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NONLINEAR INITIAL BOUNDARY-VALUE PROBLEMS WITH
RIESZ FRACTIONAL DERIVATIVE

MARTIN P. ARCIGA-ALEJANDRE

ABSTRACT. We consider an initial boundary-value problem for a nonlinear
partial differential equation with fractional derivative of Riesz type on a half-
line. We study local and global existence of solutions in time, as well as the
asymptotic behavior of solutions for large time.

1. INTRODUCTION

We study the existence of local and global solutions, and the asymptotic be-
haviour, for the initial boundary-value problem

ur + N (u) + |0,|“u=0, ¢t>0, z>0;
u(z,0) =up(x), x>0, (1.1)
uw(0,t) = h(t), t>0.

where N(u) = |ulu, @ < 0 < a+1, 2/5 < a < 1, and |9,]* is a fractional
derivative of Riesz type defined by

|80, |%u = RIoFlelglal+ly, (1.2)

Here, [a] denotes the integer part of the number o > 0, a ¢ Z, and R® is the
modified Riesz Potential (see [15]),

o 1 T sg(z — y)
Riu= 2T (av) sin(5 o /0 |z — y|t—e uly)dy.

The Cauchy problem for nonlinear nonlocal dissipative equations has been exten-
sively studied. In particular, the large time asymptotic behavior for the Cauchy
problem for different nonlinear equations is investigated in [10] and the references
therein.

Boundary value problems arise in many applications and play an important
role in the contemporary mathematical physics. For the study of the effect of the
boundary data on the qualitative properties of the solution the reader is referred
to [2, B [ [5, [6l [7, [16] and references therein.

The general theory of nonlinear nonlocal equations on a half-line was developed
in [9], where the pseudodifferential operator K (]0,|* in our case) defined on a
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half-line was introduced by virtue of the inverse Laplace transformation; it is given
by

i00+0

—100+0

1 (o]

Ku = S XJ: C; / ePrp™i (ﬂ(p) - ; 8;71u(0)p71)dp.

Note that the symbol K(p) = >, C;p® is analytic in the complex right half-
plane. We emphasize that the operator |9,|* in equation has a nonanalytic
nonhomogeneous symbol K (p) = |[p|* and the general theory in [9] can not be
applied to problem directly.

As far as we know there are few results on the initial-boundary value problems
with pseudodifferential equations having a nonanalytic symbol. The case of rational
symbols K (p) with poles in the complex right half-plane was studied in [IT], [12],
where it was proposed a new method for constructing the Green operator based
on the introduction of necessary conditions at the singular points of the symbol
K(p). In [13] the initial-boundary value problem for a pseudodifferential equation
with a nonanalytic homogeneous symbol K(p) = [p|'/? was studied, a theory of
sectionally analytic functions was implemented for proving that the initial-boundary
value problem is well-posed. Since the symbol K (p) = [p|'/? does not grow fast at
infinity, no boundary data is needed. Finally, the case of K(p) = |p|*, a € (1/2,1),
was studied in [I]. In the present work we consider the nonlinear version of the
problem [I4], considering o € (2/5,1). In order to construct a Green operator we
follow the methods used in [I [14].

To state precisely the results of the present paper we give some notations. We
denote (t) = 1+t, {t} = <%> Here and below p® is the main branch of the complex
analytic function in the complex half-plane Re(p) > 0, so that 1* = 1 (we make a
cut along the negative real axis (—o00,0)). Note that due to the analyticity of p®
for all Re(p) > 0 the inverse Laplace transform gives us 0 for all < 0. The direct
Laplace transformation £,_,, is given by

+oo
U(p) = Lomp{u} = /0 e PPy(x)dx

and the inverse Laplace transformation Kgix is defined by

uw) = 64 @) = 5 [ el

The norm in weighted Lebesgue space L5#(R1) = {p € &';||¢|| Ls:» < 0o} is given
by

1
s

+oo
ol = ( / () d)

for p > 0,1 < s < oo and
Il = esssup,g- [o()]-
We now introduce the spaces for initial data and solutions on R¥:
7" ={pe L'NLY" NL>®:|¢|zv < oo},

with the norm

l9llze = llllr + 1oL + [l
Xt ={peC([0,00); L") N C((0,00); L* N L** N L) : ||p||xn < o0},
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where s > 1, with the norm

1 11_1_, 1
Dl + 12075 o) pen 4+ {817 (1) 7 ol L)

1
lpllxn = sup(t= ol
t>0

where 0 <y < 1and |1 — % — | < a. We also define the space
B® = {h € C'(0,00) : ||h||p~ < o0}
for the boundary data, where the norm

2]l B = §1>113<t>%(|h(t)\ + {1+ (1))

Now, to state the main results we introduce A(s), Y(s) € L (RT) by the formulae

100 00 /2
A(s)=C g déet /_ ePSmL(p, &)dp (1.3)
and
_ 1 e I3 e s Y+(p’ 6)
V0 =g [ e [ rpreel e (1)
L " epst(p)@dp
270 oo ’
where
+ 1 2, ot 1
1 1 K(q
=8 =55 /_m g—2Y*q,8) q 4.
Here, Y+ (p, &) = (—i)el (#9),
o K'(q) Ki(q)
FJr(paf) - 7% i In (q 7p)(K(q) +§ - Kl(q) +€)dq7
K(p) = |p|*, Ki(p) = p* and In" (2) = In|z| + iarg™(2) for =37 < arg™(2) < .

Theorem 1.1. Let the initial data ug € Z* and the boundary value h € B be
such that the correspondent norms are sufficiently small. Also, suppose that h(t) =
bt? + O(tP°), where B < —i — % — v and §,7v > 0. Then, the initial-boundary
value problem has unique global solution u € X* and the following asymptotic
1s valid

fort — oo in L>(R™T), where

+o00 +o0 o0
a:/O y“/ZuO(y)dy*/O dT/O y*2N (u(r))dy.
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2. PRELIMINARIES

Definition 2.1. A function ¢(q) is said to satisfy the Holder condition on the curve
L, if there exist positive constants C' and A such that

[¢(q1) — d(q2)| < Clar — 2|, (2.1)
for any ¢1,¢q2 € L.

