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EXISTENCE OF POSITIVE SOLUTIONS FOR
KIRCHHOFF PROBLEMS

JIA-FENG LIAO, PENG ZHANG, XING-PING WU

ABSTRACT. We study problems for the Kirchhoff equation
— (a + b/ \Vu|2dz> Au=vud 4+ Q(z)ud, in Q,
Q
u=0, on 99,

where Q C R3 is a bounded domain, a,b >0 and a+b>0,v>0,3<¢g<5
and Q(xz) > 0 in . By the mountain pass lemma, the existence of positive
solutions is obtained. Particularly, we give a condition of @ to ensure the
existence of solutions for the case of ¢ = 5.

1. INTRODUCTION AND MAIN RESULTS
In this article, we consider the Kirchhoff type problem
—(a + b/ |Vu|2dx)Au =vud +Q(z)u?, inQ,
Q
u=0, on 9d9,

(1.1)

where  C R? is a bounded domain, a,b > 0and a+b>0,v > 0,3 < qg <5
are four parameters. The coefficient function @ is a positive function in 2. When
a = 0,b > 0, problem is called degenerate, and the case of a,b > 0 is called
non-degenerate.

When ¢ > 0 and b > 0, problem is called the Kirchhoff type problem.
Kirchhoff type problems are often referred to as being nonlocal because of the
presence of the term ([, |Vu|?dz)Au which implies that the equation in is
no longer a pointwise equation. The existence and multiplicity of solutions for the
problem

—(a+b/ |Vu|2dx>Au = f(z,u), inQ,
Q
u=0, on 01,

(1.2)

on a smooth bounded domain 2 C R? and f : 2 x R — R a continuous function,
has been extensively studied (see [11 B],[7]-[23], [25]-[28],[30, B1]).
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Particularly, Sun and Tang [26] considered the problem

—(a + b/ |Vu|2dx)Au = \u® 4 g(u) — h(z), inQ,
Q

(1.3)
uw=0, on 0f,
where h € L?(Q) and g € C(R, R) satisfies
im 9 o, (1.4)

[t]—o0 t3

Under a Landesman-Lazer type condition, by the minimax methods, they obtained
the existence of solutions for problem (|1.3)).
When a =1 and b = 0, problem (|1.1)) reduces to the semilinear elliptic problem

—Au=vud+ \u?, inQ,
u=0, on 9.
Obviously when 3 < ¢ < 5, problem (|1.5) has a positive solution for all v, A > 0.
While for ¢ = 5,A = 1, Brézis and Nirenberg [6] studied problem (1.5). By the
variant of the mountain pass theorem of Ambrosetti and Rabinowitz without the
(PS) condition, they obtained that there exists vy > 0 such that problem (1.5]) has

a positive solution for each v > vy.
For u € H}(Q), we define

/\Vu|2d:v+ /|Vu|2d:17 7%/|u|4d:v77/62 )|u "+ da,
Q

1/2

(1.5)

where Hg(€2) is a Sobolev space equipped with the norm |ju| = ( [, |[Vu[*dz)
Note that a function u is called a weak solution of (1.1 if u € HJ(£2) such that

(aer/Q\Vu\zd:z:)/Q(Vu,Vga)dxfu/Qu‘gcpd:rf/QQ(x)quodz:O, (1.6)

for all ¢ € H}(Q).
We denote by v is the first eigenfunction of the eigenvalue problem

—(/Q |Vu|2d:r)Au =vud, req,

u=0, x¢€dN.
From [23], we know that 11 > 0. Let S be the best Sobolev constant, namely
Vul?d
S:= inf Miu‘fg (1.7)
we HYO@\0} ([ |ulSdz) "/
As well known, the function
3£2)1/4
m):%, z € R3, (1.8)
(2 + [z]?)

is an extremal function for the minimum problem ; that is, it is a positive
solution of the problem
—Au=u®, VYreRVN.
Problem (|1.1)) with 3 < ¢ < 5 does not satisfy condition . It is natural to ask
whether s a positive solution. Using the mountain pass theorem, we study
and give a positive answer. It is worth pointing out that the result of the case
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of ¢ = 5 is more meaningful. Because of ¢ = 5 is critical case and the coeflicient
of critical term is no longer constant. We give the suitable condition (Al) in the
Theorem below to ensure the existence of solutions to problem .

Our main results are described as follows.

Theorem 1.1. Assumea,b>0,3<q<5and@Q € L%(Q) is a positive function,
then (1.1) possesses a positive solution u* for all v >0, and I(u*) > 0.

