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NUMERICAL SOLUTIONS FOR VOLTERRA
INTEGRO-DIFFERENTIAL FORMS OF LANE-EMDEN
EQUATIONS OF FIRST AND SECOND KIND USING

LEGENDRE MULTI-WAVELETS

PRAKASH KUMAR SAHU, SANTANU SAHA RAY

Abstract. A numerical method based on Legendre multi-wavelets is applied
for solving Lane-Emden equations which form Volterra integro-differential equa-

tions. The Lane-Emden equations are converted to Volterra integro-differential
equations and then are solved by the Legendre multi-wavelet method. The

properties of Legendre multi-wavelets are first presented. The properties of

Legendre multi-wavelets are used to reduce the system of integral equations to
a system of algebraic equations which can be solved by any numerical method.

Illustrative examples are discussed to show the validity and applicability of

the present method.

1. Introduction

In this article, we discuss a Lane-Emden equation of first kind [5, 11, 12, 13, 14]
of the form

y′′ +
κ

x
y′ + ym = 0, y(0) = 1, y′(0) = 0, κ > 1 (1.1)

and Lane-Emden equation of second kind [4, 9, 15] of the form

y′′ +
κ

x
y′ + ey = 0, y(0) = 1, y′(0) = 0, κ ≥ 1 (1.2)

where κ is the shape factor.
Equation (1.1) is a basic equation in the theory of stellar structure [2]. It is used

in astrophysics for computing the structure of interiors of polytropic stars. This
equation describes the temperature variation of a spherical gas cloud under the
mutual attraction of its molecules and subject to the laws of thermodynamics [12].
The Lane-Emden equation of the first kind appears also in other contexts such
as radiative cooling, self-gravitating gas clouds, mean-field treatment of a phase
transition in critical adsorption, and modeling of clusters of galaxies.

Equation (1.2) is the Lane-Emden equation of the second kind that models the
non-dimensional density distribution y(x) in an isothermal gas sphere [10]. In the
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study of stellar structures one considers the star as a gaseous sphere in thermody-
namic and hydrostatic equilibrium for a certain equation of state [3].

The well-known Lane-Emden equation has been used to model several phenom-
ena in mathematical physics and astrophysics such as the theory of stellar structure,
the thermal behavior of a spherical cloud of gas, isothermal gas spheres, the theory
of thermionic currents, and in the modeling of clusters of galaxies. A substantial
amount of work has been done on these types of problems for various structures.
The singular behavior that occurs at x = 0 is the main difficulty of eqs. (1.1)–(1.2).

In this article, our main work is to establish Volterra integro-differential equa-
tion equivalent to the Lane-Emden equation of first and second kind. The newly
established Volterra integro-differential equation will be solved by using the Le-
gendre multi-wavelet method (LMWM). Legendre multi-wavelet method has been
applied to solve the integral equations and integro-differential equations of different
forms [7, 8, 17, 1, 18]. The Legendre multi-wavelet method converts the Volterra
integro-differential equation to a system of algebraic equations and that algebraic
equations system again can be solved by any of the usual numerical methods.

2. Volterra integro-differential form of the Lane-Emden equation

Let us consider the Lane-Emden equation

y′′(x) +
κ

x
y′(x) + f(y) = 0, y(0) = α, y′(0) = 0, κ ≥ 1. (2.1)

Multiplying by xκ and integrating on [0, x] we have

y′(x) = −
∫ x

0

( tκ
xκ
)
f(y(t))dt κ ≥ 1, y(0) = α. (2.2)

Integrating again on [0, x], (2.1) becomes

y(x) = α− 1
κ− 1

∫ x

0

t
(

1− tκ−1

xκ−1

)
f(y(t))dt. (2.3)

3. Properties of Legendre multi-wavelets

Wavelets constitute a family of functions constructed from dilation and trans-
lation of a single function called mother wavelet. When the dilation parameter a
and the translation parameter b vary continuously, we have the following family of
continuous wavelets as

Ψa,b(x) = |a|−1/2Ψ
(x− b

a

)
, a, b ∈ R, a 6= 0 (3.1)

If we restrict the parameters a and b to discrete values as a = a−k0 , b = nb0a
−k
0 ,

a0 > 1, b0 > 0 and n, and k are positive integers, we have the following family of
discrete wavelets:

ψk,n(x) = |a0|−k/2ψ(ak0x− nb0),

where ψk,n(x) forms a wavelet basis for L2(R). In particular, when a0 = 2 and
b0 = 1, then ψk,n(x) form an orthonormal basis.