The proof of the next theorem can be found in [§].

Theorem 2.2. Let ¢(q) be a complex function, which obeys the Hélder condition
(2.1) for all finite g and tends to a finite limit ¢p(00) as ¢ — 0o, such that for large
q the following inequality holds

|6(q) — ¢(c0)| < Clg*, p>0.
Then, the Cauchy integral

Fz) = 1 /”" #(q) dq

_% —iooqu

defines an analytic function in the left and right semi-planes. Here and below these
functions will be denoted by F¥(2) and F~(z), respectively. These functions have
the limiting values F™(p) and F~(p) at all points of the imaginary azis, Re(p) = 0,
on approaching the contour from the left and from the right, respectively. These
limiting values are expressed by the Sokhotski-Plemelj formulae,

L [™ ¢(q) 1

F*(p) = — —=dq+ = . 2.2
(p) =5 gl 50(p) (2.2)
Subtracting the formulae (2.2]) we obtain the following equivalent formula

F*(p) — F~(p) = ¢(p), (2.3)

which will be frequently employed hereafter. Now, we consider the following linear
initial-boundary value problem on half-line

ug + |0:|u =0, z,t>0;
u(z,0) =up(z), = >0, (2.4)
u(0,t) = h(t), ¢>0.
Setting K (q) = |q|*, K1(q) = ¢%, we define
+oo

G(t)p = G(z,y,t)p(y)dy,

0
t
H(z)h :/ H(z,t —7)h(r)dr, H(z,t) = 0,0, G(z,y,1)|y—0,
0

where the function G(z,y,t) is given by

1 100 200 Y+(p f) B
=—-— &t /1 2.
G(z,y,t) Gri)? [m dée R e (p, €, y)dp, (2.5)
where
1 100 1 1
Z7 = 1. —_— —_—— 7de .
(p’§7y) 211)1}) 2mi /7100 q—=z Y+(q7£)6 d

Rez>0



EJDE-2015/281 NONLINEAR BVP WITH FRACTIONAL DERIVATIVE 5

for x>0,y >0,t>0. Here, Y+ (p,&) = (—i)®e’ @€ where

1 [l K'(q Ki(q
In (q _ p)( ( ) _ 1( )
—ico K@) +¢ Ki(g)+¢
and In"(2) = In|z| + darg™(2), —37 < arg(2) < %,
understood in the sense of the principal values.

I (p,&) =

)dq

2w

where the integrals are

Proposition 2.3. Ifug(z) € Z¥, there exist a unique solution u(x,t) for the initial-
boundary value problem (2.4), which has an integral representation

u=G(t)ug +H(z)h, x=>0,¢t>0. (2.6)

Proof. To obtain an integral representation for solutions of problem (2.4) we sup-
pose that there exist a solution u(z,t), which is continued by zero outside of 2 > 0:

u(xz,t) =0, forall z <O0.

Let ¢(q) be a function of the complex variable ¢, which obeys the Holder condition
(2.1) for all ¢, such that Re(q) = 0. We define the operator P by
1>~ 1

——¢(g)dg, Re(z) # 0.

P —z - — 4
o) = [
Applying the Laplace transform with respect to x to |0;|%u, for Re(q) > 0 we

obtain
u(0,1)

Lo—q{|0s|"u(, 1)} = Ppo {K(p)(u(p, t) —
Since (g, t) is analytic, for all Re(q) > 0, we have
u(gq,t) = Py—g{u(p,t)}. (2.8)

Applying the Laplace transform with respect to x to problem ([2.4) and using (2.7
and (2.8, for Re(p) = 0, we obtain

)} (2.7)

My~

Pp—q{T(p, t) + K (p) (t(p, t) — ) (2.9)

u(p, 0) = uo(p),
We rewrite (2.9) in the form

(. 0) + K)0.0) — L 0(0) = 20

(2.10)
a(pa O) = ao(p)v
with some function ®(p,t) such that for Re(p) =0
Pp_o{®(p,t)} =0 and |[®(p,t)] <Clp|* >, |p|>1, v>0. (2.11)
Applying the Laplace transform with respect to time variable to (2.10f) we find
2 1 ~ K(p)+ 2
60,6 = = (@(p) + = 2h(E) + B, €) ). 212
0.6) = 77 () + 22H(Q) + 5(p.6) (212)

where Re(p) = 0 and Re(§) > 0. Here, the functions ﬁ(p, £), h(¢), and D(p, &) are
the Laplace transforms for u(p,t), h(t), and ®(p,t) with respect to time, respec-
tively. In order to obtain an integral formula for solutions to the problem it
is necessary to know the function ®(p,¢). We find the function ®(p,¢) using the
analytic properties of the function % in the right-half complex planes Re(p) > 0 and
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Re(€) > 0. The equation (2.8) and the Sokhotski-Plemelj formulae (2.2)) imply, for
Re(p) =0,

T q—0p

T Lo (2.13)
In view of Sokhotski-Plemelj formulae (2.2)), via (2.12]) the condition (2.13) can be

written as
Ot (p,&) = —A(p,9), (2.14)

where the sectionally analytic functions O(p, &) and A(p, ) are given by Cauchy
type integrals

L[> 1 PN

R U i S Ky
Mt =5 [ @+ S DOy 216)

To perform the condition (2.14) in the form of a nonhomogeneous Riemann-Hilbert
problem we introduce the sectionally analytic function

_ 1 /1 K &
g M < (217)

Taking into account the assumed condition (2.11]), we obtain

_ 1 _

CHVRIES _EQ (p, €)- (2.18)

Also observe that from (2.15)) and (2.17)) by Sokhotski-Plemelj formulae,

- - K(p) =

Kp)0T—-0) =0t -0~ = —"2_0. 2.19
DICESCE g (2.19)

Substituting (2.14) and (2.18]) into this equation we obtain for Re p = 0
QO (p, &) = W(p, ) (p,€) + 9(p,€), (2.20)

where W = % and g = —K(p)A*. Equation is the boundary condition
for a nonhomogeneous Riemann-Hilbert problem. It is required to find two func-
tions for some fixed point &, Re € > 0: QT (z, ), analytic in the left-half complex
plane Re z < 0 and Q7 (z,¢), analytic in the right-half complex plane Re z > 0,
which satisfy on the contour Re p = 0 the relation .

