in, for example, [7, Sections 7 and 8]) via a simple but tedious modification
of the interior regularity results. Moreover, as we shall see in [13], our proof of
initial regularity applies also to singular problems with an interesting twist. The
same integral estimate is used in the degenerate and singular cases, proved here as
Proposition 4.5 for the full range 1 < g0 ≤ g1, but different geometric and algebraic
considerations are used for the two cases. We prove the alternatives in Section 4,
after first developing some estimates for nonnegative weak supersolutions. With
one exception, these supersolution estimates will reappear in [13]. Finally, Section 5
presents some integral inequalities which are used to prove our other results. For
the most part, the results in Section 5 are standard results, but some of them are
interesting variations of standard results. We provide proofs for the variations but
refer the reader to other sources for the standard results.
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2. Preliminaries

2.1. Notation. (1) The parameters g0, g1, N , C0, and C1 are the data. When we
make the additional assumption that g0 ≥ 2, we use the word “data” to denote the
constants g1, N , C0, and C1.

(2) Let Ky
ρ denote the N−dimensional cube centered at y ∈ RN with the side

length 2ρ, i.e.,
Ky
ρ := {x ∈ RN : max

1≤i≤N
|xi − yi| < ρ}.

(Here, we use superscripts to denote the coordinates of x; we’ll use subscripts to
indicate different points.) For simpler notation, let Kρ := K0

ρ . We also define the
spatial distance | · |∞ by

|x− y|∞ = max
1≤i≤N

|xi − yi|.

In fact, all of our work can be recast with the ball

Byρ = {x ∈ RN : |x− y| < ρ},

where |x − y| is the usual Euclidean distance, in place of Ky
ρ with only slight

notational changes. This observation is more important to the singular case in [13],
and we shall comment on it there in more detail.

(3) For given (x0, t0) ∈ RN+1, and given positive constants θ, ρ and k, we say

Tk,ρ(θ) := θk2G
(k
ρ

)−1
,

Qx0,t0
k,ρ (θ) := Kx0

ρ × [t0 − Tk,ρ, t0],

Qk,ρ(θ) := Q0,0
k,ρ(θ).

The point (x0, t0) is called the top-center point of Qx0,t0
k,ρ (θ). We also abbreviate

Tk,ρ = Tk,ρ(1), Qx0,t0
k,ρ = Qx0,t0

k,ρ (1), Qkρ = Qk,ρ(1).

2.2. Geometry. The local energy estimate (5.2) plays a crucial role in this paper
which is nonhomogeneous unless g0 = g1 = 2. By controlling the length of the time
axis, we make two competing terms in (5.2) equivalent; that is, find Tk,ρ from

Gr−1
(ω
ρ

)
ωs+2 1

Tk,ρ
∼ Gr

(ω
ρ

)
ωs,

for some constants r and s which directly leads to our definition of Tk,ρ.
This choice of the time scale is called intrinsic scaling. It was introduced by

DiBenedetto [6] (but see also [8, 23]); roughly speaking, a weak solution of para-
bolic p-Laplacian type equation behaves like a solution of the heat equation in an
intrinsically scaled cylinder.

The parameter θ is introduced to simplify some arguments. It should be noted
that the arguments in [7, 8] also introduce various similar constants.

Now, suppose that u is a function defined in some open subset Ω of RN+1, let
(x0, t0) ∈ Ω, and let ω and θ be positive constants. Since Ω is open, there are
positive constants r and s such that Kx0

r × (t0 − s, t0) ⊂ Ω. If we set

R =
1
4

min
{
r,

ω

G−1(θω2s−1)
}
,

we conclude that Qx0,t0
ω,4R(θ) ⊂ Ω.
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Without loss of generality, we let (x0, t0) = (0, 0). Then for any θ and ω, we can
fit the cylinder Qω,4R(θ) in Ω by selecting R properly. Basically, we are going to
work with the cylinder Qω,4R(θ) to find a proper subcylinder where a solution has
less oscillation eventually leading to Hölder continuity.

2.3. Useful inequalities. Because of the generalized functions g and G, we are
not able to apply Hölder’s inequality or the typical Young’s inequality. Here we
deliver essential inequalities which will be used through out the paper.

Lemma 2.1. For a nonnegative and nondecreasing function g ∈ C[0,∞), let G
be the antiderivative of g. Suppose that g and G satisfies (1.4). Then for all
nonnegative real numbers σ, σ1, and σ2, we have

(a) G(σ)/σ is a monotone increasing function of σ.
(b) For β > 1, βg0G(σ) ≤ G(βσ) ≤ βg1G(σ).
(c) For 0 < β < 1, βg1G(σ) ≤ G(βσ) ≤ βg0G(σ).
(d) σ1g(σ2) ≤ σ1g(σ1) + σ2g(σ2).
(e) (Young’s inequality) For any ε ∈ (0, 1),

σ1g(σ2) ≤ ε1−g1g1G(σ1) + εg1G(σ2).

Proof. This lemma is essentially [18, Lemma 1.1]. We include a proof for the
reader’s convenience.

(a) For σ > 0, due to the left hand side inequality of (1.4), we easily obtain

d

dσ

(G(σ)
σ

)
=
σg(σ)−G(σ)

σ2
≥ (g0 − 1)

G(σ)
σ2

> 0

because g0 > 1.
(b) The left inequality of (1.4) gives

g0

ξ
≤ g(ξ)
G(ξ)

for ξ ∈ (0,∞).

By taking the integral from σ to βσ, we obtain

g0 log
βσ

σ
≤ log

G(βσ)
G(σ)

which implies
βg0G(σ) ≤ G(βσ).

A similar argument with the right hand side of (1.4) completes the proof.
(c) Like the proof for (b), but take integrals over the interval [βσ, σ].
(d) It is clear because g is nondecreasing function, so either

σ1g(σ2) ≤ σ1g(σ1) or σ1g(σ2) ≤ σ2g(σ2).

(e) For any 0 < ε < 1, because of (d) we obtain

σ1g(σ2) = ε
σ1

ε
g(σ2) ≤ ε

[σ1

ε
g
(σ1

ε

)
+ σ2g(σ2)

]
.

Applying the right inequality of (1.4) and (b) leads to

σ1g(σ2) ≤ ε
[
g1G

(σ1

ε

)
+ g1G(σ2)

]
≤ εg1ε

−g1G(σ1) + εg1G(σ2).

�

The next inequalities will be used to derive the logarithmic energy estimate
(5.11) which plays a crucial role in Proposition 4.2.
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Lemma 2.2. For any σ > 0, let

h(σ) =
1
σ

∫ σ

0

g(s) ds, H(σ) =
∫ σ

0

h(s) ds.

Then we have

g0h(σ) ≤ g(σ) ≤ g1h(σ), (2.1a)

g0H(σ) ≤ G(σ) ≤ g1H(σ), (2.1b)

(g0 − 1)h(σ) ≤ σh′(σ) ≤ (g1 − 1)h(σ), (2.1c)
1
g1
σh(σ) ≤ H(σ) ≤ 1

g0
σh(σ), (2.1d)

βg0H(σ) ≤ H(βσ) ≤ βg1H(σ) (2.1e)

for any β > 1.

Proof. Here we note that h acts like g and H acts like G. Dividing (1.4) by σ gives
(2.1a), and integrating (2.1a) gives (2.1b). Since

h′(σ) =
g(σ)
σ
− G(σ)

σ2
,

we infer (2.1c) by applying (1.4).
We infer (2.1d) from (2.1b) since G(σ) = σh(σ), and the proof of (2.1e) is similar

to the proof of Lemma 2.1(b). �

In fact, because of this lemma, we could have assumed initially that g ∈ C1 and
that g satisfies the inequalities

g0 − 1 ≤ sg′(s)
g(s)

≤ g1 − 1

for all s > 0. Our choice for using g and G to describe the structure conditions
is more consistent with the published literature although [18] uses the stronger
hypothesis g ∈ C1.

3. The two alternatives and the proof of Hölder continuity

In this section, we prove the Hölder continuity of solutions of (1.1) for degenerate
equations (that is, equations with g0 ≥ 2). Our proof is based on some estimates
for nonnegative supersolutions of the equation, and these estimates will be proved
in the next section. These estimates are usually described as the first alternative
and the second alternative.

For notational convenience, we take ν0 to be the constant from Proposition 4.4
corresponding to θ = 1 and, with ω and R given positive constants, we set

∆ =
(ω

2
)2
G
( ω

4R
)−1

. (3.1)

Our first alternative is that, if u is a positive subsolution u of a degenerate equa-
tion which stays close to its maximum on most of one suitable small subcylinder,
then u is bounded away from zero on a suitable subcylinder.

