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EXISTENCE OF POSITIVE SOLUTIONS FOR
KIRCHHOFF PROBLEMS

JIA-FENG LIAO, PENG ZHANG, XING-PING WU

Abstract. We study problems for the Kirchhoff equation

−
“
a+ b

Z
Ω
|∇u|2dx

”
∆u = νu3 +Q(x)uq , in Ω,

u = 0, on ∂Ω,

where Ω ⊂ R3 is a bounded domain, a, b ≥ 0 and a+ b > 0, ν > 0, 3 < q ≤ 5
and Q(x) > 0 in Ω. By the mountain pass lemma, the existence of positive

solutions is obtained. Particularly, we give a condition of Q to ensure the

existence of solutions for the case of q = 5.

1. Introduction and main results

In this article, we consider the Kirchhoff type problem

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = νu3 +Q(x)uq, in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ R3 is a bounded domain, a, b ≥ 0 and a + b > 0, ν > 0, 3 < q ≤ 5
are four parameters. The coefficient function Q is a positive function in Ω. When
a = 0, b > 0, problem (1.1) is called degenerate, and the case of a, b > 0 is called
non-degenerate.

When a ≥ 0 and b > 0, problem (1.1) is called the Kirchhoff type problem.
Kirchhoff type problems are often referred to as being nonlocal because of the
presence of the term (

∫
Ω
|∇u|2dx)∆u which implies that the equation in (1.1) is

no longer a pointwise equation. The existence and multiplicity of solutions for the
problem

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.2)

on a smooth bounded domain Ω ⊂ R3 and f : Ω × R → R a continuous function,
has been extensively studied (see [1, 3],[7]-[23], [25]-[28],[30, 31]).
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Particularly, Sun and Tang [26] considered the problem

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = λu3 + g(u)− h(x), in Ω,

u = 0, on ∂Ω,
(1.3)

where h ∈ L2(Ω) and g ∈ C(R,R) satisfies

lim
|t|→∞

g(t)
t3

= 0. (1.4)

Under a Landesman-Lazer type condition, by the minimax methods, they obtained
the existence of solutions for problem (1.3).

When a = 1 and b = 0, problem (1.1) reduces to the semilinear elliptic problem

−∆u = νu3 + λuq, in Ω,
u = 0, on ∂Ω.

(1.5)

Obviously when 3 < q < 5, problem (1.5) has a positive solution for all ν, λ > 0.
While for q = 5, λ = 1, Brézis and Nirenberg [6] studied problem (1.5). By the
variant of the mountain pass theorem of Ambrosetti and Rabinowitz without the
(PS) condition, they obtained that there exists ν0 > 0 such that problem (1.5) has
a positive solution for each ν ≥ ν0.

For u ∈ H1
0 (Ω), we define

I(u) =
a

2

∫
Ω

|∇u|2dx+
b

4

(∫
Ω

|∇u|2dx
)2

− ν

4

∫
Ω

|u|4dx− 1
q + 1

∫
Ω

Q(x)|u|q+1dx,

where H1
0 (Ω) is a Sobolev space equipped with the norm ‖u‖ =

( ∫
Ω
|∇u|2dx

)1/2.
Note that a function u is called a weak solution of (1.1) if u ∈ H1

0 (Ω) such that(
a+ b

∫
Ω

|∇u|2dx
)∫

Ω

(∇u,∇ϕ)dx− ν
∫

Ω

u3ϕdx−
∫

Ω

Q(x)uqϕdx = 0, (1.6)

for all ϕ ∈ H1
0 (Ω).

We denote by ν1 is the first eigenfunction of the eigenvalue problem

−
(∫

Ω

|∇u|2dx
)

∆u = νu3, x ∈ Ω,

u = 0, x ∈ ∂Ω.

From [23], we know that ν1 > 0. Let S be the best Sobolev constant, namely

S := inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
|u|6dx

)1/3 . (1.7)

As well known, the function

U(x) =
(3ε2)1/4

(ε2 + |x|2)1/2
, x ∈ R3, (1.8)

is an extremal function for the minimum problem (1.7); that is, it is a positive
solution of the problem

−∆u = u5, ∀x ∈ RN .
Problem (1.1) with 3 < q ≤ 5 does not satisfy condition (1.4). It is natural to ask

whether (1.1) has a positive solution. Using the mountain pass theorem, we study
(1.1) and give a positive answer. It is worth pointing out that the result of the case
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of q = 5 is more meaningful. Because of q = 5 is critical case and the coefficient
of critical term is no longer constant. We give the suitable condition (A1) in the
Theorem 1.3 below to ensure the existence of solutions to problem (1.1).