Legendre multi-wavelets ψn,m(x) = ψ(k, n,m, x) have four arguments. n =
0, 1, 2, . . . , 2k − 1, k ∈ Z+, where m is the order of Legendre polynomials and x is
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normalized time. These functions are defined on [0, T ) as (see [16])

ψn,m(x) =

{√
2m+ 1

(
2k/2
√
T

)
Pm
(

2kx
T − n

)
, nT

2k ≤ x < (n+1)T
2k

0, otherwise,
(3.2)

where m = 0, 1, . . . ,M − 1 and n = 0, 1, 2, . . . , 2k − 1. The dilation parameter is
a = 2−kT and translation parameter is b = n2−kT .

Here Pm(x) are the well-known shifted Legendre polynomials of order m, which
are defined on the interval [0, 1], and can be determined with the aid of the following
recurrence formulae

P0(x) = 1, P1(x) = 2x− 1,

Pm+1(x) =
(2m+ 1
m+ 1

)
(2x− 1)Pm(x)−

( m

m+ 1
)
Pm−1(x), m = 1, 2, 3, . . .

4. Function approximation by Legendre multi-wavelets

A function f(x) defined over [0, T ) can be expressed by the Legendre multi-
wavelets as

f(x) =
∞∑
n=0

∞∑
m=0

cn,mψn,m(x) (4.1)

where cn,m = 〈f(x), ψn,m(x)〉, in which 〈·, ·〉 denotes the inner product. If the
infinite series in (4.1) is truncated, then (4.1) can be written as

f(x) ∼=
2k−1∑
n=0

M∑
m=0

cn,mψn,m(x) = CTΨ(x) (4.2)

where C and Ψ(x) are (2k(M + 1)× 1) matrices given by

C = [c0,0, c0,1, . . . , c0,M , c1,0, . . . , c1,M , . . . , c2k−1,0, . . . , c2k−1,M ]T , (4.3)

Ψ(x) = [ψ0,0(x), ψ0,1(x), . . . , ψ0,M (x), . . . , ψ2k−1,0(x), . . . , ψ2k−1,M (x)]T . (4.4)

5. Legendre multi-wavelet method for Volterra
integro-differential equation form of Lane-Emden equation

Consider the Volterra integro-differential equation given in (2.2) which is the
form of Lane-Emden equation defined in (2.1). To apply the Legendre multi-
wavelets, we first approximate the unknown function y(x) as

y(x) = CTΨ(x), (5.1)

where C is defined similar to (4.3).
Integrating (2.2) and using the initial condition y(0) = α, we have

y(x) = α−
∫ x

0

[ ∫ z

0

( tκ
zκ

)
f(y(t))dt

]
dz, κ ≥ 1 (5.2)

Then from (5.1) and (5.2), we have

CTΨ(x) = α−
∫ x

0

[ ∫ z

0

( tκ
zκ

)
f(CTΨ(t))dt

]
dz, κ ≥ 1

= α−
∫ x

0

H(z)dz,
(5.3)
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where

H(z) =
∫ z

0

( tκ
zκ

)
f(CTΨ(t))dt.

Now we collocate (5.3) at xi = (2i−1)T
2k+1(M+1)

, i = 1, 2, . . . , 2k(M + 1) as

CTΨ(xi) = α−
∫ xi

0

H(z)dz (5.4)

To use the Gaussian integration formula for (5.4), we transfer the interval [0, xi]
into the interval [−1, 1] by means of the transformation

τ =
2
xi
z − 1

Equation (5.4) can be written as

CTΨ(xi) = α− xi
2

∫ 1

−1

H
(xi

2
(τ + 1)

)
dτ. (5.5)

Using the Gaussian integration formula, we obtain

CTΨ(xi) ∼= α− xi
2

s∑
j=1

wjH
(xi

2
(τj + 1)

)
, (5.6)

where τj are s zeros of Legendre polynomials Ps+1 and wj are the corresponding
weights. The idea behind the above approximation is the exactness of the Gaussian
integration formula for polynomials of degree not exceeding 2s+ 1. Equation (5.6)
gives a system of 2k(M + 1) nonlinear algebraic equations with same number of
unknowns for coefficient matrix C. Solving this system numerically by Newton’s
method, we can get the values of unknowns for C and hence we obtain the solution
y(x) = CTΨ(x).