Lemma 3.1 (The first alternative). Let θ0 > 1 be a given constant and suppose u
is a nonnegative supersolution of (1.1) in

Q = K2R × (−θ0∆, 0) (3.2)
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with g0 ≥ 2. If there is a constant T0 ∈ [−θ0∆,−∆] such that∣∣∣K2R × (T0, T0 + ∆) ∩ {u ≤ ω

2
}
∣∣∣ ≤ ν0|K2R|∆,

then there is a constant δ1 ∈ (0, 1) determined only by θ0 and data such that

ess infQ u ≥ δ1ω
with

Q = Qω/4,R/2. (3.3)

The proof of this lemma will be given in the next section. Our second alternative
states that if u is a positive subsolution u of a degenerate equation which stays close
to its maximum on a suitable fraction of all suitable small subcylinders, then u is
bounded away from zero on a suitable subcylinder.

Lemma 3.2 (The second alternative). There are constants θ0 > 1 and δ2 ∈ (0, 1)
(determined only by data) such that, if u is a nonnegative supersolution of (1.1) in
Q (given by (3.2)) with g0 ≥ 2 and∣∣∣K2R × (T0, T0 + ∆) ∩ {u ≤ ω

2
}
∣∣∣ ≤ (1− ν0)|K2R|∆

for all T0 ∈ [−θ0∆,−∆], then there is a constant δ2 ∈ (0, 1), determined only by
data, such that

ess infQ u ≥ δ2ω
with Q given by (3.3).

Also, we prove this lemma in the next section. From these lemmata, we infer a
decay estimate for the oscillation of a bounded solution of (1.1). It is interesting
to note that, unlike the usual proofs of Hölder continuity, we do not estimate the
oscillation of a bounded over a cylinder in terms of its oscillation over a larger
cylinder. Instead, we estimate the oscillation over the smaller cylinder in terms of
a quantity larger than the oscillation over the larger cylinder.

Lemma 3.3. Let C0, C1, g0, g1, ρ, and ω be positive constants with C0 ≤ C1 and
2 ≤ g0 ≤ g1. Suppose also that u is a bounded weak solution of (1.1) in Qω,ρ with

ess oscQω,ρ u ≤ ω.
Then there are positive constants σ and λ, both less than one and determined only
by data such that

ess oscQσω,λρ u ≤ σω.

Proof. We begin by introducing some constants. First, we take ν0 from Proposi-
tion 4.4 (corresponding to θ = 1) and then δ2 and θ0 from Lemma 3.2. With this
θ0, we also take δ1 from Lemma 3.1. Next, we set

θ1 = 2
(
1 +

(θ0

4
)1/g0)

and R = ρ/θ1. Then, we define ∆ by (3.1), and we set λ = 1/(2θ1) and σ =
1−min{δ1, δ2}. Moreover, we define

u1 = u− ess infQω,ρ u, u2 = ω − u1.

To begin the proof, we observe that θ1 ≥ 2 and θ1 ≥ 2(θ0/4)1/g1 and hence Q,
defined by (3.2), is a subset of Qω,ρ.
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If there is a T0 ∈ (−θ0∆,−∆) such that∣∣∣Kρ × (T0, T0 + ∆) ∩ {u1 ≤
ω

2
}
∣∣∣ ≤ ν0|Kρ|∆,

then Lemma 3.1 applied to u1 implies that

ess infQ u1 ≥ δ1ω
with Q defined by (3.3). and hence

ess oscQ u ≤ σω. (3.4)

On the other hand, if∣∣∣Kρ × (T0, T0 + ∆) ∩ {u1 ≤
ω

2
}
∣∣∣ ≥ ν0|Kρ|∆

for all T0 ∈ (−θ0∆,−∆), it follows that∣∣∣Kρ × (T0, T0 + ∆) ∩ {u2 ≤
ω

2
}
∣∣∣ ≤ (1− ν0)|Kρ|∆,

so Lemma 3.2 applied to u2 gives ess infQ u2 ≥ δ2ω, which implies (3.4) in this case.
The proof will be complete once we show that Qσω,λρ ⊂ Q. To prove this

inclusion, we first note that

λρ ≤ R

2
.

Then we use the definition of λ to infer from Lemma 2.1 that

G
( ω

2R
)

= G
( ω

4λρ
)
≤ (4σ)−g0G

(σω
λρ

)
.

It follows that

(σω)2G

(
σω

λρ

)−1

≤ (4σ)2−g0
(ω

4

)2

G
( ω

2R

)−1

Since σ ≥ 1/2, it follows that (4σ)2−g0 ≤ 1 and Qσω,λρ ⊂ Q. �

As we shall see in [13], this lemma is also valid for singular equations although
the proof in that case is quite different.

For our Hölder continuity estimates, we define a time scale in terms of the func-
tion G, the function u and the set Ω on which u is defined. We shall now include u
and Ω in the notation for simplicity. Specifically, for any real number τ , we define

|τ |G =
U

G−1(U2/|τ |)
,

where U = ess oscΩ u.
With this time scale, we define the parabolic distance between two sets such K1

and K2 by
distP (K1;K2) := inf

(x,t)∈K1
(y,s)∈K2, s≤t

max{|x− y|∞, |t− s|G}

with | · |∞ as defined in Section 2. (Note that, strictly speaking, this quantity is
not a distance because it is not symmetric with respect to the order in which we
write the sets. Nonetheless, the terminology of distance is useful as a suggestion of
the technically correct situation.)

Because of the generalized function G, it is natural to obtain a modulus of
continuity in terms of G. We are also able to derive a Hölder estimate written in
terms of exact powers.
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Theorem 3.4. Let u be a bounded weak solution of (1.1) with (1.3) in Ω, and sup-
pose g0 ≥ 2. Then u is locally continuous. Moreover, there exist positive constants
α < 1 and γ, depending only upon the data, such that, for any two distinct points
(x1, t1) and (x2, t2) in any subset Ω′ of Ω with distP (Ω′; ∂pΩ) positive, we have

|u(x1, t1)− u(x2, t2)| ≤ γU
( |x1 − x2|∞ + |t1 − t2|G

distP (Ω′; ∂PΩ)

)α
. (3.5)

In addition (with the same constants),

|u(x1, t1)− u(x2, t2)| ≤ γU
( |x1 − x2|∞ + |1|G max{|t1 − t2|1/g0 , |t1 − t2|1/g1}

distP (Ω′; ∂PΩ)

)α
.

(3.6)

Proof. If U = 0, then this result is true for any choice of γ and α, so we assume
that U > 0 and set ω0 = U . We also set

ρ0 = distP ({(x0, t0)}, ∂PΩ).

We then define ε = min{λ, 1
2σ

(2−g0)/g0} (where λ and σ are the constants from
Lemma 3.3),

ρn = εnρ0, ωn = σnω0,

and define a sequence of cylinders (Qn) by

Qn = Qx1,t1
σn,ρn .

It is easy to check that Q0 ⊂ Ω and that Qn+1 ⊂ Qn for any n. Combining Lemma
3.3 with an easy induction, we find that ess oscQn ≤ ωn for any n. If (x2, t2) ∈ Q0

with x1 6= x2 and t1 6= t2, then there are nonnegative integer n and m such that

ρn+1 < |x1 − x2| ≤ ρn, (3.7a)

ω2
m+1G

(
ωm+1

ρm+1

)−1

< |t1 − t2| ≤ ω2
mG

(
ωm
ρm

)−1

. (3.7b)

As a result, we obtain that

|u(x1, t1)− u(x2, t2)| ≤ max{ωn, ωm}.
From the first inequality of (3.7a), we derive

|x1 − x2|
ρ0

> εn+1 =
(
σlogσ ε

)n+1

which implies

ωn = σnω0 < σ−1ω0

( |x1 − x2|
ρ0

)α1

for α1 = logε σ.
On the other hand, the first inequality of (3.7b) implies that

|t1 − t2|G ≥
U

G−1
(
U2ω−2

m+1G
(ωm+1
ρm+1

)) .
We now estimate the expression in the denominator of this fraction:

U2ω−2
m+1G

(ωm+1

ρm+1

)
= σ−2(m+1)G

(ωm+1

ρm+1

)
≥ G

(
σ−2(m+1)/g0(

σ

ε
)m+1ω0

ρ0

)
.
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To proceed, we now define β = εσ(2−g0)/g0 and note that the choice of ε implies
that β < 1. We then have

|t1 − t2|G ≥
U

β−(m+1) ω0
ρ0

= βm+1ρ0.

Hence by letting α2 = logβ σ, we have

ωm ≤ βα2mω0 ≤
( |t1 − t2|G

βρ0

)α2

ω0.

Therefore, for some γ > 0,

|u(x1, t1)− u(x2, t2)| ≤ γU
[( |x1 − x2|

ρ0

)α1

+
( |t1 − t2|G

ρ0

)α2
]
.