Our main results are described as follows.

Theorem 1.1. Assume a, b > 0, 3 < q < 5 and Q ∈ L
6

5−q (Ω) is a positive function,
then (1.1) possesses a positive solution u∗ for all ν > 0, and I(u∗) > 0.

Remark 1.2. Obviously, Theorem 1.1 does not apply to (1.4). For all ν > 0,
we obtain the existence of positive solutions for problem (1.1). For the degenerate
case, that is a = 0, b > 0, we can also obtain that problem (1.1) possesses a positive
solution for all 0 < ν < bν1.

Theorem 1.3. Assume a, b > 0, q = 5, Q ∈ C(Ω) is a positive function and
satisfies the assumption

(A1) There exists x0 ∈ Ω such that Q(x0) = QM = maxx∈ΩQ(x) and

Q(x)−Q(x0) = o(|x− x0|), as x→ x0.

Then there exists ν∗ > 0 such that (1.1) possesses a positive solution u∗ for all
ν > ν∗, and I(u∗) > 0.

Remark 1.4. This case is the critical exponent problem, and Theorem 1.3 does not
apply to (1.4). When Q(x) ≡ 1, the Kirchhoff type problems with critical exponent
have been considered by several papers, such as [1, 9, 12] [20]-[22], [27, 28, 30].
Particularly, problem (1.1) with Q(x) ≡ 1 was been considered in [21]. However,
there exists a flaw in the proof of [21, Theorem 1.3] with the case θ = 4.

To our best knowledge, problem (1.1) with Q(x) not constant has not been con-
sidered yet. When Q(x) is not constant, the analysis of the compactness becomes
complicated, which results in much difficulty. It is worth pointing out that (A1) en-
sures the existence of solutions. Obviously, Theorem 1.3 extends the corresponding
result of [21].

This article is organized as follows. In Section 2, we consider the case of 3 < q < 5
and prove Theorem 1.1 by the variational methods. We study the critical case of
problem (1.1) with q = 5 and give the proof of Theorem 1.3 in Section 3.

2. The case 3 < q < 5

In this section, suppose that Q ∈ L
6

5−q (Ω) is a positive function and 3 < q < 5.
We will prove Theorem 1.1 by the mountain pass theorem. Before proving Theorem
1.1, we give the following lemma.

Lemma 2.1. Assume a, b > 0, 3 < q < 5 and Q ∈ L
6

5−q (Ω) is a positive function,
then the functional I satisfies the (PS)c condition for all ν > 0.

Proof. Suppose that {un} is a (PS)c sequence of I, that is,

I(un)→ c, I ′(un)→ 0, (2.1)

as n→ +∞. We claim that {un} is bounded in H1
0 (Ω). In fact, from (2.1) one has

1 + c+ o(1)‖un‖ ≥ I(un)− 1
4
〈I ′(un), un〉

=
a

4
‖un‖2 +

(1
4
− 1
q + 1

) ∫
Ω

Q(x)|un|q+1dx
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≥ a

4
‖un‖2.

Hence, we conclude that {un} is bounded in H1
0 (Ω). Going if necessary to a subse-

quence, still denoted by {un}, there exists u ∈ H1
0 (Ω) such that

un ⇀ u, weakly in H1
0 (Ω),

un → u, strongly in Ls(Ω), 1 ≤ s < 6,

un(x)→ u(x), a.e. in Ω,

(2.2)

as n → ∞. Now, we only need to prove that un → u as n → ∞ in H1
0 (Ω). As

usually, letting wn = un − u, we need prove that ‖wn‖ → 0 as n → ∞. By the
Vitali theorem (see [24, p.133]), we claim that

lim
n→∞

∫
Ω

Q(x)|un|q+1dx =
∫

Ω

Q(x)|u|q+1dx. (2.3)