Note that bearing in mind formula we can find the unknown function
&\)(p, £), which involved in the formula , by the relation

A K(p)+¢ -

O(p, &) = —=—=(QT(p, &) — Q™ (p,£)). 2.21
(P, €) K®) (€7 (p,¢) 29)) (2.:21)

The method for solving the Riemann problem F*(p) = ¢(p)F~(p) + ¢(p) is

based on the following results. The proofs may be found in [§].

Lemma 2.4. An arbitrary function o(p) given on the contour Rep = 0, satisfying
the Holder condition, can be uniquely represented in the form o(p) = U™ (p) —
U~ (p), where U (p) are the boundary values of the analytic functions UT(z) and
the condition UT (00) = 0 holds. These functions are determined by formula

e =g [ elod

_% —ico 4 T %2
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Lemma 2.5. An arbitrary function ¢(p) given on the contour Rep = 0, satisfying
the Holder condition, and having zero indexz,
1 100

i d = dl =,

ind ¢(p) := 5— . n¢(p)
is uniquely representable as the ratio of the functions X (p) and X ~(p), constitut-
ing the boundary values of functions, X+ (z) and X~ (z), analytic in the left and
right complex semi-plane and having in these domains no zero. These functions are
determined to within an arbitrary constant factor and given by formula

X =, 1) = o [ ol
z)=e z)=— n .
’ 270 ) oo @ — 2 Ve

In the formulations of Lemmas and [2.5[ the coefficient ¢(p) and the free term
©(p) of the Riemann problem are required to satisfy the Holder condition on the
contour Rep = 0. This restriction is essential. On the other hand, it is easy
to observe that both functions W(p,&) and g(p,&) do not have limiting value as
p — *ico. So we can not find the solution using In W (p, ). The principal task
now is to get an expression equivalent to the boundary value problem (2.20)), such
that the conditions of Lemmas are satisfied. First, we introduce the function

K(p) + €\ (p) 1
o0 9=(morre) iy VO G P

where K(p) = |p|*, Ki(p) = p® and zp > 0. We make a cut in the plane z:
(—00, —20] U [20,00). Owing to the manner of performing the cut the functions
w™(z), K1(z) are analytic for Rez > 0 and the function w*(z) is analytic for Re
z < 0.

We observe that the function ¢(p,£) given on the contour Re p = 0, satisfies the
Hélder condition and Ki(p) + £ does not vanish for any Re £ > 0. Also we have

indg(p, &) = 5= fiiooo dln¢(p,€) = 0. Therefore in accordance with Lemma

2mi
the function ¢(p, &) can be represented as
X+
5(p.&) = oL xEp g = Ly ), (2.23)
X=(p,¢) tieEo

where To(z,6) = 55 ['% L In¢(g,§)dg. From equations (2:22) and (2:23) we

obtain
Yt K(pp)+¢
Y-  Ki(p)+¢

where Y+ = el " wt, Now, we show that Y+ do not depend of z,. Integrating by
parts we obtain for I'g:

(2.24)

To= lim s—In(g—2)no(q,6)|  —5- | Inlg =)0 é(a,€)da. (2:25)

Using that In¢(£iR,£) — 0, as R — oo, we obtain

1 200

Lo(z,8) = —5— In(g — 2)0 In ¢(g, §)dg. (2.26)

211 —ico
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We define In*(z) = In|z| + iarg®(z), where —3r <arg7(2) < ¥ and 37 <
arg™(z) < §. Then, for Rep = 0,

100

L5 (p,6) = —5— | In¥(q—p)dyIng(g,€)dg. (2.27)
271—2 —ico
Now, since
[0 %A))
O, Ing(q, &) = F(q,6) + —————,
VIn6(0,6) = Flag.€) + ot
where F(g,&) = K]i]()‘i) £~ Klféq()qif, and via Cauchy’s Residue Theorem,
1> %) . + 2
- 1 —p)—————dg = Fin= +1 + 20)%/2,
omi ) (¢ p)(q_ZO)(q+ZO) ¢ = Fing +In™(p £ 2)
from follows that
) o o 1 100
T (p.€) = Fing + 0 F 20— o= [ W¥lq-pF@Ode
Therefore,
YE(p,€) = (i)™ 9, (2:28)
where ]
4 100 - F d
F = — — 1 — .
(p.&) =5 o (¢ —p)F(q,&)dq
We note that equation (2.24)) is equivalent to
Kp)+¢§ _Y© Ki(p)+¢

Now, we return to the nonhomogeneous Riemann-Hilbert problem defined by the
boundary condition (2.20). We substitute the above equation in (2.20)) and add
—Y%A+ in both sides to get

QF AT Ki(p)+ 6\ (K(p) +EN
Y+ *( 3 >F7( Y+ )A ' (2.29)
On the other hand, by Sokhotski-Plemelj formulae and (2.16]),
- 1 - K(p)7
AT AT = —— + ——=h .
o) e (o) + = 7h)

Now, we substitute A" from this equation in formula (2.29)), then by (2.24) we
arrive to

QF et K+ Ay LK)
pr = (P ) - g (@) + S PRE). (230)

In subsequent consideration we shall have to use the following property of the
limiting values of a Cauchy type integral, the statement of which we now quote.
The proofs may be found in [8].

Lemma 2.6. If L is a smooth closed contour and ¢(q) a function that satisfies the
Holder condition on L, then the limiting values of the Cauchy type integral

#(2) = 5 [ —ola)ia

also satisfy this condition.
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Since Ug(p) + @ﬁ(ﬁ) satisfies on Re(p) = 0 the Holder condition, on basis of

Lemma the function 4 (do(p) + @ﬁ(f)) also satisfies this condition. There-
fore, in accordance with Lemma it can be uniquely represented in the form of
the difference of the functions U™ (p,&) and U~ (p,€), constituting the boundary
values of the analytic function U(z,§), given by formula

1 1 - K(q)+
U(z,¢) = i /_ioo Em(%@) + 7h(f))dQ~ (2.31)
Therefore, the equation (2.30) takes the form
Qf =AY L Ki(p) +E€ Q7 —EAT
v+ vt = £ ( Y- )
QF —eAt
Y+

+U".