This inequality implies (3.5) with α = min{α1, α2} because ρ0 ≥ distP (Ω′; ∂PΩ).
If x1 = x2 or if t1 = t2, then a similar (but simpler) argument yields the result.

If (x2, t2) /∈ Q0, then |x1 − x2| + |t1 − t2|G ≥ ρ0, so (3.5) follows, for any α, by
taking γ ≥ 1.

To prove (3.6), we consider two cases. First, if |t1 − t2| ≤ 1, then

G
( G−1(U2)
|t1 − t2|1/g0

)
≥ 1
|t1 − t2|

U2,

so

|t1 − t2|G ≤
U

G−1(U2)
|t1 − t2|1/g0 .

Second, if |t1 − t2| > 1, then

G
( G−1(U2)
|t1 − t2|1/g1

)
≥ 1
|t1 − t2|

U2,

so

|t1 − t2|G ≤
U

G−1(U2)
|t1 − t2|1/g1 .

Combining these inequalities with (3.5) and the observation that U/G−1(U2) = |1|G
then gives (3.6). �

For initial regularity, we have the following variant of Lemma 3.3. To simplify
notation, we define the following cylinders:

Q+,x0t0
k,R (θ) = Kx0

R ×
(
t0, t0 + θk2G

( k
R

)−1
)
, Q+

k,R(θ) = Q+,0,0
k,R (θ),

and we set Q+
k,R = Q+

k,R(1). With ν0 the constant from Proposition 4.5 and U a
given constant, we also define QR(U) to be the cylinder Q+

U,R(ν0/9).
Our shrinking lemma, analogous to Lemma 3.3, takes the following form. Note

that the result of this lemma is essentially the same as [7, (6.10)], but the proof is
much simpler.

Lemma 3.5. Let C0, C1, g0, g1, ρ, U , and ω be positive constants with C0 ≤ C1,
2 ≤ g0 ≤ g1, and ω ≤ U . Suppose also that u is a bounded weak solution of (1.1) in
Q2R(U) with ess oscQ2R(U) u ≤ ω. Then there is a constant λ ∈ (0, 1), determined
only by data, such that

ess oscQR(U) u ≤ max
{5

6
ω, 3 ess oscK2R×{0} u

}
.
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Proof. We begin by setting

ω∗ = ess oscK2R×{0} u.

If ω < 3ω∗, the result is immediate, so we suppose that ω ≥ 3ω∗. We also set

θ =
(ν0/9)U2G

(
U
2R

)−1(
ω
3

)2
G
(
ω/3
2R

)−1

and note that QR(U) = Q+
ω/3,2R(θ). Since g0 ≥ 2, it follows that

U2G
( U

2R

)−1

≤ ω2G
( ω

2R

)−1

.

Moreover G is increasing so G(ω/(2R))−1 ≤ G((ω/3)/(2R)), and therefore θ ≤ ν0.
We now set k = ω/3 and we consider two cases. First, if

ess infK2R×{0} u1 ≥ k, (3.8)

we apply Proposition 4.5 to u1 in Q+
k,2R(θ) to infer that

ess infQR(U) u1 ≥
k

2
.

It follows that

ess oscQR(U) u ≤ ω −
k

2
=

5
6
ω. (3.9)

If (3.8) does not hold, then some straightforward algebra shows that

ess infK2R×{0} u2 ≥ k,

so we can apply Proposition 4.5 to u2, again obtaining (3.9). �

From this lemma, we infer a continuity estimate near the initial surface. When Ω
has the form O× (t1, t2) for some bounded open subset O of RN and numbers t1 <
t2, the initial surface is just O × {t1}, but we wish to provide a result that applies
also to non-cylindrical domains Ω, so we introduce some additional terminology
and notation.

First,we recall from [19] that BΩ is the set of all (x0, t0) ∈ ∂PΩ such that, for
some positive numbers r and s, the cylinder

Kx0
r × (t0, t0 + s)

is a subset of Ω. Here we consider the following subset of BΩ, which we call an
initial surface for Ω and which we denote by B′Ω. Specifically, B′Ω is the set of all
(x0, t0) ∈ BΩ such that Kr×{t0} ⊂ ∂PΩ for some r′ > 0. When Ω = O×(t1, t2), we
have that BΩ = B′Ω = O×{t1}, but the sets BΩ and B′Ω are usually different for
non-cylindrical domains. For example, if Ω = {(x, t) ∈ RN+1 : |x|4 − |x|2 < t < 1},
then BΩ = {(0, 0)} but B′Ω is empty.

We also define a slightly different distance function. Let (x0, t0) ∈ B′Ω and let
ω > 0. Then we write distB(x0, t0) for the supremum of the set of all numbers r
such that Q+,x0,t0

ω,r ⊂ Ω and Kx0,t0
r × {0} ⊂ ∂PΩ.

Theorem 3.6. Let u be a bounded weak solution of (1.1) with (1.3) in Ω, and
suppose 1 < g0 ≤ g1. Suppose also that the restriction of u to B′Ω is continuous at
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some (x0, t0) ∈ B′Ω. Then u is locally continuous up to (x0, t0). Specifically, if there
is a continuous increasing function ω̃ defined on [0,distB(x0, t0)) with ω̃(0) = 0,

5
6
ω̃(2r) ≤ ω̃(r) (3.10)

for all r ∈ (0,distB(x0, t0)/2), and with

|u(x0, t0)− u(x1, t0)| ≤ ω̃(|x0 − x1|)
for all x1 with |x0 − x1| < distB(x,t0), then there exist constants γ and α ∈ (0, 1)
depending only upon the data such that, for any (x, t) ∈ Ω with t ≥ t0, we have

|u(x0, t0)− u(x, t)|

≤ γU
( |x0 − x|+ |t0 − t|G

distB(x0, t0)

)α
+ 3ω̃

(
2|x0 − x|∞ +

18
ν0
|t0 − t|G

)
.

Proof. We start by taking ω0 = U and ρ0 = distB(x0, t0). If (x, t) /∈ Q+,x0,t0
ω0,ρ0 , then

the result is immediate for any α as long as γ ≥ 1.
If (x, t) ∈ Q+,x0,t0

ω0,ρ0 , then we define ρn = λnρ0 and Qn = Qρn(U). We also define
ω′n for n > 0 inductively as ω′n+1 = max{ 5

6ω
′
n, 3ω

∗(ρn)}. It follows from Lemma 3.5
that ess oscQn u ≤ ω′n, but this estimate must be improved. To this end, we set

ωn = max
{(5

6
)n
ω0, 3ω̃(ρn−1)

}
,

and we claim that ω′n ≤ ωn for n > 0. The claim is immediate for n = 1, and if it
holds for n equal to some positive integer m, then

ω′m+1 = max
{(5

6
)
ω′m, 3ω̃(ρm)

}
≤ max

{(5
6
)m+1

ω0, 3
(5

6
)
ω̃(ρm−1), 3ω̃(ρm)

}
and the claim follows for n = m + 1 from this inequality by using (3.10) with
r = ρm. Hence the claim is true for all n and we infer that

ess oscQn u ≤ ωn.
As before, we assume that x 6= x0 and t 6= t0, so there are nonnegative integers n
and m such that

ρn+1 ≤ |x0 − x|∞ < ρn,

and

U2G
( U

ρm+1

)−1

≤ |t0 − t| < U2G
( U
ρm

)−1

.

With α = log1/2(5/6), it follows that(5
6
)n ≤ (2|x0 − x|∞

ρ0

)α
, ω̃(ρn) ≤ ω̃(2|x0 − x|∞),

and that (5
6
)m ≤ (2|(9/ν0)(t0 − t)|G

ρ0

)α
, ω̃(ρm) ≤ ω̃

(18
ν0
|t0 − t|∞

)
.

We now observe that, for any β > 1 and τ > 0, if we set σ = G−1(U2/τ), we have

U2

βτ
= β−1G(σ) ≥ G(β−1/g0σ).
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Since
U2

βτ
= G−1

(U2

βτ

)
,

it follows that
U

G−1(U2

βτ )
≤ U

G−1
(
U2

τ

) .
In particular, for τ = |t0 − t| and β = 9/ν0, we infer that∣∣∣ 9

ν0
(t0 − t)

∣∣∣
G
≤
( 9
ν0

)1/g0 |t− t0|G.
Easy algebra now completes the proof. �

At this point, we remark that condition (3.10), which seems quite unnatural, is
just a technical restriction on the description of the modulus of continuity of the
restriction of u to B′Ω. There is no loss of generality in assuming that there is a
concave, increasing function ω′ such that

|u(x0, t0)− u(x1, t0)| ≤ ω′(|x0 − x|)

for all x1 with |x0−x1| < distB(x0, t0) (see [21, Section 5] for a detailed explanation
of this statement), and then we can take

ω̃(r) = ω′
(
(distB(x0, t0)1−αrα

)
(with α = log1/2(5/6)) to obtain a function satisfying the hypotheses of the theo-
rem.