Indeed, we only need to prove that {
∫

Ω
Q(x)|un|p+1dx, n ∈ N} is equi-absolutely-

continuous. Note that {un} is bounded in H1
0 (Ω), by the Sobolev embedding the-

orem, then exists a constant C > 0 such that |un|6 ≤ C < ∞. From the Hölder
inequality, for every ε > 0, setting δ > 0, when E ⊂ Ω with measE < δ, we have∫

E

Q(x)|un|q+1dx ≤ |un|q+1
6

(∫
E

Q
6

5−q (x)dx
) 5−q

6
< ε,

where the last inequality is from the absolutely-continuity of
∫

Ω
Q

6
5−q (x)dx. Thus,

our claim is proved. Moreover, one also has∫
Ω

|∇un|2dx =
∫

Ω

|∇wn|2dx+
∫

Ω

|∇u|2dx+ o(1), (2.4)(∫
Ω

|∇un|2dx
)2

= ‖wn‖4 + ‖u‖4 + 2‖wn‖2‖u‖2 + o(1). (2.5)

Since I ′(un)→ 0, one obtains

a‖un‖2 + b‖un‖4 − ν
∫

Ω

|un|4dx−
∫

Ω

Q(x)|un|q+1dx = o(1),

consequently, from (2.2)-(2.5), we deduce that

a‖wn‖2 +a‖u‖2 + b‖wn‖4 +2b‖wn‖2‖u‖2 + b‖u‖4−ν|u|44−
∫

Ω

Q(x)|u|q+1dx = o(1).

(2.6)
From (2.1) it follows that

lim
n→∞

〈I ′(un), u〉 = a‖u‖2 + bl2‖u‖2 + b‖u‖4 − ν|u|44 −
∫

Ω

Q(x)|u|q+1dx = 0, (2.7)

where l = limn→∞ ‖wn‖. According to (2.6) and (2.7), we have

a‖wn‖2 + b‖wn‖4 + b‖wn‖2‖u‖2 = o(1),

consequently, one has al2 + bl4 + bl2‖u‖2 = 0. Thus l = 0; that is, un → u as
n→∞ in H1

0 (Ω). This completes the proof. �
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Proof of Theorem 1.1. The main idea is to construct a suitable geometry of moun-
tain pass lemma (see[2]). Then obtain a critical point of I in H1

0 (Ω). We claim
that I has the geometry of mountain pass lemma in H1

0 (Ω). Indeed, since

I(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − ν

4

∫
Ω

|u|4dx− 1
q + 1

∫
Ω

Q(x)|u|q+1dx,

then I(0) = 0, and for every u ∈ H1
0 (Ω)\{0} one has

lim
t→0+

I(tu)
t2

=
a

2
‖u‖2, lim

t→+∞

I(tu)
tq+1

= − 1
q + 1

∫
Ω

Q(x)|u|q+1dx.

Since a > 0 and
∫

Ω
Q(x)|u|q+1dx > 0, then there exist R,α > 0 and e ∈ H1

0 (Ω) with
‖e‖ > R such that I|∂BR ≥ α and I(e) < 0, where ∂BR = {u ∈ H1

0 (Ω) | ‖u‖ = R}.
Thus, I satisfies the geometry of the mountain-pass lemma.

Let
c = inf

γ∈Γ
max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = e}. Then c ≥ α. According to

Lemma 2.1, I satisfies the conditions of the mountain pass lemma. Applying the
mountain-pass lema, there exists a sequence {un} ⊂ H1

0 (Ω), such that I(un) → c
and I ′(un)→ 0 as n→∞. Then c is a critical value of I and c > α > 0. Moreover,
{un} ⊂ H1

0 (Ω) has a convergent subsequence, still denoted by {un}, we may assume
that un → u∗ in H1

0 (Ω) as n→∞. Thus I(u∗) = c > 0 and u∗ is a nonzero solution
of (1.1). Since I(|u|) = I(u), by a result due to Brézis and Nirenberg [4, Theorem
10], we conclude that u∗ ≥ 0. By the strong maximum principle, one has u∗ > 0
in Ω. Therefore, u∗ is a positive solution of problem (1.1) with I(u∗) > 0. This
completes the proof. �

3. The case q=5

In this part, assume that Q ∈ C(Ω) is a positive function and satisfies (A1).
We study the case of q = 5. This case is more delicate, because of the Sobolev
embedding H1

0 (Ω) ↪→ L6(Ω) is not compact. Thus the functional I does not satisfy
the (PS)c condition. When Q(x) is not constant, the analysis of (PS) sequences
becomes complicated, which results in much difficulty. We will complete the proof
of Theorem 1.3 by the mountain pass lemma. Now, we prove that I satisfies the
local (PS)c condition.