Remark 1.2. Obviously, Theorem does not apply to (1.4). For all v > 0,
we obtain the existence of positive solutions for problem (1.1]). For the degenerate
case, that is a = 0, b > 0, we can also obtain that problem (L.1)) possesses a positive
solution for all 0 < v < bu.

Theorem 1.3. Assume a,b > 0, ¢ = 5, Q € C(Q) is a positive function and
satisfies the assumption

(A1) There exists xo € Q such that Q(xo) = Qn = max, g Q(x) and

Q(z) — Q(x0) = o(|x — xg|), asx — xp.

Then there exists v* > 0 such that (1.1) possesses a positive solution u* for all
v>v*, and I(u*) > 0.

Remark 1.4. This case is the critical exponent problem, and Theorem[I.3]does not
apply to . When Q(z) = 1, the Kirchhoff type problems with critical exponent
have been considered by several papers, such as [Il [0, [12] [20]-[22], [27, 28, [30].
Particularly, problem with Q(x) = 1 was been considered in [2I]. However,
there exists a flaw in the proof of [2I] Theorem 1.3] with the case 6 = 4.

To our best knowledge, problem with Q(x) not constant has not been con-
sidered yet. When @Q(x) is not constant, the analysis of the compactness becomes
complicated, which results in much difficulty. It is worth pointing out that (A1) en-
sures the existence of solutions. Obviously, Theorem extends the corresponding
result of [21].

This article is organized as follows. In Section 2, we consider the case of 3 < ¢ < 5
and prove Theorem by the variational methods. We study the critical case of
problem with ¢ = 5 and give the proof of Theorem in Section 3.

2. THE CASE 3 < ¢ <5

In this section, suppose that Q) € L5 () is a positive function and 3 < ¢ < 5.
We will prove Theorem [I.1] by the mountain pass theorem. Before proving Theorem
[1.1] we give the following lemma.

Lemma 2.1. Assume a,b>0,3<qg<b5 and Q € Lﬁ(Q) is a positive function,
then the functional I satisfies the (PS)c condition for all v > 0.

Proof. Suppose that {uy} is a (PS)c sequence of I, that is,
Iun) = ¢, I'(un) =0, (2.1)
as n — +oo. We claim that {u,} is bounded in H}(Q). In fact, from (2.1)) one has
1
L+ et o()llunll = L(un) = 71" (un), un)

a 1 1
= Sl + (= ) [ Qo de
Q
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> 2 llunl”.
Hence, we conclude that {u,,} is bounded in Hg(£2). Going if necessary to a subse-
quence, still denoted by {u,,}, there exists u € H}(Q) such that

Up — u, weakly in HJ (),
up, — u, strongly in L*(Q), 1 < s < 6, (2.2)
up () — u(z), ae. in
as n — oo. Now, we only need to prove that u, — u as n — oo in H}(Q). As

usually, letting w,, = u,, — u, we need prove that ||w,| — 0 as n — oco. By the
Vitali theorem (see [24], p.133]), we claim that

lim Q(ac)|un|q+1dx:/Q(x)|u|q+1dw. (2.3)
Q Q

n—oo

Indeed, we only need to prove that { [, Q(z)|u,["T'dz,n € N} is equi-absolutely-
continuous. Note that {u,} is bounded in H{ (), by the Sobolev embedding the-
orem, then exists a constant C' > 0 such that |u,|¢ < C < co. From the Holder
inequality, for every € > 0, setting § > 0, when £ C ) with meas E < §, we have

5—q

[ @@l s < i ([ @ @an) <,

where the last inequality is from the absolutely-continuity of fQ Qﬁ (z)dx. Thus,
our claim is proved. Moreover, one also has

/ |V, |?dr = / |Vw, |*dx +/ |Vu|*dz + o(1), (2.4)
Q Q Q
2

([ 1vunlds)” = ol + a2 Pl + (). (25)