The last relation indicates that the function + U™, analytic in Re(z) < 0,

and the function %(Q_;%A_) + U~, analytic in Re(z) > 0, constitute the
analytic continuation of each other through the contour Re(z) = 0. Consequently,
they are branches of a unique analytic function in the entire plane. Moreover,
this function has a zero in infinite. According to Liouville theorem this function
is identically zero. Thus, we obtain the solution of the Riemann-Hilbert problem

defined by the boundary condition (2.20]),
QF(p,&) = =Y (p, U (p,€) +EAT (p,€)

- S _ _ B (2.32)
Q (p,é)Z—WY (0, U™ (p, &) + €A (p,€).

Now, we proceed to find the unknown function d of (2.12) for the solution a of
problem (2.4). First, we represent 2~ as the limiting value of analytic functions on
the left-hand side complex semi-plane. From equation (2.24) and Sokhotski-Plemelj

formulae we obtain Q~ = me*U+ + AT, Now, making use of (2.32]) and
the last equation, we obtain
- K(p)
Qf - =——2_YTU™.
K(p)+¢

Thus, by formula , ® = —Y*TU+. We observe that ® is boundary value of a
function analytic in the left-hand side complex semi-plane and therefore satisfies our
basic assumption . Having determined the function d and bearing in mind
formula we determine the required function: @ = m(ﬂo(p) -Y*tU™t).

Now we prove that, in accordance with last relation, the function @ constitutes the
limiting value of an analytic function in Re(z) > 0. In fact, making use of Sokhotski-

Plemelj formulae and using ([2.24)), we obtain a = —mY’U*. Thus, the

function @ is the limiting value of an analytic function in Re(z) > 0. We note the
fundamental importance of the proven fact, the solution @ constitutes an analytic
function in Re(z) > 0 and, as a consequence, its inverse Laplace transform vanish for
all x < 0. We now return to solution u of the problem . Taking inverse Laplace
transform with respect to time and space variables, we obtain . Proposition
has been proved. O

In the following lemma we collect some preliminary estimates for the Green
operator G(t)
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Lemma 2.7. If A(s) as defined in (1.3), then exists C' > 0 such that

1G(1)p — Ot~ 53 A(()t )| < CE 272715, 7 >0, (2.33)
16|l < CLEY BV (Dllor + |6l =), 0<v <1, (2.34)
1G()|| o < Ct=a =27 L + Ct= 3= s, (2.35)

T

where ¥ = f0+ooya/2¢(y)dy, 11l _yl<aandl<r<s<oo.

Proof. First, we estimate the function Y = (—i)aer+(p’5), where

r ——— [ W (g-p)F(g,)d
08 =—55 | Wa=pFaodg
and F(q,&) = Kliq()(ﬁf — Kff(l(;flf. Using the relation

In~(g—p) =mi+ " (p) + " (1 — L) + 27i6(Tm p)0(Im q — Tm p),
p
where 6 is the Heaviside step function, we obtain

/ it (1= 4 Plg. g + O ¢),

—100

1
I (p.) = G (mi 4+ () + 5

where 0 < v < 1. Then, separating the integral, |¢| < |p| and |¢| < |p|, and using
In(l1 —2) = O(27), for |z] < 1 and 0 <y < 1, and the equation
In* (1- %) = —7mi+1Int(q) —InT(p) +In"(1— g) + 2mis(Im p, Im q),
where ¢(z,y) = 0(x — y)(0(x)0(y) — 0(—x)0(—y)) + 6(—x), we obtain
D (p,€) = S(mi+ " (p) + O™ VO, 0<y <l (2:36)

Therefore, from (2.28) and (2.36)) follows
YH(p,&) = p*? + O(peB3 V7Y, 0<y <1, (2.37)
1

_ —a/2
o = 00 (2.38)

We note that in the above formulas p? = ef " (p), Now, we show that
0T (p, &) = O(p7*7¢/7 1), 0<y<1, j=1,2 (2.39)
In fact, from Cauchy’s Theorem we obtain

1o Ki(q) _
i In (q—P)m q=0,

—1i00

then integrating by parts

. _1)itl; pioco /
o) = [ ) e e

00 o dq
—— [m q—p(K(q) +£)j>

_ (=Y ( In"(q—p)
2mi \(K(q) + &)/
— O(p*javgj(vfl)).
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As a direct consequence of (2.38)) and (2.39) we obtain

rf .
35(%) = _Y7€+ =O0(p~ 737, (2.40)
e s

Then using e — 1 = O(q”y”) 0 < pu<l, and (2.41]), we obtain for

1 100 Yy _q
<p7§ y) — 2m J—ico eq P Y+(Q§)7

OLZS (p.&,y) = Oyrp U TDgO=D) 0 <<, (2.42)

where j = 1,2. Moreover, using ﬁ =14 we express Zar in the form

P
qa ' qlg—p)’
1 [ ew_1 dq p [ e w_1 dg
(p7§ y) 2 T + 5= T .
Ti) i q  YT(q,8)  2miJ i alqa—p) YT(q,§)
Thus, from ([2.38]) we arrive to

2§ (0.&y) = Coy*> + Oly"p"~ ), u> 3, (2.43)
where Cy = % fijooo e;iél dq. Now, we consider the function K( ) T Z+ From
(2.37), 2.39) and (2.42)), we obtain

+

% (=)
+
= e (T~ ) 4+ 21 - py5g)o
+ (r+ + ﬁ)zg + agzg)
— eV AL O,
where
L(p,§) = (FZ - K(I;%)Q + T+ m = O(p~ 221,

Then, using (2.37) and (2.43) we obtain the estimate

Y+ Coy®/? «@
R(————zF) = 22 (p2L + O(pr2720-1Y)) ) > = (244

On the other hand, by Sokhotski-Plemelj formulae and Cauchy’s Residue Theorem,
we represent the Green function G, (2.5)), as

G(z,y,t) = f% /wO déet? /loo QPIMZJF(p,E,y)dp

(277’5) —i00 —100 K(p) + f
LT ek,
211

—100

Now, by Cauchy’s Theorem we obtain

1 1 e w1 dg
Z=— 142 here Z .
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Therefore, we can represent G in the form

L e [ e YR8
6=~ | 96 ey e 6
1 700

(2.45)

5 epme(p)t(efpy —1)dp = Gy + Gs.