Lemma 3.1. Assume a, b > 0 and the positive function Q ∈ C(Ω) satisfies (A1),
then I satisfies the (PS)c condition, where c ∈ (0,Λ) with

Λ =
abS3

4QM
+

b3S6

24Q2
M

+
aS
√
b2S4 + 4aSQM

6QM
+
b2S4

√
b2S4 + 4aSQM
24Q2

M

.

Proof. Suppose that {un} is a (PS)c sequence for c ∈ (0,Λ); that is,

I(un)→ c, I ′(un)→ 0, (3.1)

as n → +∞. According to Lemma 2.1, we can easy obtain that {un} is bounded
in H1

0 (Ω). Going if necessary to a subsequence, there exists u ∈ H1
0 (Ω) such that

(2.2) holds. As usually, letting wn = un − u, we need prove that ‖wn‖ → 0 as
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n→∞. We denote limn→∞ ‖wn‖ = l. As in Lemma 2.1, we have (2.4) and (2.5).
By Brézis-Lieb’s Lemma [5], one has∫

Ω

Q(x)|un|6dx =
∫

Ω

Q(x)|wn|6dx+
∫

Ω

Q(x)|u|6dx+ o(1). (3.2)

From (3.1) and (2.2), one obtains

a‖un‖2 + b‖un‖4 − ν
∫

Ω

|u|4dx−
∫

Ω

Q(x)|un|6dx = o(1),

consequently, from (2.4)-(2.5) and (3.2) it follows that

a‖u‖2 + a‖wn‖2 + b‖u‖4 + b‖wn‖4 + 2b‖wn‖2‖u‖2

−
∫

Ω

Q(x)|wn|6dx−
∫

Ω

Q(x)|u|6dx− ν
∫

Ω

|u|4dx = o(1).
(3.3)

From (3.1) it follows that

lim
n→∞

〈I ′(un), u〉 = a‖u‖2+b‖u‖4+bl2‖u‖2−
∫

Ω

Q(x)|u|6dx−ν
∫

Ω

|u|4dx = 0. (3.4)

On the one hand, from (3.4), we have

I(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − ν

4

∫
Ω

|u|4dx− 1
6

∫
Ω

Q(x)|u|6dx

=
a

4
‖u‖2 +

1
12

∫
Ω

Q(x)|u|6dx− bl2

4
‖u‖2

≥ −bl
2

4
‖u‖2.

(3.5)

On the other hand, from (3.3) and (3.4) it follows that

a‖wn‖2 + b‖wn‖4 + b‖wn‖2‖u‖2 −
∫

Ω

Q(x)|wn|6dx = o(1), (3.6)

and

I(un) = I(u)+
a

2
‖wn‖2 +

b

4
‖wn‖4 +

b

2
‖wn‖2‖u‖2−

1
6

∫
Ω

Q(x)|wn|6dx+o(1). (3.7)

From (A1) and (1.7), one has∫
Ω

Q(x)|wn|6dx ≤ QM
∫

Ω

|wn|6dx ≤ QM
‖wn‖6

S3
,

consequently, it follows from (3.6) that

al2 + bl4 + bl2‖u‖2 ≤ QM
l6

S3
,

which implies that

l2 ≥ 1
2

[ bS3

QM
+

√
b2S6 + 4S3QM (a+ b‖u‖2)

QM

]
. (3.8)

Thus, from (3.6)-(3.8), we obtain

I(u) = lim
n→∞

[
I(un)− a

2
‖wn‖2 −

b

4
‖wn‖4 −

b

2
‖wn‖2‖u‖2 +

1
6

∫
Ω

Q(x)|wn|6dx
]

= c−
(a

3
l2 +

b

12
l4 +

b

3
l2‖u‖2

)
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≤ c−
[a

6

( bS3

QM
+

√
b2S6 + 4S3QM (a+ b‖u‖2)

QM

)
+

b

48

( bS3

QM
+

√
b2S6 + 4S3QM (a+ b‖u‖2)

QM

)2

+
b‖u‖2

24

( bS3

QM
+

√
b2S6 + 4S3QM (a+ b‖u‖2)

QM

)]
− bl2

4
‖u‖2

≤ c−
( abS3

4QM
+

b3S6

24Q2
M

+
aS
√
b2S4 + 4aSQM

6QM
+
b2S4

√
b2S4 + 4aSQM
24Q2

M

)
− bl2

4
‖u‖2

< −bl
2

4
‖u‖2,

which contradicts (3.5). Hence, l ≡ 0; that is, un → u in H1
0 (Ω) as n → ∞.