We shall not discuss regularity near the lateral boundary in any detail. We
just note that the proof of interior regularity can be modified along the lines of [7,
Theorems 3 and 4 ] to give such results.

4. Proof of the two alternatives

Throughout this section, let u be a bounded nonnegative weak supersolution of
(1.1) in a suitably scaled cylinder with (1.3). The proof of the two alternatives rests
on some estimates which show that, if u is bounded away from zero on some set
(with a suitable lower bound), then it is bounded away from zero (with a different
but related lower bound) on a different set. Then Proposition 4.1 implies that a
spatial cube at some fixed time level can be found on which u is away from its
minimum (zero value) on arbitrary fraction of the spatial cube. From the spatial
cube, positive information spreads to later time and over the space variables with
time limitations (Propositions 4.2 and 4.3). Controlling the positive quantity θ > 0
on Tk,ρ is key to overcoming those time restrictions. Once we have a subcylinder
centered at (0, 0) in Qω,4R with arbitrary fraction of the subcylinder, we finally
apply modified De Giorgi iteration (Proposition 4.4) to obtain strictly positive
infimum of u in a smaller cylinder with top-center point (0, 0).

4.1. Basic results. Our first proposition shows that if a nonnegative function is
large on part of a cylinder, then it is large on part of a suitable time slice. Except
for some minor variation in notation, our result is [7, Lemma 4.1] or [8, Lemma
III.7.1]; we include a proof for completeness.
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Proposition 4.1. Let k, ρ, and T be positive constants. If u is a measurable
nonnegative function defined on Q = Kρ × (−T, 0) and if there is a constant ν1 ∈
[0, 1) such that

|Q ∩ {u ≤ k}| ≤ (1− ν1)|Q|,
then there is a number

τ1 ∈
(
− T,− ν1

2− ν1
T
)

for which

|{x ∈ Kρ : u(x, τ1) ≤ k}| ≤
(
1− ν1

2
)
|Kρ|.

Proof. To simplify the notation, we set τ = ν1
2−ν1T . If there were no such τ1, then

we would have

|Q ∩ {u ≤ k}| =
∫ 0

−T
|{x ∈ Kρ : u(x, t) ≤ k}| dt

≥
∫ −τ
−T
|{x ∈ Kρ : u(x, t) ≤ k}| dt

>
(
1− ν1

2
)(

1− ν1

2− ν1

)
|Kρ|T

= (1− ν1)|Q|.

�

Our next proposition is similar to [7, Lemma 4.2] and [8, Lemmata III.4.1, III.7.2,
IV.10.2]. If g0 > 2, then the next proposition can be replaced by [11, Corollary 3.4]
which does not involve the logarithmic energy estimate.

Proposition 4.2. Let ν, k, ρ, and θ be given positive constants with ν ≤ 1. Then,
for any ε ∈ (0, 1), there exists a constant δ = δ(ν, ε, θ, data) such that, if u is a
nonnegative supersolution of (1.1) in Kρ × (−τ, 0) with g0 ≥ 2 and

|{x ∈ Kρ : u(x,−τ) ≤ k}| ≤ (1− ν) |Kρ| (4.1)

for some

τ ≤ θk2G
(k
ρ

)−1
, (4.2)

then
|{x ∈ Kρ : u(x, t) ≤ δk}| ≤ (1− (1− ε)ν) |Kρ|

for any t ∈ (−τ, 0].

Proof. Here we apply the logarithmic energy estimate (5.11) in a parabolic cylinder
Kρ × [−τ,−s] for any −s ∈ [−τ, 0). For some σ ∈ (0, 1) to be determined later, we
introduce a piecewise linear cutoff function independent of the time variable; that
is,

ζ =

{
1 inside K(1−σ)ρ × [−τ,−s]
0 on the lateral boundary of Kρ × [−τ,−s].

satisfying

|Dζ| ≤ 1
σρ
, ζt = 0.
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From (5.11) by letting q = g1, it follows that∫
Kρ×{−s}

H(Ψ2)ζg1 dx

≤
∫
Kρ×{−τ}

H(Ψ2)ζg1 dx

+ 2C1−g1
0 Cg11 g2g1

1

∫ −s
−τ

∫
Kρ

h(Ψ2)|Ψ||Ψ′|2G
( |Dζ|

Ψ′
)
dx dt,

(4.3)

where h and H are defined in Lemma 2.2. Let δ = 2−j where j is to be chosen
large enough. We recall

Ψ = ln+
[ k

(1 + δ)k − (u− k)−

]
, Ψ′ =

1
(u− k)− − (1 + δ)k

,

and that Ψ = Ψ′ = 0 when u ≥ (1− δ)k. Since 0 ≤ (u− k)− ≤ k, we also have

Ψ ≤ ln+ δ−1 = j ln 2,
1

(1 + δ)k
≤ |Ψ′| ≤ 1

δk
.

The first integral term on the right hand side of (4.3) is bounded by∫
Kρ×{−τ}

H(Ψ2)ζg1 dx ≤ H
(
j2(ln 2)2

)
|{x ∈ Kρ : u(x,−τ) ≤ (1− δ)k}|

≤ (1− ν)H
(
j2(ln 2)2

)
|Kρ|

because of the assumption (4.1).
Now to handle the second integral on the right hand side of (4.3), we make

observations of upper bounds of the quantity

|Ψ′|2G
( |Dζ|

Ψ′
)
.

We use the inequalities 1 ≤ (1+δ)k|Ψ′| and δ < 1. Hence we derive from (4.2) that

|Ψ′|2G
( |Dζ|

Ψ′
)
≤ ((1 + δ)k|Ψ′|)2−g0 ((1 + δ)k)−2

G ((1 + δ)k|Dζ|)

≤ 2g1σ−g1k−2G
(k
ρ

)
because 2 − g0 ≤ 0 and 1 < 1 + δ < 2. Therefore, for any −s ∈ (−τ, 0] (which
implies that |τ − s| ≤ τ), we have∫ −s

−τ

∫
Kρ

h(Ψ2)|Ψ||Ψ′|2G
( |Dζ|
|Ψ′|

)
dx dt

≤ 2g1θh
(
j2(ln 2)2

)
(j ln 2)σ−g1 |Kρ|

≤ 2g1g1θ
H(j2(ln 2)2)

j ln 2
σ−g1 |Kρ|.

(4.4)

To obtain the lower bound of the left hand side of (4.3), we integrate over the
smaller set {u ≤ δk} = {u ≤ 2−jk}. Note that

Ψ ≥ ln+(2δ)−1 = (j − 1) ln 2
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on this set. Therefore the left hand side of the inequality (4.3) is lower bounded by∫
Kρ×{−s}

H(Ψ2)ζg1 dx ≥ H
(
(j − 1)2(ln 2)2

) ∣∣{x ∈ K(1−σ)ρ : u(x,−s) ≤ δk
}∣∣ .

It follows that

|{x ∈ Kρ : u(x,−s) ≤ δk}|
≤
∣∣{x ∈ K(1−σ)ρ : u(x, t) ≤ δk

}∣∣+
∣∣Kρ \K(1−σ)ρ

∣∣
≤
[
(1− ν)

H
(
j2(ln 2)2

)
H ((j − 1)2(ln 2)2)

+
CθH

(
j2(ln 2)2

)
jσg1H ((j − 1)2(ln 2)2)

+Nσ
]
|Kρ|

upon combining upper bounds of (4.3), where C depends on C0, C1, and g1. For
brevity, set

H0 =
H
(
j2(ln 2)2

)
H ((j − 1)2(ln 2)2)

.

For any given ε ∈ (0, 1), we choose an integer j large enough and σ ∈ (0, 1) small
enough so that the following three inequalities hold:

H0 ≤ 1 + εν, (4.5a)

CθH0

jσg1
≤ εν2

2
, (4.5b)

Nσ ≤ εν2

2
. (4.5c)

Then inequalities (4.5) yield our conclusion.
Now we complete the proof by going back to (4.5) and finding j and σ. From

(4.5c), first fix

σ =
εν2

2N
.

Then assuming (4.5a), the inequality (4.5b) holds if

j ≥ Cθ(1 + εν)
2σg1εν2

,

which gives

j ≥ C(1 + εν)(4N)g1

2ε1+g1ν2(1+g1)
.

It is sufficient to choose

j ≥ C(C0, C1, g1, N)
(
εν2
)−1−g1

.

Finally, (4.5a) is satisfied if j is so large that( j

j − 1
)g1 ≤ 1 + εν,

which is equivalent to

j >
(1 + εν)1/g1

(1 + εν)1/g1 − 1
.