Since I'(u,) — 0, one obtains
alfun | + bllun ||t — V/ |un|*dz — / Q(@)|un| " da = o(1),
Q Q

consequently, from (2.2))-(2.5)), we deduce that

allwn|® + allul® +bllwn || * + 20w ||| ull* + bllul|* - v]uli - /Q Q(x)|u|™ da = o(1).
(2.6)
From (2.1 it follows that

lim (1" (un), u) = allull* + 0||ul|* + blul* - viuli - /Q Q(x)[ul*dr =0, (2.7)

n—oo

where | = lim,,_, ||w,]||. According to (2.6) and (2.7), we have
alfwn[* + bl|wn|* + bllw,*|Jul* = o(1),

consequently, one has al? + bl* + bl?||ul|?> = 0. Thus [ = 0; that is, u, — u as
n — oo in H}(Q). This completes the proof. O
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Proof of Theorem[I.1l The main idea is to construct a suitable geometry of moun-
tain pass lemma (see[2}). Then obtain a critical point of I in H}(Q). We claim
that I has the geometry of mountain pass lemma in HO Q). Indeed, since

1) = 2l + St~ /Q juftdz — —— / Qa)lul**da,
then I(0) = 0, and for every u € HZ(2)\{0} one has
I(t I(t
im (tu) = gHu||2, lim (tu) = /Q |u|q+1d:c
t—0+ 2 2 t=too t9¥l T g4 1
Since a > 0 and [, Q(x)|u|9" dz > 0, then there exist R, a > 0 and e € Hj () with

|le]l > R such that I|aBR >« and I(e) < 0, where 9Br = {u € Hi(Q) | ||lu|| = R}.
Thus, I satisfies the geometry of the mountain-pass lemma.
Let

¢= inf Jnax, I(v(1)),
where T' = {vy € C([0,1], H}(Q)) : v(0) = 0,7(1) = e}. Then ¢ > «. According to
Lemma [271] I satisfies the conditions of the mountain pass lemma. Applying the
mountain-pass lema, there exists a sequence {u,} C H}(Q), such that I(u,) — c
and I’ (u,) — 0 as n — oo. Then c is a critical value of I and ¢ > a > 0. Moreover,
{u,} C H}(Q) has a convergent subsequence, still denoted by {u,, }, we may assume
that u, — u* in H}(2) as n — oo. Thus I(u*) = ¢ > 0 and u* is a nonzero solution
of (L.1)). Since I(|u|) = I(u), by a result due to Brézis and Nirenberg [4, Theorem
10], we conclude that u* > 0. By the strong maximum principle, one has u* > 0
in 2. Therefore, u* is a positive solution of problem with I(u*) > 0. This
completes the proof. O

3. THE CASE Q=5

In this part, assume that @Q € C(Q) is a positive function and satisfies (A1).
We study the case of ¢ = 5. This case is more delicate, because of the Sobolev
embedding H}(Q) < L5(12) is not compact. Thus the functional I does not satisfy
the (PS). condition. When Q(x) is not constant, the analysis of (PS) sequences
becomes complicated, which results in much difficulty. We will complete the proof
of Theorem [I.3] by the mountain pass lemma. Now, we prove that I satisfies the
local (PS). condition.

Lemma 3.1. Assume a,b > 0 and the positive function Q € C(Q) satisfies (A1),
then I satisfies the (PS). condition, where ¢ € (0, A) with

_ab$® | 0S°  aSVIPST 4 4aSQur | K25*V/IST 1 4aSQu
T AQum | 24Q%, 6Qus 2403, '
Proof. Suppose that {uy} is a (PS). sequence for ¢ € (0,A); that is,

I(up) — ¢, I'(uy) — 0, (3.1)

as n — +o0o. According to Lemma we can easy obtain that {u,} is bounded
in H}(Q). Going if necessary to a subsequence, there exists u € HE () such that
(2.2) holds. As usually, letting w, = u, — u, we need prove that ||w,| — 0 as
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n — oo. We denote lim,, o [|w,|| = I. As in Lemma 2.1} we have (2.4) and (2.5).
By Brézis-Lieb’s Lemma [5], one has

/Q Q@) uy|°dz = / Q@)|wa*da + / Q@)lulds +0(1).  (32)
From and , one obtains

allun P+ Bl = [ fultde— | Qo)lun Pz = o(0),
consequently, from (2.4)-(2.5) and it follows that

allull> + alwa||* + bllull* + bl|wn||* + 2b]w,|?||ul]?
—/ Q(x)\wn|6dx—/ Q(x)|u\6da:—1// luf*de = o1),
Q Q Q
From (3.1) it follows that
lim (I'(un),u) = a||u||2+b||u||4+bl2||“||2_/ Q($)|U|6dx_y/ ul*dz = 0. (3.4)
n— oo O Q

On the one hand, from (3.4), we have

(3.3)

a b v 1
I(u) = S [lull® + —[lull* - */ u|*de — */ Q(z)|ul°dx
2 4 1/ 6 /g
_ Gy 1 64, P2 3.5
= 4”““ + 12/QC»?(%‘)|U| dzx 1 [|ul] (3.5)
bi?
> 2l