Therefore, I satisfies the (PS)c condition for all c < Λ. This completes the proof.
�

Next, we estimate the level value of functional I and obtain the following lemma.

Lemma 3.2. Assume that a, b > 0 and the positive function Q ∈ C(Ω) satisfies
(A1). Then there exists u0 ∈ H1

0 (Ω), such that supt≥0 I(tu0) < Λ for all ν > ν∗,
where Λ is defined by Lemma 3.1 and ν∗ independent of u0 is a positive constant.

Proof. Define a cut-off function η ∈ C∞0 (Ω) such that 0 ≤ η ≤ 1, |∇η| ≤ C1. For
some δ̃ > 0, we define

η(x) =

{
1, |x− x0| ≤ δ̃

2 ,

0, |x− x0| ≥ δ̃,
where x0 is defined by (A1). Set uε = η(x)U(x − x0). As well known(see [6, 29]),
one has

‖uε‖2 = ‖Uε‖2 +O(ε) = S3/2 +O(ε), (3.9)

|uε|66 = |Uε|66 +O(ε3) = S3/2 +O(ε3), (3.10)

and

C2ε
s
2 ≤

∫
Ω

usεdx ≤ C3ε
s
2 , 1 ≤ s < 3,

C4ε
s
2 | ln ε| ≤

∫
Ω

usεdx ≤ C5ε
s
2 | ln ε|, s = 3,

C6ε
6−s
2 ≤

∫
Ω

usεdx ≤ C7ε
6−s
2 , 3 < s < 6.

(3.11)

Moreover, from [30], we have

‖uε‖4 = S3 +O(ε), ‖uε‖6 = S
9
2 +O(ε),

‖uε‖8 = S6 +O(ε), ‖uε‖12 = S9 +O(ε).
(3.12)

For all t ≥ 0, we define I(tuε) by

I(tuε) =
a

2
t2‖uε‖2 +

b

4
t4‖uε‖4 −

ν

4
t4
∫

Ω

|uε|4dx−
t6

6

∫
Ω

Q(x)|uε|6dx,
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then we have

lim
t→+0

I(tuε) = 0, uniformly for all 0 < ε < ε0,

lim
t→+∞

I(tuε) = −∞, uniformly for all 0 < ε < ε0,

where ε0 > 0 is a small constant. Thus supt≥0 I(tuε) attains for some tε > 0.
Moreover, we can claim that there exist two constants t0, T0 > 0, which independent
of ε, such that t0 < tε < T0. In fact, from limt→+0 I(tuε) = 0 uniformly for all
ε, we choose ε = I(tεuε)

4 > 0, then there exists t0 > 0 such that |I(t0uε)| =
|I(t0uε) − I(0)| < ε. Then according to the monotonicity of I(tuε) near t = 0, we
have tε > t0. Similarly, we can obtain that tε < T0. Therefore, our claim is proved.

Set I(tuε) = Iε,1(t)− νIε,2(t), where

Iε,1(t) =
a

2
t2‖uε‖2 +

b

4
t4‖uε‖4 −

t6

6

∫
Ω

Q(x)u6
εdx,

and

Iε,2(t) =
t4

4

∫
Ω

u4
εdx.

First, we estimate the value Iε,1. Since I ′ε,1(t) = at‖uε‖2+bt3‖uε‖4−t5
∫

Ω
Q(x)u6

εdx,
letting I ′ε,1(t) = 0; that is,

a‖uε‖2 + bt2‖uε‖4 − t4
∫

Ω

Q(x)u6
εdx = 0, (3.13)

one obtains

T 2
ε =

b‖uε‖4 +
√
b2‖uε‖8 + 4a‖uε‖2

∫
Ω
Q(x)u6

εdx

2
∫

Ω
Q(x)u6

εdx
.