—100
Using (e7?¥ — 1) = O(p*y*), 0 < p < 1, we obtain for the second integral in the
above equation

Ga(w,y,t) = Ot~ = Hmym), (2.46)

To estimate GG1, we use the analyticity of the integrand in the left-half semiplane
and integrate by parts two times with respect to £ to obtain

Gi(z,y,t) = Ct* / e / N e’””aé(wﬁ(p,g,y))dp.

—100 —100 p) + g 0
Then, by (2.44) and (2.46) follows
Gla,y.t) =y F DN @710 4 O/ 22000) > 20 (247)

where 2/5 < a < 1 and

100 100 a/2
A(s)=C B d§e£[_ ePSML(p,f)dp.

Multiplying by a function ¢ and integrating with respect to y in (2.47)) we obtain
+oo
| / (Glay,t) =y = DA @) ply)dy| < O g g
0

Therefore,

+oo
IIQ(t)¢—fa(“f)A((')f”“)/O y*2(y)dy||,.. < Ct=IT o) g,

where p1 > 5. Thus, the first estimate in Lemma has been proved. Now, we
are going to prove the second estimate in Lemma [2.7] First, for large . From
, integrating by parts the first summand on the right hand side two times
with respect to & we obtain

G(z,y,t) = Ct_Q/ - dgest /ioo e’”@?(%Z*‘(p,f,y))dp

%

—1400 —100 (p) + 5
| piso (2.48)
+ 5 | ePE==K@®t g, — )+ .
We have
+
(o £) = (),

o C—

(R (P E:
0 < v < 1, then J; = O(t~Y), provided £ < a < 1, also Jo = O(t~/).
Therefore, G = O(t~/) and

+oo

Gt ¢~ = sup Gz, y,)p(y)dy| <t (o] 11 (2.49)

zERT } 0
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Now, for small ¢, using the inequality |e*| < |z|77, for Re(z) < 0 and vy > 0, we
obtain .
Y 1
R(———-Z )= ——-0
A OET RN E:
v > 0,0 < v < 1. Then, from ([2.48) we obtain J; = O(y’“’t*é(l”’)), v > 0. On
the other hand, we write the second summand as

(y*’yp77720"\/1 52(7171)),

1
JQ(T', t) - %/c epT—K(p)tdp’ i?“ > 0,
+

where

Ce = {p € (c0e 3% 0) U (0,00e"EE))}, 2> 0.
Making the change of variable p = 2t~'/® and using the inequality |e*| < [z|~7,
for Re(z) < 0 and vy > 0, we obtain Jo = O(t~=1="|z — y|~7), where z,y > 0.
Therefore, G = O(t~« 1= (|z — y|~7 +y~7)). Thus,

+oo
1G(t)llL~ < sup / Gz, 8)l|6(y)|dy

z€RT JO

+oo
< Ct—z(l‘”/ (| —y|™" +y )|é(y)|dy
0

< Ct = (||g] 1+ éllee ).

The second estimate in Lemma 2.7 has been proved. Let us introduce the operators

+oo
o =0(a) [ Aoy, (2.50)
+oo
)0 =0(a) [ Bl =)o)y (251)
Then, the operator G(t) can be written in the form
G(t) = Ji(t) + F2(t). (2.52)

Now, we are going to prove the third estimate in Lemma First, we estimate
the operator Jo. Making the change of variable p = ¢t ~/®, we obtain

| Jo(r, t)| < Cte. (2.53)

On the other hand, making z = t~'/%r, we obtain

-1/ 100
Jo :t a/ qu—K(Q)dq.

2mi

—100
Then, integrating by parts the last equation we obtain
100 -1/ 100

—ico 2 27 )i 4

t—le q

()

2mi oz

JQ(T, t) =

Thus,
1

e [l e g,
+

for £r > 0, where C1 are defined as above. Therefore,

| Jo(r,t)| < Ct—1/e

| Jo(r, )] < Ct~ Y

B v < a. (2.54)
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Finally, from the inequalities (2.53]) and (2.54) we have
tfl/a
1+ (¢ fr])
Lets write some well known inequalities:
e Young’s inequality. Let f € LP(R) and g € LI(R), where 1 < p,q < o0,
Ly % > 1. Then, the convolution h(z) = [, f(x — y)g(y)dy belongs to L"(R),

P
where % = % + % — 1 and the Young’s inequality

|[Ja(r, )| < C

v <o (2.55)

1Rl < [Ifllze llgllLe (2.56)
holds.
e Minkowski’s Inequality. Let f,g € LP and 1 < p < oo, then
If +gllee < Ifllze + llgllze- (2.57)

Now, we estimate the operator Jo, defined in (2.50)). Using the inequality z* <
|z — y|* 4+ y*, where 0 < p < 1, and Minkowski’s inequality (2.57)), we obtain

v < ([T - ot - 00w a) ar)

+( /Om ( /Om P 1o~y Dllow)ldy) )

Then, Young’s inequality (2.56) implies
1T2(O) Bl Lo < (| T2(5 )l Lol e + (T2 (5 D) [ Lo @l s (2.58)
Where%:%—ﬁ—%—l,lgp,rgoo,lg%—i—%ﬁQandOﬁpgl. Then, by the

inequality (2.55)) and the change of variables 2 = t~'/%|r|, we obtain

1/p

[ 72(t)¢

e et

, EENTE— .
o)l < O (] o)