So the proof is completed by taking j to be any integer greater than

max
{
C(C0, C1, g1, N)θ(εν2)−1−g1 ,

(1 + εν)1/g1

(1 + εν)1/g1 − 1
}
.

�
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The following proposition demonstrates the spreading of positivity over space.
When we have some portion of positive data along all the time, then a mixture
of Poincaré’s inequality and a local energy estimate generates arbitrary fractional
control over that cylinder. Especially when g1 > 2, somewhat large length of the
time interval for the initially given positive data collected place is required to spread
positivity properly. Proposition 4.3 is analogous to [7, Lemma 4.4], [11, Lemma 3.5],
and [9, Proposition 6.1].

Proposition 4.3. Suppose g0 ≥ 2. Let k and ρ be positive numbers and sup-
pose u is a nonnegative supersolution of (1.1) in K2ρ × (−2τ, 0) for some τ > 0.
Then for any ν and α in (0, 1) and any θ > 0, there exists a constant δ∗ =
δ∗(α, ν,min{1, θ}, data) ∈ (0, 1) such that, if

τ ≥ θ(δ∗k)2G
(δ∗k
ρ

)−1

(4.6)

and if
|{x ∈ K2ρ : u(x, t) ≤ k}| ≤ (1− α)|K2ρ| (4.7)

for all t ∈ (−2τ, 0], then we have

|{(x, t) ∈ Kρ × [−τ, 0] : u(x, t) ≤ δ∗k}| ≤ ν |Kρ × [−τ, 0]| . (4.8)

Proof. Let kj = 2−jk for j = 0, 1, 2, . . . , j∗ with j∗ to be determined later. Denote
δ∗ = 2−j

∗
. For simplicity, denote

Aj = {(x, t) ∈ Kρ × [−τ, 0] : u(x, t) ≤ kj} .

We work with a piecewise linear cutoff function

ζ =

{
1 inside of Kρ × [−τ, 0]
0 on the parabolic boundary of K2ρ × [−2τ, 0]

with

|Dζ| ≤ 1
ρ
, ζt ≤

1
τ
.

The local energy estimate (5.2) (by ignoring the first term on the left hand side)
provides ∫ 0

−2τ

∫
K2ρ

G(|D(u− kj)−|)Gr−1
(ζ(u− kj)−

ρ

)
(u− kj)s−ζq dx dt

≤ γ1

∫ 0

−2τ

∫
K2ρ

Gr−1
(ζ(u− kj)−

ρ

)
(u− kj)s+2

− ζq−1ζt dx dt

+ γ2

∫ 0

−2τ

∫
K2ρ

Gr
(ζ(u− kj)−

ρ

)
(u− kj)s−ζq−1−2g1 dx dt.

(4.9)

Here note that for j = 0, . . . , j∗

k2
j ζt ≤

1
θ
G
(kj
ρ

)
because (4.6) implies that, for any j = 0, . . . , j∗,

τ ≥ k2
jG
(kj
ρ

)−1
.
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The integral estimate (4.9) simplifies to∫ 0

−τ

∫
Kρ

G (|D(u− kj)−|) dx dt ≤ γG
(kj
ρ

)
|K2ρ × [−2τ, 0]| . (4.10)

Owing to the assumption (4.7), we may apply the Poincaré type inequality,
Lemma 5.3. For any t ∈ [−τ, 0], it follows that

(kj − kj+1) |{x ∈ Kρ : u(x, t) < kj+1}|

≤ γρN+1

θαρN

∫
Kρ∩{kj+1≤u<kj}

|D(u− kj)−| dx.

Note kj − kj+1 = kj+1. After integrating over the time variable from −τ to 0, we
obtain

kj+1

ρ
|Aj+1| ≤

γ

θα

∫∫
Aj\Aj+1

|D(u− kj)−| dx dt. (4.11)

After dividing (4.11) by |Aj \Aj+1| and assuming (without loss of generality) that
the constant γ in this inequality is at least 1, we apply Jensen’s inequality and
Lemma 2.1(b) to infer that

G
( |Aj+1|
|Aj \Aj+1|

kj+1

ρ

)
≤ γ∗

|Aj \Aj+1|

∫∫
Aj\Aj+1

G (|D(u− kj)−|) dx dt (4.12)

with
γ∗ =

( γ

min{1, θ}α

)g1
.

Because of (4.10), the inequality (4.12) generates

G
( |Aj+1|
|Aj \Aj+1|

kj+1

ρ

)
≤ γ2N+1γ∗

|Kρ × [−τ, 0]|
|Aj \Aj+1|

G
(kj
ρ

)
. (4.13)

Denote Ωτ := Kρ × [−τ, 0]. There are two cases to consider for any j: either

|Aj+1| > |Aj \Aj+1|,

or

|Aj+1| ≤ |Aj \Aj+1|.

First, if |Aj+1| > |Aj \Aj+1|, then we have( |Aj+1|
|Aj \Aj+1|

)g0
2−g1G

(kj
ρ

)
≤ G

( |Aj+1|
|Aj \Aj+1|

kj+1

ρ

)
.

Therefore, (4.13) generates( |Aj+1|
|Ωτ |

) g0
g0−1 ≤ γ(γ∗)

1
g0−1
|Aj \Aj+1|
|Ωτ |

. (4.14)

Second, if |Aj+1| ≤ |Aj \Aj+1|, then we observe that( |Aj+1|
|Aj \Aj+1|

)g1
2−g1G

(kj
ρ

)
≤ G

( |Aj+1|
|Aj \Aj+1|

kj+1

ρ

)
.

The inequality (4.13) gives( |Aj+1|
|Aj \Aj+1|

)g1
2−g1 ≤ γγ∗ |Ωτ |

|Aj \Aj+1|
,
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and hence ( |Aj+1|
|Ωτ |

) g1
g1−1 ≤ γ(γ∗)

1
1−g1
|Aj \Aj+1|
|Ωτ |

.

Since |Aj+1|/Ωτ | ≤ 1 and g1/(g1 − 1) ≤ g0/(g0 − 1), it follows that( |Aj+1|
|Ωτ |

) g0
g0−1 ≤

( |Aj+1|
|Ωτ |

) g1
g1−1

.

In addition, since γ∗ ≥ 1 and 1/(g1 − 1) ≤ 1/(g0 − 1), it follows that

(γ∗)1/(g1−1) ≤ (γ∗)1/(g0−1).

Therefore, (4.14) is valid for all j ∈ {0, . . . , j∗ − 1}.
Next we take the sum for j = 0, . . . , j∗ − 1 of the inequality (4.14). Noting that

|Aj∗ | ≤ |Aj+1| for j = 0, . . . , j∗ − 1, we conclude that

j∗
(
|Aj∗ |
|Ωτ |

)g0/(g0−1)

≤ γ(γ∗)1/(g0−1).

We now reach our conclusion (4.8) by choosing j∗ such that

j∗ ≥ 1
γ
νg0/(1−g0)(γ∗)1(1−g0).

�

The following proposition is modified DeGiorgi iteration with generalized struc-
ture conditions (1.3). Basically, our Proposition 4.4 is equivalent to [7, Lemma 3.1]
and [8, Lemmata III.4.1 and IV.4.1]. (We shall have more to say about [8, Lemma
IV.4.1] in [13].)

Proposition 4.4. For a given positive constant θ, there exists ν0 = ν0(θ, data) ∈
(0, 1) such that, if u is a nonnegative supersolution of (1.1) in Qk,2ρ(θ) with

|Qk,2ρ(θ) ∩ {u ≤ k}| ≤ ν0|Qk,2ρ(θ)|

for some positive constants k and ρ, then

ess infQk,ρ(θ) u(x, t) ≥ k

2
.

Proof. First, we construct two sequences {ρn}∞n=0 and {kn}∞n=0 such that

ρn = ρ+
ρ

2n
, kn =

k

2
+

k

2n+1
for n = 0, 1, . . . .

Because G is increasing, the sequence {Qn}∞n=0, given by

Qn = Kρn × [−Tk,ρn(θ), 0],

is a nested and shrinking sequence of cylinders. Let us take a sequence of piecewise
linear cutoff functions {ζn}∞n=0 such that

ζn =

{
1 inside of Qn+1

0 on the parabolic boundary of Qn,

satisfying

|Dζn| ≤
2n+1

ρ
,
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0 ≤ (ζn)t ≤
1

θk2(G( k
ρn

)−1 −G( k
ρn+1

)−1)

Let us note that
2n+1

ρ
≥ 2n+2

ρn

because ρn ≤ 2ρ. We also need a different upper bound for (ζn)t. As a first step,
we write

G
( k
ρn

)−1 −G
( k

ρn+1

)−1 =
∫ ρn

ρn+1

k

s2
g(
k

s
)G(

k

s
)−2 ds.