6. Convergence analysis

Theorem 6.1. The series solution y(x) =
∑∞
n=0

∑∞
m=0 cn,mψn,m(x) defined in

(4.1) using Legendre multi-wavelet method converges to y(x).

Proof. The set {ψn,m;n,m = 0, 1, . . .} is a complete orthonormal set in the Hilbert
space L2(R). Let y(x) =

∑M
m=0 Cn,mψn,m(x) where Cn,m = 〈y(x), ψn,m(x)〉, for

fixed n. Let us denote ψn,m(x) = ψ(x) and let αj = 〈y(x), ψ(x)〉. Now we define
the sequence of partial sum {Sn} of

(
αjψ(xj)

)
. Let {Sn} and {Sm} be the partial

sums with n ≥ m. We have to prove {Sn} is a Cauchy sequence in the Hilbert
space. Let Sn =

∑n
j=1 αjψ(xj). Now

〈y(x), Sn〉 = 〈y(x),
n∑
j=1

αjψ(xj)〉 =
n∑
j=1

|αj |2.

We claim that

‖Sn − Sm‖2 =
n∑

j=m+1

|αj |2, n > m.

Now

‖
n∑

j=m+1

αjψ(xj)‖2 = 〈
n∑

j=m+1

αjψ(xj),
n∑

j=m+1

αjψ(xj)〉 =
n∑

j=m+1

|αj |2,
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for n > m. Therefore,

‖
n∑

j=m+1

αjψ(xj)‖2 =
n∑

j=m+1

|αj |2, for n > m.

From Bessel’s inequality, we have
∑∞
j=1 |αj |2 is convergent and hence

‖
n∑

j=m+1

αjψ(xj)‖2 → 0 as n→∞.

So,

‖
n∑

j=m+1

αjψ(xj)‖ → 0

and {Sn} is a Cauchy sequence and it converges to s (say).
We assert that y(x) = s. In fact,

〈s− y(x), ψ(xj)〉 = 〈s, ψ(xj)〉 − 〈y(x), ψ(xj)〉
= 〈 lim

n→∞
Sn, ψ(xj)〉 − αj

= αj − αj .

This implies 〈s−y(x), ψ(xj)〉 = 0, which gives y(x) = s and
∑n
j=1 αjψ(xj) converges

to y(x) as n→∞ and completes the proof. �

7. Illustrative examples

Example 7.1. Consider the generalized form of Lane-Emden equation of first kind

y′′(x) +
κ

x
y′(x) + ym(x) = 0, κ ≥ 1, y(0) = 1, y′(0) = 0.

This equation is equivalent to the integro-differential equation

y′(x) = −
∫ x

0

( tκ
xκ
)
ym(t)dt, y(0) = 1, κ ≥ 1.

The exact solutions of this problem for κ = 2 and m = 0, 1, 5 respectively are

y(x) = 1− 1
3!
x2

y(x) =
sinx
x

y(x) =
(
1 +

x2

3
)−1/2

The approximate solutions obtained by Legendre multi-wavelet method (M =
7, k = 1) for shape factor κ = 2 and m = 0, 1, 5 with their corresponding exact
solutions and absolute errors have been shown in Tables 1–3 respectively.

Example 7.2. Consider the Lane-Emden equation of second kind

y′′(x) +
κ

x
y′(x) + ey(x) = 0, y(0) = y′(0) = 0, κ > 1.

This equation is equivalent to

y′(x) = −
∫ x

0

( tκ
xκ
)
ey(t)dt, y(0) = 1, κ > 1.
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x LMWM solution Exact solution Absolute error
0.2 0.993333 0.993333 2.66664E-12
0.4 0.973333 0.973333 2.13333E-11
0.6 0.940000 0.940000 7.20001E-11
0.8 0.893333 0.893333 1.70667E-10
1 0.833333 0.833333 3.33333E-10

Table 1. Numerical solutions for Example 7.1 when κ = 2, m = 0

x LMWM solution Exact solution Absolute error
0.2 0.993347 0.993347 2.45593E-9
0.4 0.973546 0.973546 5.46664E-10
0.6 0.941071 0.941071 2.45289E-10
0.8 0.896695 0.896695 1.94895E-10
1 0.841471 0.841471 2.45936E-10

Table 2. Numerical solutions for Example 7.1 when κ = 2, m = 1

x LMWM solution Exact solution Absolute error
0 1 1 2.66055E-9
0.2 0.993399 0.993399 1.07934E-11
0.4 0.974355 0.974355 1.17952E-11
0.6 0.944911 0.944911 1.64531E-11
0.8 0.907841 0.907841 2.17233E-11