Thus, ||J2(-,t)||zew < ct~=1=371) provided 1+ — > %. Using 1 = % +1-1,
it follows

[ Jo (s ) || pon < Ct™ im0, (2.59)
where £ —1 — i+~ > 0. We note that —% (1 —1— /) < 1, since v < a. Substituting
(2.59) in , we obtain

|2l o < CtZETZT ] + CFCTD @llprw,  (2:60)
where —é(% — % —u)<1,1<sr<ooand 0 <p <1 Now, we estimate the

operator Ji, defined in (2.51)). First, we note that using the Cauchy theorem we
obtain

oo px YJr(pvg) +
[iwe 7K(p)+52 (. & y)dp
7 +oo - 1 1 + "
—/0 e ((—zp)"—i—f - (’Lp)a—f—f)Y (7]7,6)2 (7p7£7y)dp

Then, by inequality
| 1 1 | |P|a(1_7)
(=ip)*+&  (ip)>*+&' 7 7 [pPr + g

(2.61)
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0 <~ < 1, we obtain for J;

' + —pr a(l—y)+2 —-C
ni<e [ |d£||eift|/ s i / e Jdal
- 0 [p2e + E217E]Y Je, g —pl |qlo/?

Thus, by |2(t)g] < o | a(2,,0)||é(y)|dy and

+oo
/ e=Clalv|g(y)ldy < =IO o]
0

where % + % = 1, we obtain

ico _ +o0 e Prpa(1=7)
Jt¢§0¢y/ dfe@/ —dp.
el < Cloller [l [T

Lo = Cp_%_“, p >0, and % + % = 1, we obtain

—100

1= Clg|"t||¢|

L7,

Then, using ||e ?()|

100

a(l—y)
1 72(t)¢) P

pon < Cllér / dp.

¢ +o00
d &t
‘i°°| e |/0 [p2e + €21 jgrpt e

Therefore,
1,1

[FAGE et Rl Y P (2.62)
where |% —1 _pul<a,1<r<s<ooand 0 <y < 1. Finally, from estimates

(2.60) and ([2.62)) we obtain the third estimate in Lemma Then, we have proved
Lemma 2.7 ]

As a direct consequence of the above lemma, taking » = 1, we obtain the estimate

191l xn < Cll¢llze-

Now, we collect some estimates for operator H defined by
H(z)h = /Ot H(z,t —1)h(r)dr, H(z,t)= 8@;10(96, Y, t)|y=o- (2.63)
Lemma 2.8. The following estimates are valid
IHOhlxe < Clllle, pt - <o
H(z)h = btPTVA (a1 ) + OtP),
for h(t) = bt? + O(P~7), where B <0, v > 0 and

Ty = [ deet / T 08 1,

2mi —100 —100 K(p) + 6
L[ ek KO) dp.
2mi —100 p

Proof. First, we note that

H(x,t) = H (2, ) + Ha(a, 1), (2.64)
where
L g [ LY (8
Hy(z,t) __W[imdge ! ﬂmep mfr(p,ﬁ)dp,

1 100 ‘ K

—100
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Here,

168 = o | =270 4

For Hs, making the change of variable ¢ = pt~/®, we obtain |Hy| < Ct~'. On the
other hand, for H;, we consider two domains: |p| < 1 and |p| > 1. For |p| < 1,
we use YHIt = O(p~1+%); and for |[p| > 1, we integrate by parts two times with
respect to £ and use

Rty = 2 o)
S K(p)+¢

K(p) +¢
to obtain |H;| < Ct~1. Therefore,
|H(x,t)] < Ct™1. (2.65)
By the Cauchy’s Residue Theorem, for Re(z) < 0, we have

1 /ioo 1 1 K,

T B

C2mi ) e g — 2 YH(q,6) ¢ i) =2V 0.0 g

= 1 1 E - 1 1 1 1 1

T 2(=2)YH(0,€) ‘f(z Y+(z,6) +3 2 Y+(o,g)) (2.66)
3 £

T AR08 V(e
Also, integrating H with respect to ¢t and substituting (2.66|) we obtain

. B 1 ioe ett o LY H(p,&) dp
O Hiw,t) =~ /,m “y+ 0.9 /400 SRy e (2.67)

Then,
0, " H(z,t)| < C (2.68)
Now, we divide the integration domain and integrate by parts (2.63)) to obtain

t)2
H(x)h = /0 Hiz,t = r)h(r)dr — h(r)o7 H(e,t = 7).,

+ / B (1)07 H (2, t — 7)dT.
/2

Therefore, from (2.65)), (2.68) and last equation we have
IH( )AL= < )Y (|hl| g (2.69)
We estimate the operator H in norm L**. First, we estimate H; from ([2.64),

_ 1 |dp|
LSk S C/ dé‘ & A‘g‘t/ 1 .
c ] e, [K(p) + & |p|t—otstr

Making the change of variables p = pit~1/%, € = &t~!, we obtain

[Hy (-, 1))

1
[ Hi ()| e < CtaGHm=L —tpn<o (2.70)
On the other hand for Hy we have
100
d
[Ha (- t)|| o < C oK1 (2.71)

‘p|1—a+§+u'

—100
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Thus,
1
[Ha (- t)|[pow < CtaGFm=1 0 2 4y <, (2.72)
s

Therefore, from (2.70) and (2.72)) we conclude
t
IH ()| e < Clh| e / (t —r)aGH-Y~Vedr < o)==~ 79)||h|| g,
0

where % + u < . Finally, we estimate the operator H in norm L!. By Cauchy’s
Residue Theorem we have for Re(z) > 0,

AT

7_67 -
2mi —iooquYjL(qag) q 2mi —zooquYjL((Lg) q

K(2)+¢ ¢
T FEE) 0.8

Then, we obtain the formula
L [ e YOS Ndp
He =g [ [ (wprariog V5 @™
Now, we substitute the equation
Ve, O <Y+(p,£)—Y+(0,§))§_ K(p)
(K(p) +8)Y*(0,8) Y+(0,8)(K(p) +¢€) K(p)+¢
in 7 and change & and p by &~ and pt—1/, respectively, to obtain