By using the first inequality in (1.4) and Lemma 2.1(b), we conclude that

k

s2
g(
k

s
)G(

k

s
)−2 ≥ g0

s
G(
k

s
)−1 ≥ g0

ρn
G
( k
ρn

)−1

for any s ∈ (ρn+1, ρn) and hence

(ζn)t ≤
1

θk2g0
G
( k
ρn

) ρn
ρn − ρn+1

=
2n + 2
g0θ

k−2G
( k
ρn

)
≤ 2n+1

g0θ
k−2G

( k
ρn

)
.

Note that

G(|Dζn|ζn(u− kn)−) ≤ 2(n+1)g1G
(ζn(u− kn)−

ρn

)
.

Therefore, the local energy estimate (5.2) yields, for some constants γ0 and γ1, that

sup
t

∫
Kρn

Gr−1
(ζn(u− kn)−

ρn

)
(u− kn)s+2

− ζqn dx

+
∫∫

Qn

G (|D(u− kn)−|)Gr−1
(ζn(u− kn)−

ρn

)
(u− kn)s−ζ

q
n dx dt

≤ γ0

∫∫
Qn

Gr−1
(ζn(u− kn)−

ρn

)
(u− kn)s+2

− ζq−1
n (ζn)t dx dt

+ γ12(n+1)g1

∫∫
Qn

Gr
(ζn(u− kn)−

ρn

)
(u− kn)s− dx dt.

(4.15)

We now observe that

(u− kn)− = max{0, kn − u} ≤ kn ≤ k,

and that Gr−1(σ)σs+2 and Gr(σ)σs are increasing with respect to σ. Since q ≥ 1,
we conclude that the right hand side of (4.15) is bounded by

RHS ≤
{
γ0

2n+1

g0θ
+ γ12(n+2)g1

}
Gr
( k
ρn

)
ks |An| ,

where An = Qn ∩ {u ≤ kn}.
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Using un := (u− kn)− for simpler notation, we obtain

2−2(n+2)k2G
( k
ρn

)−1 sup
t

∫
Kρn

Gr
(ζnun
ρn

)
usnζ

q
n dx

+
∫∫

Qn

G (|Dun|)Gr−1
(ζnun
ρn

)
usnζ

q
n dx dt

≤ γ2ng1
(
1 +

1
θ

)
Gr
( k
ρn

)
ks |An| .

(4.16)

We now consider the function

v = Gr
(ζnun

2ρn

)
usnζ

q
n.

After differentiating v and applying Lemma 2.1, we derive, for some constants c0
and c1,

|Dv| ≤ c0
ρn
G(|Dun|)Gr−1

(
un
2ρn

)
usn +

c12n

ρn
v.

It follows from this inequality and (4.16) that

sup
t

∫
Kρn

v dx ≤ γ
(
1 +

1
θ

)
2n(g1+2)ks−2Gr+1

( k
ρn

)
|An|

and that ∫∫
Qn

|Dv| dx dt ≤ γ
(
1 +

1
θ

) 1
ρn

2ng1ksGr
( k
ρn

)
|An|.

Hence, from Theorem 5.4 (and recalling that ρ/2 ≤ ρn ≤ ρ), we conclude that∫∫
Qn

Gr
(ζnun
ρn

)
usnζ

q
n dx dt

≤ γ
(
1 +

1
θ

)
2n(g1+2)ks−2/(N+1)ρ−N/(N+1)

×Gr+1/(N+1)
(k
ρ

)
|An|(N+2)/(N+1).

(4.17)

To find a lower bound for the left hand side of (4.17), we observe that in the set
{u < kn+1}, we have

un = max{0, kn − u} ≥ kn − kn+1 =
k

2n+2
,

It follows that, in An+1, we have

Gr
(ζnun
ρn

)
usnζ

q
n ≥ Gr

( k

2n+2ρn

)
ks2−s(n+2)

because ζn = 1 in Qn+1. Since Gr is increasing, we infer that

Gr
(ζnun
ρn

)
usnζ

q
n ≥ 2−(s+g1)(n+2)−g1ksGr

(k
ρ

)
in An+1, and therefore it follows that

|An+1| ≤ γ
(
1 +

1
θ

)N/(N+1)2n(2g1+s+2)

× k−2/(N+1)ρ−N/(N+1)
n G1/(N+1)

(k
ρ

)
|An|(N+2)/(N+1).
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Hence (5.15) is satisfied with

Yn = |An|, C = γ
(
1 +

1
θ

)N/(N+1)
k−

2
N+1 ρ

− N
N+1

n G
1

N+1
(k
ρ

)
,

b = 22g1+s+2, α =
1

N + 1
.

Applying Lemma 5.5 completes the proof because

C−1/α = γ
(
1 +

1
θ

)−N−1
k2ρNG

(k
ρ

)−1 = γ
θN

(1 + θ)N+1
|Qk,ρ(θ)|.

�

Note that ν0 has the form ν1θ
N (1+θ)−N−1 with ν1 determined only by the data.

A variant form of this proposition will also be useful in our study of degenerate
equations. This variant is analogous to [7, Lemma 3.3] and [8, Lemma III.6.1].
We do point out, however, that [7, Lemma 3.3] does not explicitly mention the
dependence of the integer s on the parameter η. Moreover, the proof of [8, Lemma
III.6.1] needs some clarification to see that the constants are stable as p ↗ 2: the
inequality 2−p(2s1/A)p−2 ≥ 1 means that s1 → ∞ as p → 2. Fortunately the
choice s1 ≥ log2A guarantees that 2−p(2s1/A)p−2 ≥ 1/4 and this weaker inequality
suffices for the proof.

Proposition 4.5. There exists ν∗ ∈ (0, 1), determined only by the data, such that,
if u is a nonnegative supersolution of (1.1) in Qk,2ρ(θ) with

|{(x, t) ∈ Qk,2ρ(θ) : u(x, t) < k}| < ν∗

θ
|Qk,2ρ(θ)| (4.18a)

for some positive constants k, ρ, and θ and if

u(x,−Tk,2ρ(θ)) ≥ k (4.18b)

for all x ∈ K2ρ, then

ess infKρ×(−Tk,2ρ(θ),0) u ≥
k

2
.

Proof. With ρn and kn as in the proof of Proposition 4.4, we set

Qn = Kρn × (−Tk,2ρ(θ), 0),

and we take ζn to be a time-independent cut-off function. In other words,

ζn =

{
1 inside Qn+1,

0 on the lateral boundary of Qn

with ζn,t = 0 and |Dζn| ≤ 2n+1/ρn.
In place of (4.15), we now have

sup
t

∫
Kρn

Gr−1
(ζn(u− kn)−

ρn

)
(u− kn)s+2

− ζqn dx

+
∫∫

Qn

G (|D(u− kn)−|)Gr−1
(ζn(u− kn)−

ρn

)
(u− kn)s−ζ

q
n dx dt

≤ γ12(n+1)g1

∫∫
Qn

Gr
(ζn(u− kn)−

ρn

)
(u− kn)s− dx dt.
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Arguing as in the proof of Proposition 4.4, we now infer that (5.15) is satisfied with

Yn = |An|, C = γk−
2

N+1 ρ
− N
N+1

n G
1

N+1
(k
ρ

)
, b = 22g1+s+2, α =

1
N + 1

.

The proof is completed by noting that

C−1/α =
γ

θ
|Qk,ρ(θ)| ≥

γ

θ
|Qk,2ρ(θ)|.

�

Let us emphasize that Propositions 4.4 and 4.5 are valid for the full range 1 <
g0 ≤ g1 <∞.

4.2. Proof of the first alternative.

Proof. First, with ∆ as in Section 3, we set

T1 = T0 + ∆−
(ω

2
)2
G
( ω

2R
)−1

and we use Proposition 4.4with θ = 1, k = ω/2 and ρ = R to infer that

u ≥ ω

4
on KR × {T1}.

It then follows from Proposition 4.2 with ρ = R, ν = 1, τ = −T1, and k = ω/4
that, for any ε ∈ (0, 1), there is a constant δ ∈ (0, 1) determined only by data, ε,
and θ0 such that

|{x ∈ KR : u(x, t) ≤ δω

4
}| ≤ ε|KR|

for all t ∈ [T1, 0). We now choose ε = ν∗/θ0, with ν∗ from Proposition 4.5 and set

θ =
−T1

(δω/4)2G(δω/(8R))−1
.

We first observe that

G
( δω

8R
)
≤
(δ

4
)g0
G
( ω

2R
)

and that −T1 ≤ −T0, so

θ ≤
θ0

(
ω
2

)2
G
(
ω

2R

)−1(
δω
4

)2 ( δ
4

)−g0
G
(
ω

2R

)−1
=

1
4
δg0−2θ0 ≤ θ0.