Then I ′ε,1(t) > 0 for all 0 < t < Tε and I ′ε,1(t) < 0 for all t > Tε, so Iε,1(t) attains
its maximum at Tε. From (A1), let ε→ 0+, we claim that(∫

Ω

Q(x)u6
εdx

)1/3

= Q
1/3
M |uε|

2
6 + o(ε). (3.14)

In fact, for all ε > 0, it follows that∣∣∣∣∫
Ω

Q(x)u6
εdx−

∫
Ω

QMu
6
εdx

∣∣∣∣ ≤ ∫
Ω

|Q(x)−Q(x0)|u6
εdx

≤
∫
{x∈Ω: |x−x0|≤δ̃}

|Q(x)−Q(x0)|u6
εdx.

(3.15)

From (A1), for all η > 0, there exists δ > 0 such that

|Q(x)−Q(x0)| < η|x− x0|, for all 0 < |x− x0| < δ.

When ε > 0 small enough, for δ > ε1/2, it follows from (3.15) and (A1) that∣∣∣ ∫
Ω

Q(x)u6
εdx−

∫
Ω

QMu
6
εdx
∣∣∣

≤
∫
{x∈Ω:|x−x0|≤δ̃}

|Q(x)−Q(x0)|u6
εdx

<

∫
{x∈Ω:|x−x0|≤δ}

η|x− x0|
(3ε2)3/2

[ε2 + |x− x0|2]3
dx
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+
∫
{x∈Ω: δ<|x−x0|≤δ̃}

(3ε2)3/2

[ε2 + |x− x0|2]3
dx

=
√

27η
∫ δ

0

r3 ε3

(ε2 + r2)3
dr +

√
27
∫ δ̃

δ

ε3r2

(ε2 + r2)3
dr

=
√

27ηε
∫ δ

ε

0

r3

(1 + r2)3
dr +

√
27
∫ δ̃

ε

δ
ε

r2

(1 + r2)3
dr

≤ C8ηε+ C9ε
3.

Consequently, one has∣∣∫
Ω
Q(x)u6

εdx−
∫

Ω
QMu

6
εdx
∣∣

ε
≤ C8η + C9ε

2,

which implies

lim sup
ε→0+

∣∣ ∫
Ω
Q(x)u6

εdx−
∫

Ω
QMu

6
εdx
∣∣

ε
≤ C8η.

Then from the arbitrariness of η, we obtain (3.14). Thus, from (3.10) and (3.14),
one gets ∫

Ω

Q(x)u6
εdx = QM |uε|66 + o(ε) = QMS

3/2 + o(ε). (3.16)

Thus from (3.9),(3.12),(3.13) and (3.16), we have

Iε,1(t) ≤ Iε,1(Tε)

= T 2
ε

(a
2
‖uε‖2 +

b

4
T 2
ε ‖uε‖4 −

T 4
ε

6

∫
Ω

Q(x)u6
εdx
)

= T 2
ε

(a
3
‖uε‖2 +

b

12
T 2
ε ‖uε‖4

)
=
ab‖uε‖6 + a‖uε‖2

√
b2‖uε‖8 + 4a‖uε‖2

∫
Ω
Q(x)u6

εdx

6
∫

Ω
Q(x)u6

εdx

+
b3‖uε‖12 + 2ab‖uε‖6

∫
Ω
Q(x)u6

εdx

24
( ∫

Ω
Q(x)u6

εdx
)2

+
b2‖uε‖4

√
b2‖uε‖8 + 4a‖uε‖2

∫
Ω
Q(x)u6

εdx

24
( ∫

Ω
Q(x)u6

εdx
)2

=
ab‖uε‖6

4
∫

Ω
Q(x)u6

εdx
+

b3‖uε‖12

24(
∫

Ω
Q(x)u6

εdx)2

+
a‖uε‖2

√
b2‖uε‖8 + 4a‖uε‖2

∫
Ω
Q(x)u6

εdx

6
∫

Ω
Q(x)u6

εdx

+
b2‖uε‖4

√
b2‖uε‖8 + 4a‖uε‖2

∫
Ω
Q(x)u6

εdx

24
( ∫

Ω
Q(x)u6

εdx
)2

=
ab(S

9
2 +O(ε))