On the other hand, from (3.3) and (3.4) it follows that
allwn || + bllwn|* + bllwn | [lu]* - /Q Q(a)wy |°dz = o(1), (3.6)
and
a 2, b 4, b 2 12 L 6
I(un) = I(u) + 5 llwall” + 7 llwa |* + Sllwnl"llul” - & QQ(il?)lwnl dz+o(1). (3.7)
From (A1) and (L.7)), one has
[ @@)luwnlds < Qu [ Jwnfds < Qu
Q Q
consequently, it follows from (3.6)) that

[ |°
S3

l6
al® + bl* 4+ b2 ||u® < Quigzs

which implies that

(3.8)

3 206 3 2
py L[S IS T IS QT U]
2lQum Qum
Thus, from (3.6))-(3.8), we obtain
Y _a 2 _9 4 _9 211,112 1/ 6
) = Jim (1) = §lhwal® = ol = Flwa#ul® + G [ Qo da

b

a b
e (%2 O Op 2)
¢ (3 gt 3l
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3 2 6 3 2
ce [g(bs N /0256 +453Q v (a + bju]| )>

6 \Qur Qm
LN Lo VPS4 5% Qur(a + ULIF]
48 \Q Qm
b||lul|? /bS3 b256 4483 bl|u||? bl?
Jlul (i+¢ R R o LT
24 \Qum Qm 4
bS3 p356 S/025%* + 4aS b254\/b254 + 4aS
Scf(a +2 4 +4a5Qn V :GQM)
4QM 24QM 6QM 24QM
e
4 u
2
<2,

which contradicts (3.5). Hence, | = 0; that is, u, — u in H}(Q) as n — oo.
Therefore, I satisfies the (PS). condition for all ¢ < A. This completes the proof.
O

Next, we estimate the level value of functional I and obtain the following lemma.

Lemma 3.2. Assume that a,b > 0 and the positive function Q € C(2) satisfies
(A1). Then there exists ug € Hy(S2), such that sup,sq I(tug) < A for all v > v*,
where A is defined by Lemma[3.1] and v* independent of ug is a positive constant.

Proof. Define a cut-off function n € C§°(2) such that 0 < n <1, |Vn| < Cy. For
some § > 0, we define
1, |z —=xo

| <3
€Tr) =
n(x) {0, & — 20| > 5,

where xq is defined by (Al). Set u. = n(x)U(z — z). As well known(see [6, 29]),
one has

Snnolon

Jucl® = U] + O(e) = S*/% 4+ O(e), (3.9)
ue|8 = U8 + O(e%) = §%/2 + O(£%), 3.10
6 6
and

Che? < / ulde < Cye?, 1<s<3,
Q
Cyc?|lne| < / uidr < Cse?|Ine|, s=3, (3.11)
Q

0656%5 < / ulde < C756%S, 3 < s<6.
Q
Moreover, from [30], we have
el = 8°+0Ge), |luell® = 8% +0(e),
lucl® = 8%+ O0(e),  [lue]|'? = S? +O(e).
For all ¢ > 0, we define I(tuc) by

(3.12)

a. o 9 b 4 Vo 4 £ 6
I(tue) = §t e | +Zt fluell® — Zt Q|Us‘ dx — G QQ($)|U5| dz,
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then we have
tlir_r&g I(tu;) =0, uniformly for all 0 < & < e,
lim I(tue) = —oco, uniformly for all 0 < e < &,

t——+oo

where €9 > 0 is a small constant. Thus sup,s, I(tu.) attains for some ¢. > 0.

Moreover, we can claim that there exist two constants to, Ty > 0, which independent

of &, such that ty < t. < Tp. In fact, from lim;, ¢ I(tu;) = 0 uniformly for all

e, we choose € = % > 0, then there exists ¢y > 0 such that |I(tous)| =

|I(toue) — I(0)| < e. Then according to the monotonicity of I(tu.) near t = 0, we

have t. > ty. Similarly, we can obtain that t. < Ty. Therefore, our claim is proved.
Set I(tue) = I. 1(t) — vI. o(t), where

Im@:fﬂMW+tﬂ%Wff/Q yuSd,

and

ooy

I.o(t) = — [ uzde.