H(z,t) =t 1 (s) + t7 1 a(s), s=at™ /e, (2.74)
where
1 O de [T LY (p,§) Y T(0,6)
_ s — 2.
2=t [, g Lo e )y @
and _ _
L [ e K) dp
J. =—— d 5/ ps - —— | 2.76
2(8) (27TZ)2 /;zoo ge —100 ‘ K(p) + 5 p ( )
We estimate J,. First, for x < 1, we obtain
1
/ (et~ 1)z < CtE. (2.77)
0
On the other hand, for = > 1, applying Cauchy’s Theorem, we write
K p dp
J. d ¢
2(e) * )+€&p’

where

C1 = {¢& € (—ioco, —i) US U (4,i00) },
S={¢=¢?:0¢€[-Z,—3]}. Substituting 1 = % - @ in last equation,
we obtain

d. 2d
e e
27rz 3 p (2mi)? Je, —|—§p

By Cauchy’s Theorem, using the analyticity with respect to £, the ﬁrst summand
in last equation is zero. Thus,

JQ(S) = J21(8) + JQQ(S), (278)




18 M. P. ARCIGA-ALEJANDRE EJDE-2015/281

where
d§ 5/ K( )2 dp
— 2.
Tas (2mi)? /c e Kp)+&p’ (2.79)
s K(p)? dp
J: —. 2.80
22 27” /C1 /z/s (p +£ p ( )

For € > 0 small enough,
1 o 1 o
={pe 8—2( — i+ c0et(3 T, —i) U ?(z, i+ ooe’(§+€))}.

Taking the L' norm with respect to x, we obtain

_ |d€| K(p)? ldpl _ -1y
11 (Y1 < GV / lag] <ol (281)
e 1€l Je, 1K (p) + €] Ip?
Now, for Joo we have
de] [ K@) ldpl _ 1
|Ja2(s)| < C — ——— < (—. (2.82)
¢ 181 Joijs2 1K (p) +¢l Il 52
From ([2.78)), (2.81f) and (2.82)), we obtain for ¢ > 0 and = > 1,
oo
/ | Jo(at™ V)| da < Ct. (2.83)
Thus, from and ( we obtain
172(-)l|zr < Ot (2.84)
We estimate J;. Substituting % = % M in , we obtain
Jl(S) = J11(5) + Jlg(s), (285)
where

=g | weas [0t eo-vre.9T.

1 o o & —-Y*+(0 d

— - £ ef/ eps< (pvé-) ( ’5))K(p)£
(2mi)* J _ico Y(0,8) K(p)+¢ p
The integrand in Jy; is an analytic function in the left half-plane, with respect to

p, and the residue at p = 0 is zero, then by Cauchy’s Residue Theorem we conclude
that J11(s) = 0. Now, we estimate J12. Using

p 3
YH(p.€) — YH(0,6) = / I+ (q, )Y * (g, €)dg = O(pP V1),

Jlg(s) = —

we obtain ||J12(-)||z1 < Cta. Therefore,

1J1() e < CEY (2.86)
Then, from (2.84]) and (2.86) we obtain
[H(-\t)||z: < Ct™ e (2.87)

Finally, integrating with respect to time we obtain

t
IOl < Clbllae [ (¢80 2dr < Clhl e,
0
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Then, first estimate of Lemma [2.8 has been proved. Now we are going to obtain
an asymptotic representation for H. First, we split the integral,

Hah= [ Hiet— b+ [ Ht—oh(ndr (2.89)
0 t—1

For the first integral in ([2.88)) we have

/tl H(xz,t —71)h(T)dT
C (2.89)

[ Bt () — ) b [ Ht—

Making the change ¢t — 7 = s, we obtain

ds
s

t—1 ¢ t
H(z,t —7)dr = / H(z,s)ds = / T(xs™1/)
0 1 1

t
=/ (T(xs_l/a)—T(mt_l/a))%+ln(t)T(xt_1/°‘) (2.90)
1
t
:/ (H(z,s) - EH(x,t))dsJrlrl(zf)“r(gcfl/“),
1 S
where Y is given by (1.4). From (2.89)) and (2.90) we obtain
t—1

H(z,t — 1)h(T)dT
0

t
= h(O WO Tt ) +b) [ (Hs) - H@n)ds (@9
1
t—1
- / H(z, t — 7)(h(t) — h(r))dr.
0
Now, since |H (z,t)] < Ct~! and h(t) = bt’? + O(tP~7), we obtain
¢
| [ (tGes) - Lo )as] < o),
1 S
t—1
/ H(z,t — 7)(h(t) — h(r))dr = bt® + O(*2).
0
Then, from (2.91]) we obtain
t—1
/ H(xz,t — 7)h(r)dr = btPIY (=1 *) + O(tP). (2.92)
0
On the other hand, for the second integral in (2.88)), integrating by parts and using

|0, ' H (z,t)| < C, we have

t

H(z,t — 7)h(r)dr = OP). (2.93)
t—1
Thus, by (2.88]), (2.92)) and (2.93]) we obtain
H(z)h = btP Y (0t =) + O@9). (2.94)

Therefore, Lemma [2.8 has been proved. O
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The following theorem is a local version of Theorem its proof is similar and
will be omitted.

Theorem 2.9. Let the initial data ug € Z" and the boundary value h € B* such
that the correspondent norms are sufficiently small. Then, for some T > 0, there
exist a unique solution

uwe C0,T;; LYY N C((0,T); L* N LS N L™>), s>1,
to the initial boundary-value problem (|1.1)).

3. PROOF OoF THEOREM [I.1]

By the Local Existence Theorem it follows that the global solution (if it
exist) is unique. Indeed, on the contrary, we suppose that there exist two global
solutions with the same initial data. And these solutions are different at some time
t > 0. By virtue of the continuity of solutions with respect to time, we can find
a maximal time segment [0, 7], where the solutions are equal, but for ¢ > T they
are different. Now, we apply the local existence theorem taking the initial time
T and obtain that these solutions coincide on some interval [T, T}], which give us
a contradiction with the fact that T is the maximal time of coincidence. So our
main purpose in the proof of Theorem [I.1]is to show the global in time existence
of solutions.