For k = δω/4, and ρ = R/2, we now have that (4.18) holds. The proof is completed
by applying Proposition 4.5 and noting that

T1 ≤ −
(ω

2
)2
G
( ω

2R

)−1

≤ −
(ω

4

)2

G

(
ω/4
R/2

)−1

.

�
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4.3. Proof of the second alternative.

Proof. First, we set

α =
ν0

2− ν0
,

and we apply Proposition 4.1 with θ = 1, ν1 = ν0, k = ω/2, ρ = 2R, and T = ∆
to infer that, for each T0 ∈ (−θ0∆,−∆), there is a number τ1 ∈ (T0, T0 +α∆) such
that ∣∣∣{x ∈ K2R : u(x, τ1) ≤ ω

2

}∣∣∣ ≤ (1− ν0

2

)
|K2R|.

We momentarily fix T0 ∈ (−θ0∆,−∆). It follows from Proposition 4.2 with
ρ = 2R, ν = ν0/2, ε = 1

2 , and θ = 1 that there is a constant δ ∈ (0, 1), determined
only by data, such that∣∣{x ∈ K2R : u(x, t) ≤ δω

2
}∣∣ ≤ (1− ν0

4
)
|K2R| (4.19)

for all t ∈ (τ1,min{τ1 + ∆, 0}). Since T0 is arbitrary, we conclude that (4.19) holds
for all t ∈ ((−θ0 + 1)∆, 0).

For our next step, we take δ∗ to be the constant from Proposition 4.3 corre-
sponding to α = ν0/4, ν = ν0 and θ = 1/2. We also choose

θ0 = 1 + (δ∗δ)2−g1 .

Since

(θ0 − 1)∆ ≥ (δ∗δω)2G
(δ∗δω

2R

)−1

,

we infer from Proposition 4.3 with τ = 1
2 (θ0 − 1)∆ (which is easily seen to satisfy

(4.6)) that ∣∣Qδ∗δω/2,R ∩ {u ≤ δ∗δω

2
}∣∣ ≤ ν0|Qδ∗δω,R|.

We then use Proposition 4.4 with θ = 1, k = δ∗δω/2, and ρ = R to infer that

ess infQδ∗δω/2,R/2 u ≥
1
4
δ∗δω.

We now observe that δ∗ ≤ 1 and δ ≤ 1/2, and hence(δ∗δω
2
)2
G
(δ∗δω
R

)−1 ≥
(δ∗δω

2
)2(2δ∗δ)−g0G

( ω

2R

)−1

= (2δ∗δ)2−g0
(ω

4

)2

G
( ω

2R

)−1

.

The proof is now complete because this inequality implies thatQ ⊂ Qδ∗δω/2,R/2. �

5. Proof of auxiliary theorems

We now present the basic results used in the previous sections of the paper. Some
are proved here because their proofs are slightly different from the corresponding
results for the parabolic p-Laplacian equation, but the others, which are already
known in the form we need, are just quoted.
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5.1. Local energy estimate. This estimate is a fundamental inequality that plays
an important roles in several proofs, especially those of Propositions 4.1, 4.2, and
4.3. The inequality is essentially equivalent to [7, (1.17)], [8, Proposition II.3.1],
and [23, Proposition 2.4] if g0 = g1 = p. Some techniques come from Section 3 in
[18]. We point out here that Propositions 5.1 and 5.2 as well as their proofs are
valid for the full range 1 < g0 ≤ g1.

Proposition 5.1. Let G satisfy structure conditions (1.3) in a cylinder Qρ :=
Kρ × [t0, t1], and let ζ be a cutoff function on the cylinder Qρ, vanishing on the
parabolic boundary of Qρ with 0 ≤ ζ ≤ 1. Define constants r, s, and q by

r = 1− 1
g1
, s =

g0

g1
, q = 2g1. (5.1)

(a) If u is a locally bounded weak supersolution of (1.1), then there exist constants
c0, c1, and c2 depending on data such that∫

Kρ×{t1}
Gr−1

(ζ(u− k)−
ρ

)
(u− k)s+2

− ζq dx

+ c0

∫∫
Qρ

G (|D(u− k)−|)Gr−1
(ζ(u− k)−

ρ

)
(u− k)s−ζ

q dx dt

≤ c1
∫∫

Qρ

Gr−1
(ζ(u− k)−

ρ

)
(u− k)s+2

− ζq−1 |ζt| dx dt

+ c2

∫∫
Qρ

G (|Dζ|ζ(u− k)−)Gr−1
(ζ(u− k)−

ρ

)
(u− k)s− dx dt

(5.2)

for any constant k.
(b) If u is a locally bounded weak subsolution of (1.1), then there exist constants

c0, c1, and c2 depending on data such that∫
Kρ×{t1}

Gr−1
(ζ(u− k)+

ρ

)
(u− k)s+2

+ ζq dx

+ c0

∫∫
Qρ

G (|D(u− k)+|)Gr−1
(ζ(u− k)+

ρ

)
(u− k)s+ζ

q dx dt

≤ c1
∫∫

Qρ

Gr−1
(ζ(u− k)+

ρ

)
(u− k)s+2

+ ζq−1 |ζt| dx dt

+ c2

∫∫
Qρ

G (|Dζ|ζ(u− k)+)Gr−1
(ζ(u− k)+

ρ

)
(u− k)s+ dx dt

(5.3)

for any constant k.

Proof. To prove (a), we assume that u is differentiable in terms of the time variable.
Such an assumption is removed by applying Steklov average. The choices (5.1) are
made to satisfy

(r − 1)g1 + (s+ 1) > 0, (5.4a)

(r − 1)g0 + s ≤ 0, (5.4b)

(r − 1)g1 + q ≥ 0, (5.4c)

Inequality (5.4a) implies that Gr−1(σ)σs+1 is increasing with respect to σ, and
inequality (5.4b) implies that Gr−1(σ)σs is nonincreasing with respect to σ.
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We use the test function

ϕ(x, t) = Gr−1
(ζ(u− k)−

ρ

)
(u− k)s+1

− ζq,

in the integral inequality∫∫
Qρ

utϕdx dt+
∫∫

Qρ

Dϕ · A dx, dt ≥ 0. (5.5)

For simple notation, let ū := (u− k)−. Then we have

Dϕ =
{

(r − 1)
ζū

ρ
g
(ζū
ρ

)
+ (s+ 1)G

(ζū
ρ

)}
Gr−2

(ζū
ρ

)
ūsζqDū

+
{

(r − 1)
ζū

ρ
g
(ζū
ρ

)
+ qG

(ζū
ρ

)}
Gr−2

(ζū
ρ

)
ūs+1ζq−1Dζ.

From the second inequality of (1.4) and the definition of r, it follows that

(r − 1)
ζū

ρ
g
(ζū
ρ

)
+ (s+ 1)G

(ζū
ρ

)
≥ [(r − 1)g1 + (s+ 1)]G

(ζū
ρ

)
= sG

(ζū
ρ

)
.

In addition, the second inequality of (1.4) and (5.4c) imply that

(r − 1)
ζū

ρ
g
(ζū
ρ

)
+ qG

(ζū
ρ

)
≥ [(r − 1)g1 + q]G

(ζū
ρ

)
≥ 0.

It then follows from the first inequality of (1.4) that∣∣(r − 1)
ζū

ρ
g
(ζū
ρ

)
+ qG

(ζū
ρ

)∣∣ = (r − 1)
ζū

ρ
g
(ζū
ρ

)
+ qG

(ζū
ρ

)
≤ [(r − 1)g0 + q]G

(ζū
ρ

)
.

Hence ∫∫
Qρ

A(x, t, u,Du) ·Dϕdxdt

≤ −sC0

∫∫
Qρ

G(|Du|)Gr−1
(ζū
ρ

)
ūsζq dx dt

+ {(r − 1)g0 + q}C1

∫∫
Qρ

g(|Du|)|Dζ|Gr−1
(ζū
ρ

)
ūs+1ζq−1 dx dt.

(5.6)

In Lemma 2.1(e), set σ1 = |Dζ|ū/ζ and σ2 = |Du| to obtain, for any ε1 > 0, that

Gr−1
(ζū
ρ

)
ūsζqg(|Du|) |Dζū|

ζ
≤ ε1g1G(|Du|)Gr−1

(ζū
ρ

)
ūsζq

+ ε1−g11 g1G

(
|Dζ|ū
ζ

)
Gr−1

(ζū
ρ

)
ūsζq.