4(QMS3/2 + o(ε))
+

b3(S9 +O(ε))
24(QMS3/2 + o(ε))2
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+
a(S3/2 +O(ε))

√
b2S6 + 4aS3 +O(ε)

6(QMS3/2 + o(ε))

+
b2(S6 +O(ε))

√
b2S6 + 4aS3 +O(ε)

24(QMS3/2 + o(ε))2

=
abS3

4QM
+

b3S6

24Q2
M

+
aS
√
b2S4 + 4aSQM

6QM

+
b2S4

√
b2S4 + 4aSQM
24Q2

M

+O(ε)

= Λ +O(ε). (3.17)

Second, we estimate the value of Iε,2. From (3.11), since 0 < t0 < tε < T0, one
has

Iε,2(tε) =
t4ε
4

∫
Ω

u4
εdx ≥

t40
4

∫
Ω

u4
εdx ≥ C10ε. (3.18)

Thus, from (3.17) and (3.18), one gets

I(tuε) = Iε,1(t)− νIε,2(t)

≤ Iε,1(tε)− νIε,2(tε)

≤ Iε,1(Tε)−
t40
4
ν

∫
Ω

u4
εdx

≤ Λ +O(ε)− C10νε < Λ,

provided that ν is large enough. Thus there exists ν∗ > 0 such that I(tuε) < Λ for
all ν > ν∗. This completes the proof. �

Proof of Theorem 1.3. As in the proof of Theorem 1.1, we can obtain that I has
the geometry of mountain pass lemma in H1

0 (Ω). According to Lemmas 3.1 and
3.2, it follows that I satisfies the conditions of the mountain pass lemma. Then as
in the proof of Theorem 1.1, we obtain that (1.1) has a positive solution u∗ with
I(u∗) > 0 as long as ν > ν∗. The proof is complete. �
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[6] H. Brézis, L. Nirenberg; Positive solutions of nonlinear elliptic equations involving critical

exponents, Comm. Pure Appl. Math., 36 (1983), 437–477.

[7] C. Y. Chen, Y. C. Kuo, T. F. Wu; he Nehari manifold for a Kirchhoff type problem involving
sign-changing weight functions, J. Differential Equations, 250 (2011), 1876–1908.

[8] G. M. Figueiredo, G. Molica Bisci, R. Servadei; On a fractional Kirchhoff-type equation via

Krasnoselskii’s genus, Asymptot. Anal., 94 (2015), 347–361.
[9] X. M. He, W. M. Zou; Infnitely many solutions for Kirchhoff-type problems, Nonlinear Anal.,

70 (2009), 1407–1414.

[10] X. M. He, W. M. Zou; Existence and concentration behavior of positive solutions for a
Kirchhoff equation in R3, J. Differential Equations, 252 (2012), 1813–1834.

[11] X. M. He, W. M. Zou; Ground states for nonlinear Kirchhoff equations with critical growth,

Ann. Mat. Pura Appl., 193 (2014), 473–500.
[12] C. Y. Lei, J. F. Liao, C. L. Tang; Multiple positive solutions for Kirchhoff type of problems

with singularity and critical exponents, J. Math. Anal. Appl., 421 (2015), 521–538.
[13] Y. H. Li, F. Y. Li, J. P. Shi; Existence of a positive solution to Kirchhoff type problems

without compactness conditions, J. Differential Equations, 253 (2012), 2285–2294.

[14] X. Liu, Y.J. Sun; Multiple positive solutions for Kirchhoff type problems with singularity,
Commun. Pure Appl. Anal., 12 (2013), 721–733.

[15] A. M. Mao, S. X. Luan; Sign-changing solutions of a class of nonlocal quasilinear elliptic

boundary value problems, J. Math. Anal. Appl., 383 (2011), 239–243.
[16] A. M. Mao, Z. T. Zhang; Sign-changing and multiple solutions of Kirchhoff type problems

without the P.S. condition, Nonlinear Anal., 70 (2009), 1275–1287.

[17] G. Molica Bisci, P. F. Pizzimenti; Sequences of weak solutions for non-local elliptic problems
with Dirichlet boundary condition, Proc. Edinb. Math. Soc., 57 (2014), 779–809.
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