Table 3. Numerical solutions for Example 7.1 when κ = 2, m = 5

The approximate solutions obtained by Legendre multi-wavelet method (M =
7, k = 1) for shape factor κ = 2, 3, 4 have been compared with the solutions obtained
by a variational iteration method (VIM) [14] cited in Table 4.

x κ = 2 κ = 3 κ = 4
LMWM VIM LMWM VIM LMWM VIM

0 -5.7433E-11 0 -2.484E-11 0 -1.2637E-11 0
0.2 -0.006653 -0.006653 -0.004992 -0.004992 -0.003994 -0.003994
0.4 -0.026456 -0.026456 -0.019868 -0.019868 -0.015909 -0.015909
0.6 -0.058944 -0.058944 -0.044337 -0.044337 -0.035544 -0.035544
0.8 -0.103386 -0.103386 -0.077935 -0.077935 -0.062578 -0.062578

Table 4. Numerical solutions for Example 7.2

Example 7.3. Next, consider the Lane-Emden type equation given by

y′′(x) +
8
x
y′(x) + (18y(x) + 4y(x) ln(y(x)) = 0, y(0) = 1, y′(0) = 0
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The Volterra integro-differential form of this equation is given by

y′(x) +
∫ x

0

t8

x8
(18y(t) + 4y(t) ln y(t))dt = 0, y(0) = 1

with exact solution e−x
2

. The Legendre multi-wavelets solutions for M = 7, k = 1
along with their corresponding exact solutions and absolute errors have been shown
in Table 5.

x LMWM solution Exact solution Absolute error
0 1 1 3.95615E-8
0.1 0.990050 0.990050 2.96242E-10
0.2 0.960789 0.960789 3.82808E-10
0.3 0.913931 0.913931 2.95619E-8
0.4 0.852143 0.852143 4.68592E-7
0.5 0.778797 0.778797 3.64064E-6

Table 5. Numerical solutions for Example 7.3

Example 7.4. Consider the Lane-Emden type equation given by

y′′(x) +
1
x
y′(x) + (3y5(x)− y3(x)) = 0, y(0) = 1, y′(0) = 0

The Volterra integro-differential form of this equation is given by

y′(x) +
∫ x

0

t

x
(3y5(t)− y3(t))dt = 0, y(0) = 1

with exact solution 1√
1+x2 . The Legendre multi-wavelets solutions for M = 7, k = 1

along with their corresponding exact solutions and absolute errors have been shown
in Table 6.

x LMWM solution Exact solution Absolute error
0 1 1 9.41731E-8
0.2 0.980581 0.980581 8.91026E-10
0.4 0.928477 0.928477 1.53517E-9
0.6 0.857493 0.857493 1.16852E-9
0.8 0.780869 0.780869 1.55470E-9

Table 6. Numerical solutions for Example 7.4

Example 7.5. Consider the Lane-Emden type equation given by

y′′(x) +
2
x
y′(x) + 4

(
2ey(x) + e

y(x)
2

)
= 0, y(0) = y′(0) = 0.

The Volterra integro-differential form of this equation is given by

y′(x) +
∫ x

0

t2

x2

(
4
(

2ey(t) + e
y(t)
2

))
dt = 0, y(0) = 0
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with exact solution −2 ln(1 + x2). The Legendre multi-wavelets solutions for M =
7, k = 1 along with their corresponding exact solutions and absolute errors have
been shown in Table 7.

x LMWM solution Exact solution Absolute error
0 1.1743E-7 0 1.17430E-7
0.2 -0.078441 -0.078441 1.25003E-9
0.4 -0.296840 -0.296840 1.65908E-7
0.6 -0.614985 -0.614969 1.52712E-5
0.8 -0.989704 -0.989392 3.11348E-4

Table 7. Numerical solutions for Example 7.5

Example 7.6. Consider the system of nonlinear Lane-Emden type equations given
by

y′′1 (x) +
8
x
y′1(x) + (18y1(x)− 4y1(x) ln y2(x)) = 0

y′′2 (x) +
4
x
y′2(x) + (4y2(x) ln y1(x)− 10y2(x)) = 0

with initial conditions

y1(0) = 1, y′1(0) = 0,

y2(0) = 1, y′2(0) = 0

The system of nonlinear Volterra integro-differential form of the above system is
given by

y′1(x) +
∫ x

0

t8

x8
(18y1(t)− 4y1(t) ln y2(t))dt = 0,

y′2(x) +
∫ x

0

t4

x4
(4y2(t) ln y1(t)− 10y2(t))dt = 0,

with initial conditions y1(0) = 1, y2(0) = 1. The corresponding exact solutions
of this system are

y1(x) = e−x
2
, y2(x) = ex

2

The approximate solutions obtained by Legendre multi-wavelet method for M =
7, k = 1 along with their corresponding exact solutions and absolute errors have
been shown in Table 8.