In particular, if we choose

ε1 =
sC0

2g1[(r − 1)g0 + q]C1

and if we use Lemma 2.1 to estimate

G
( |Dζ|ū

ζ

)
≤ ζ−2g1G (|Dζ|ζū) ,
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we infer that ∫∫
Qρ

Dϕ · A dx dt ≤ −1
2
c0I0 +

1
2
c2I2, (5.7a)

with

c0 = sC0, (5.7b)

c2 = 2ε1−g11 g1[(r − 1)g0 + q]C1, (5.7c)

I0 =
∫∫

Qρ

G(|Dū|)Gr−1
(ζū
ρ

)
ūsζq dx dt, (5.7d)

I2 =
∫∫

Qρ

G (|Dζ|ζū)Gr−1
(ζū
ρ

)
ūsζq−2g1 dx dt (5.7e)

Now, by setting

F =
∫ ū

0

Gr−1
(ζα
ρ

)
αs+1 dα,

we infer that∫∫
Qρ

utϕ(x, t) dx dt = −
∫
Kρ×{t}

Fζqdx
∣∣∣t1
t0

+ q

∫∫
Qρ

Fζq−1ζt dx dt. (5.8)

We now note that F ≥ 0 and that, because Gr−1(σ)σs is increasing with respect
to σ,

F ≤ Gr−1

(
ζū

ρ

)
ūs+2.

Hence ∫∫
Qρ

Fζq−1ζt dx dt ≤
∫∫

Qρ

Gr−1
(ζū
ρ

)
ūs+2ζq−1 |ζt| dx dt. (5.9)

In addition, because Gr−1(σ)σs−1 is decreasing with respect to σ, we infer that

F ≥ Gr−1
(ζū
ρ

)
ūs−1

∫ ū

0

αdα =
1
2
Gr−1

(ζū
ρ

)
ūs+1,

Therefore, ∫
Kρ×{t}

Fζqdx
∣∣∣t1
t0
≤ −1

2

∫
Kρ×{t1}

Gr−1
(ζū
ρ

)
ūs+1 dx. (5.10)

The proof is complete, with c0 and c2 given by (5.7b) and (5.7c) and c1 = 2q, by
combining (5.5), (5.7a), (5.8), (5.9), and (5.10).

The proof of (b) is essentially the same with (u− k)+ in place of (u− k)−. �

Note that, if we assume (5.4) and the inequality q ≥ 2g1 in place of (5.1),
then (5.2) for supersolutions (or (5.3) for subsolutions) holds with the constants
determined also by r, s, and q. We have made the choices in (5.1) for convenience
only.
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5.2. Logarithmic energy estimate. The logarithmic energy estimate (5.11), used
to prove Proposition 4.2, is modified from [8, Proposition II.3.2] and similar to [7,
(1.6)] and [23, Proposition 2.6]. The functions h and H are defined in Lemma 2.2.

Proposition 5.2. Assume that G satisfies (1.3) in a cylinder KR× [t0, t1]. Let q ≥
g1 and δ ∈ (0, 1) be constants, and let ζ be a cut-off function which is independent
of the time variable.

(a) Let u be a nonnegative weak supersolution of (1.1)and let k be a positive
constant. Then∫

KR×{t1}
H(Ψ2)ζq dx+ C0(4g0 − 2)

∫ t1

t0

∫
KR

G(|Du|)h(Ψ2)(Ψ′)2ζq dx dt

≤
∫
KR×{t0}

H(Ψ2)ζq dx+ C∗
∫ t1

t0

∫
KR

h(Ψ2)Ψ(Ψ′)2G
( |Dζ|
|Ψ′|

)
ζq−g1 dx dt

(5.11)

where

C∗ =
C0

g1

(2qg1C1

C0

)g1
, Ψ(u) = ln+

[ k

(1 + δ)k − (u− k)−

]
.

(b) If u is a nonpositive weak subsolution of (1.1) and k is a negative constant,
then (5.11) holds with

Ψ(u) = ln+
[ k

(1 + δ)k + (u− k)+

]
.

Proof. As before, to prove (a), we assume that u is differentiable in terms of the
time variable and later such an assumption is removed by applying the Steklov
average. Define the test function ϕ = 2h(Ψ2)ΨΨ′ζq, and note that

Ψ′(u) =
−1

(1 + δ)k − (u− k)−
,

Ψ′′(u) =
1

[(1 + δ)k − (u− k)−]2
= (Ψ′)2.

Since u is nonnegative, it follows that 0 ≤ (u− k)− ≤ k, and therefore

1
(1 + δ)k

≤ |Ψ′| ≤ 1
δk
, 0 ≤ Ψ ≤ ln+ 1

δ
.

Moreover, ϕ ∈ L∞ and Dϕ ∈ L∞, so ϕ is an admissible test function.
First, we have∫ t1

t0

∫
KR

ut2h(Ψ2)ΨΨ′ζq dx dt =
∫ t1

t0

∫
KR

[
d

dt
H(Ψ2)]ζq dx dt

=
∫
KR×{t1}

H(Ψ2)ζq dx−
∫
KR×{t0}

H(Ψ2)ζq dx.

Second, we take the derivative of the test function

Dϕ = [4h′(Ψ2)(ΨΨ′)2 + 2h(Ψ2)(Ψ′)2 + 2h(Ψ2)ΨΨ′′]ζqDu

+ 2qh(Ψ2)ΨΨ′ζq−1Dζ.

Using the inequality (2.1c) and the observation that Ψ′′ = (Ψ′)2, we estimate

4h′(Ψ2)(ΨΨ′)2 + 2h(Ψ2)(Ψ′)2 + 2h(Ψ2)ΨΨ′′ ≥ [4g0 − 2 + 2Ψ]h(Ψ2)(Ψ′)2.
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It follows that∫ t1

t0

∫
KR

A(x, t, u,Du) ·Dϕdxdt

≥ C0

∫ t1

t0

∫
KR

G(|Du|)h(Ψ2)[4g0 − 2 + Ψ](Ψ′)2ζq dx dt

− 2qC1

∫ t1

t0

∫
KR

g(|Du|)h(Ψ2)Ψ |Ψ′| ζq−1|Dζ| dx dt.

Using Lemma 2.1(e), we infer that

g(|Du|)h(Ψ2)Ψ |Ψ′| ζq−1 |Dζ|

= h(Ψ2)Ψ(Ψ′)2ζqg(|Du|) |Dζ|
ζ |Ψ′|

≤ h(Ψ2)Ψ(Ψ′)2ζq
[
ε2g1G(|Du|) + ε1−g12 g1G

(
|Dζ|
ζ|Ψ′|

)]
for any ε2 > 0. Choosing ε2 = C0/(2qg1C1) leads to (5.11).

Again the proof of (b) is similar. �

5.3. A Poincaré type inequality. We shall use the following Poincarè inequality
which is inequality [16, (5.5) Chapter 2] (see also [8, Lemma I.2.2]).

Lemma 5.3. Let v ∈ W 1,1
(
Kx0
ρ

)
∩ C

(
Kx0
ρ

)
for some ρ > 0 and some x0 ∈ RN

and let k and l be any pair of real numbers such that k < l. Then there exists a
constant γ depending only upon N, p and independent of k, l, v, x0, ρ, such that

(l − k)|Kx0
ρ ∩ {v > l}| ≤ γ ρN+1

|Kx0
ρ ∩ {v ≤ k}|

∫
K
x0
ρ ∩{:k<v<l}

|Dv| dx.

5.4. Embedding theorem. Our next result is a variation on the Sobolev imbed-
ding theorem.

Theorem 5.4. For a nonnegative function v ∈ W 1,1
0 (Q) where Q = K × [t0, t1],

K ⊂ RN , we have∫∫
Q

v dx dt ≤ C(N)|Q ∩ {v > 0}|
1

N+1

×
[

ess supt0≤t≤t1

∫
K

v dx
] 1
N+1

[ ∫∫
Q

|Dv| dx dt
] N
N+1

.

(5.12)

Proof. First, by Hölder’s inequality, we obtain∫∫
Q

v dx dt ≤ |Q ∩ {v > 0}|
1

N+1

[ ∫∫
Q

v
N+1
N dx dt

] N
N+1

. (5.13)

Second, by Hölder’s inequality and Sobolev’s inequality for p = 1, we have∫
K

v
N+1
N dx ≤

[ ∫
K

v
N
N−1 dx

]N−1
N
[ ∫

K

v dx
]1/N

≤ C(N)
∫
K

|Dv| dx
[ ∫

K

v dx
]1/N

.

(5.14)

Combining two inequalities (5.13) and (5.14) produces the inequality (5.12). �
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5.5. Iteration. Finally, we recall [8, Lemma I.4.1], which is the same as [17,
Lemma 2.4.7].

Lemma 5.5. Let {Yn}, n = 0, 1, 2, . . ., be a sequence of positive numbers, satisfying
the recursive inequalities

Yn+1 ≤ CbnY 1+α
n (5.15)

where C, b > 1 and α > 0 are given numbers. If

Y0 ≤ C−
1
α b−

1
α2 ,

then {Yn} converges to zero as n→∞.
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