4 Jo
First, we estimate the value I ;. Since I | (t) = at|juc||*+bt*|uc||*—t° [, Q(z)uldz,
letting I ; (t) = 0; that is,

alluc||® + bt?||lu||* — t4/ Q(x)ubdx =0, (3.13)
Q

one obtains

bl + JW%W+MMWk r)ulde
< 2 [ Q(z)ubdx '
Then I ;(t) > 0 for all 0 < ¢ < T, and I ;(t) < 0 for all t > T, so I 1(t) attains
its maximum at 7.. From (A1), let ¢ — 0T, we claim that

( / Q(x)ugdx) — QY02+ ofe). (3.14)
Q
In fact, for all € > 0, it follows that

/ |Q(x mo)\u dx

/Q de—/QMuﬁda:
<[ Q) — Qlao) [ulda
{zeQ: |a— a:0|<6}

From (A1), for all n > 0, there exists 6 > 0 such that

(3.15)

|Q(z) — Q(xo)] <77|m—x0| for all 0 < |z — xo| < 4.
When € > 0 small enough, for § > £'/2, it follows from (3.15) and (A1) that

‘/Q de—/QMuﬁdm
<[ Q) = Qao)|ulda
{eeQ:|z—z0|<5}

(352)3/2
< / Nz — ol —————zdx
{(w€Qi|a—0|<5} [€2 + |z — xo|?]3
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(3€2>3/2

" / S0
{zeQ: §<|z—x0|<5} [52 + “T - $0|2]3

/T 5 X o3 /T § 2302
=2 —d 27 ——d
717/0 r (€2+T2)3 T+ A (52+T2)3 r
v 2 -3 3 -2
=2 ——d V27 —d
7’75/0 TETS / TS

< Cgne + Coe®.
Consequently, one has

UQ Judda — [, QM“gdw‘
€

< 0877 + 09527

which implies

ubdx — 6
lim sup | fQ e fﬂ Qarte dx| < Cgn.
e—0*t €

Then from the arbitrariness of 7, we obtain (3.14). Thus, from and (3.14),

one gets
/ Q(e)uldr = Qurluclg + ofe) = QuS** + o(e).
Q
Thus from (3.9)),(3.12)),(3.13) and (3.16), we have
I (t) < I (T%)
_m2(a 2 2 4 ub
=12 (el + Sl - T [ Quontas)

a
:T2(f||us|\2+—T2||u€|| )

abl|uc|® + afluc||? \/bQHuell8 +dallucl? [ Q(x)ulde

6 |, Q(z)ubdx
b3||u5H12 + 2abHu€|| fQ 6dx
24( [, Q( uﬁdx)
| ¢b2||ue||8+4a||ue||2/;z z)ulds
24( [, Q( qux)
abllus|\6 b3||u5||12
4fQ r)ubdr  24( [, Q(z)ubdx)?
allue 262 e 5 + daljuc |2 f Qa)ulda
+ GfQ x)ubdz
e [4/02 | |¥ + daljuc|? fy Qaulda
24( [, Q( qux)
ab(S? + 0(e)) b2 (82 + O(e))
AQuS*? +o(e))  24(QumS3/% + o(e))?

(3.16)
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a(S%% 4+ 0(e)) /6256 + 4aS3 + O(e)
6(QnS%/2 + o(e))
b?(S® 4+ O(e))\/b2S6 + 4aS3 + O(e)
24(Qm S3/% + o(e))?
_ab$? | bS° aS\/b?S1 + 4a5Qu
S AQum 2403, 6Qm
2 4\/24—
n b*S bZiQ;A:ZlaSQM +0e)
=A+0(e). (3.17)

Second, we estimate the value of I, 5. From (3.11)), since 0 < ¢y < t. < Tj, one
has

t2 to
I o(t:) = i/ﬂu?dm > ZO/ngdx > Cyoe. (3.18)

Thus, from (3.17) and (3.18)), one gets
I(tue) = I 1(t) — vl o(t)
< Is7l(ta) - VIE,2(tE)

t4
<L) -2y / dida

4 Q
<A+ O(E) — Chrove < A,

provided that v is large enough. Thus there exists v* > 0 such that I(tu.) < A for
all v > v*. This completes the proof. (]

Proof of Theorem[I-3 As in the proof of Theorem [I.I} we can obtain that I has
the geometry of mountain pass lemma in H}(2). According to Lemmas and
it follows that I satisfies the conditions of the mountain pass lemma. Then as
in the proof of Theorem we obtain that has a positive solution u* with
I(u*) > 0 as long as v > v*. The proof is complete. O
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