Example 7.7. To verify the accuracy of the presented method, we have considered
a fractional order integro-differential equation [19] as

Dαy(x)−
∫ 1

0

xt[y(t)]2dt = 1− x

4
, 0 ≤ x < 1, 0 < α ≤ 1,

with initial condition y(0) = 0 and the exact solution y(x) = x when α = 1. This
problem has been solved by Chebyshev wavelet method (CWM) in [19] for α = 1.
The results obtained by the Chebyshev wavelet method [19] have been compared
with the results obtained by presented method and the root mean square errors
(RMSE) of these two methods have been cited in Table 9.
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x LMWM solution Exact solution Absolute error
y1(x) y2(x) y1(x) y2(x) y1(x) y2(x)

0 1 1 1 1 7.15876E-8 8.44232E-8
0.1 0.99005 1.01005 0.99005 1.01005 5.61584E-10 6.59049E-10
0.2 0.960789 1.04081 0.960789 1.04081 9.69923E-10 3.34747E-10
0.3 0.913931 1.09417 0.913931 1.09417 3.5286E-8 4.47131E-8
0.4 0.852144 1.17351 0.852144 1.17351 6.22823E-7 8.00388E-7
0.5 0.778805 1.28402 0.778801 1.28403 4.48153E-6 7.03964E-6

Table 8. Numerical solutions for Example 7.6

Error LMWM CWM [19]
k = 3,M = 2 k = 3,M = 2 k = 4,M = 2 k = 5,M = 2

RMSE 3.92041E-10 2.9700E-7 1.8610E-8 1.1645E-9
Table 9. Root mean square errors for Example 7.7

Example 7.8. Again to verify the accuracy of the method here presented, we
consider the nonlinear Volterra-Fredholm integro-differential equation (see [6])

y′(x) + y(x) +
1
2

∫ x

0

xy2(t)dt− 1
4

∫ 1

0

ty3(t)dt = g(x),

with g(x) = 2x+x2+ 1
10x

6− 1
32 and initial condition y(0) = 0. The exact solution of

this problem is x2. This problem has been solved by hybrid Legendre polynomials
and Block-Pulse functions (HLPBPF) in [6]. The results obtained using HLPBPF
[6] are compared with the results obtained by presented method and cited in Table
10. The maximum absolute errors obtained by these two methods has been cited
in Table 11.

x LMWM HLPBPF [6] Exact
M = 8, k = 1 M = 8, n = 2 M = 8, n = 4 M = 8, n = 4

0 0 0 0 0 0
0.1 0.01 0.010917 0.010256 0.010031 0.01
0.2 0.04 0.041703 0.040487 0.040075 0.04
0.3 0.09 0.092364 0.090698 0.090171 0.09
0.4 0.16 0.162911 0.160866 0.160094 0.16
0.5 0.25 0.253371 0.250997 0.250228 0.25
0.6 0.36 0.364244 0.361061 0.360502 0.36
0.7 0.49 0.493830 0.490969 0.490583 0.49
0.8 0.64 0.642375 0.640830 0.640374 0.64
0.9 0.81 0.810337 0.810183 0.810047 0.81

Table 10. Numerical solutions for Example 7.8

Conclusion. Using the equivalence between the Lane-Emden equations of first
and second kind and Volterra integro-differential equations a numerical method
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Error LMWM HLPBPF [6]
M = 8, k = 1 M = 8, n = 2 M = 8, n = 4 M = 8, n = 8

Max. Abs. Err. 1.85984E-9 4.244E-3 1.0610E-3 5.83E-4
Table 11. Maximum absolute errors for Example 7.8

that overcomes the difficulty of the singular behavior at x = 0 is established. The
numerical method is reduced to solving a system of algebraic equations. Exam-
ples that demonstrate the validity and applicability of the present technique are
included. These examples also exhibit the accuracy and efficiency of the proposed
method.
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