First, we note that Lemma imply for the Green operator G : Z*# — X* the
inequality ||G(¢)ug||x» < Cllug||z:. Now, we are going to show the estimate

H / G(t — 7Y (N (u(r)) — N (v(r)))dr] x

< Cllu = vl[xn([lull xe + [Jvllxx)7,

(3.1)

for all u,v € X, where N(u) = |u[u and @ < 0 < 1+ «a. In fact, using the
inequality
lul”u — o] 7v] < Clu = v|(|ul” + |v]7),
we obtain
IV (u) = N(©)[ L1
< Cllu—vllz=([ull§ o + [0)I..») (3.2)
< C{ry Y/ m) T fu =l o (o + o]l x)
where p =v/o >0, and
IV (u) = N ()] e
< Cllu = v ([[ullz= + vl 7) (3.3)
< C{r} @ TE O fu— vl xu (o + o]l x0) -
Then, estimates , , and Lemma imply
1G(t = )N (u(T)) = N(@(7))) | o
<C(t—7) Fm DR e (@ nE 4 rE) (3.4)

X lu = wllxn (fJullxe + vl x0)7
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where 0 < p < 1, and
19t = YN (@) (r) = N(@)(7) |2~
<C{t=1} =)V )T (RO 4 (7)) ) (35)
X = ol (lullxn + o]l x0)7-

Now, we integrate with respect to 7 inequalities (3.4]) and (3.5),

/0 1G(t - 7YV (u)(r) — N(w)(7))]

b (3.6)
< o{pptmalem it a o=y — || ([ful| xe + (o] x0),
provided o < 1+ a, s < ﬁ, and
t
/ IG(t — TYN (w)(7) = N (0) (7)) £
0 (3.7)

< O{ty == D29 =2 @Dy — || e ([l xn + (0]l x0)7,

whenever ¢ < 1 4+ a. Then, for @« < ¢ < 1+ «, the definition of the norm

in the space X* and the estimates (3.6) and (3.7), imply (3.1). Now, we apply
the Contraction Mapping Principle on a ball with ratio p > 0 in the space X*,

Xp={¢ € X" :|¢llxr < p}, where p = 3C max{||ug||z«, ||kl 5-}. First, we show
that

[M(u)]|xn < p, (3.8)
where v € X/'. Indeed, from the integral formula

M(u) = G(t)ug — /0 Gt — )N (u(r))dr + H(x)h (3.9)

and the estimate (3.1)) (with v = 0) we obtain
t
[M(u)l[xn < (1G(#)uollxu + ||/O G(t =N (W) (r)dr| xn + [H( )P xn

< C(Jluollzs + Nl + k] - )

p o+1 P
< 3 +Cp7 + 3 <p,
provided p > 0 is sufficient small. Therefore, the operator M transforms a ball of
ratio p > 0 into itself, in the space X*. In the same way we estimate the difference
of two functions u,v € X7,

I M() = M) < | / G(t — TN (u)(r) — N'(0)(r))dr|
< Cllu— vl xe (ull i + lol]x)° < C(2p)° [l — vl x
< gl vllx

whenever p > 0 is sufficient small. Thus, M is a contraction mapping in X}'.
Therefore, there exist a unique solution u € X* to the Cauchy problem (1.1)). Now
we prove the asymptotic formula

w(z,t) =t =2 (al (2t~ V) 4 bY (at™1/*)) + Ot = 277), (3.10)
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where v > 0 and

+oo +oo +oo
o= / y* 2 (y)dy — / dr / YN (u(r)) dy

We denote Go(t) =t~ =2 A(zt~/*) and Gy (t) = bt* Y (2t~ /*). From Lemmas
2.7 and 2-8] we have for all ¢ > 1,
+oo .
16(t) — Go(t)/o y*2o(y)dyllL= < O =276 g (3.11)
IH()h = Gi(t)]| = < Ct)”, (3.12)

for h(t) = bt? + O(t#=7), B < 0, v > 0. Also, in view of the definition of the norm
X* we have

+
!/O y* PN (u(r))dy| < IV () g < lul)lIF a5
< C{r} 7 r) T E R ful |G-

By a direct calculation, for ¢ > 1, we have

+oo
I [ arGote )~ Gow) [ v Nl

Nl

< Cllull % /0 IGo(t = 7) + Go(®) L= {r} 7 (r) " S 72dr (3.13)

—=— o % —~yo —eo 1, _ ~p—t-1l_(z2_2 o
<O QIIUIIX*;%/ {r} () S rEdr < O D ul G
0

where o > 3a/2, provided yo < %7 and in the same way

IGot) [ ar [ Al < ClOTEEE DS, @)

provided o > 3a/2. Also we have for all ¢ > 1,

3 +o0
I /O (G(t = TN (u(r)) — Go(t — 7) /0 y*2N (u(r))dy)dr]| L~
+1I [ Gt =N (u(r))dr] L~

<0 [(-n E N dr (319

0
+ CL {t =737 =) TN ()l + IV (ul7) | ) dr

_1_1 _(o_3
< C(t) 2@ ul L,
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provided yo < % and o > %a. By virtue of the integral equation (3.9) we obtain
[u(t) = aGo(t) — G1(t)]| L~

+oo
<1900 = Golt) [ 4 ual)dylu
1 [ 6= Gin) = Gute =) [ s Nt
t o oo
1 90l 5 1600) [ [ Nl

5 +o0
+ II/0 dr(Go(t —7) fGo(t))/O y* PN (u(r))dy| L~
+IH( )R = Ga(t) |-

23

(3.16)
All summands in the right-hand side of (3.16]) are estimated, via (3.13))-(3.15)), by

_1_1_
C{t)"= 27 (Jluollzerz + ull G2,

1 1

where 0 < v < 2 — %, provided 3 < —= — 5 — . Thus by last estimate the

asymptotic (3.10) is valid. Theorem has been proved.
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