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SPATIALLY-STRUCTURED

ENVIRONMENTAL-ECONOMIC MODEL
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Abstract. A deterministic model of economic growth and pollution accumu-

lation, in the form of a system of partial differential equations, is designed and

analyzed. The model assumes pollution as a by-product of production. The
stock of pollution has a negative impact on production. The accumulation

of pollution is dampened by a share of the investments, in the form of an
environmental tax. We consider a linear region where both capital and pollu-

tion can diffuse. This economic-environmental model is described by a pair of

partial differential equations whose dynamics and steady state characteristics
with respect to time and space are studied. Then we look at this ambient

environment from the point of view of a social planner who can act on the

consumption and taxation, also functions of time and space, considering the
dynamics of capital and pollution as constraints.

1. Introduction

In this paper we connect two recent strands of economic literature. The first
strand considers the joint evolution of economic growth and pollution. In the recent
decades a growing interest both in the preservation of the natural environment and
in the long run sustainability of the economic growth has compelled researchers
to devise models that could investigate the econo-environment interactions, make
predictions, and contrive recommendations for the formulation of optimal policies.
Early works in this regard can be traced back to the 70s and early 80s, see for
example [4, 9, 15, 18, 19, 22, 25]. Environmental pollution enters neoclassical
growth models both as a joint product and as a source of disutility. There are many
different approaches in the literature to mathematically model the interconnections
between the economy and the environment. Nevertheless they can be grouped
in two clusters. It is possible to consider pollution as an input of production,
assuming that the more the pollution is allowed, the less costly are the techniques
of production; alternatively, a damage function can represent the negative effect
the pollution can have on production. See [7, 28, 31, 33] for examples of the former
approach and [1, 2, 3, 13, 23] for an example of the latter. Our model formulation is
in line with those presented in [1, 3]; with respect to them, in our formulation, the
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level of taxation is affecting the level of pollution (not the level of physical capital)
and we have an extra term in the pollution equation that justifies the positive effect
of taxation on abatement activities. This makes our model more complicated, due
to the presence of quasimonotone functions. Furthermore, the present model does
not have an integral term and the objective function only includes a combination
of consumption of physical capital and the level of pollution.

The second strand of the literature is represented by the recent attempts into
extending some models of economic growth into the spatial dimension, taking into
account both the temporal and the spatial dynamics of capital. The idea of this
spatio-temporal approach has been mutated from the so-called New Economic Ge-
ography, whose founding father is the nobel awarded economist Paul Krugman
[20, 21].

In a nutshell, we present a model that combines the evolution of the economy and
its effects on the environment in the natural spatio-temporal ambience. The vector
that connects the economy and the environment is pollution. The production of
capital is negatively affected by the stock of pollution, which in turn is reduced by a
tax proportional to the level of production. The environmental tax can be an answer
to the pressing objective of ensuring a reasonable and sustainable level of pollution.
This is the rationale for the inclusion of such ‘green tax’ in our model, in order to
allow the policy makers to employ a portion of the investment to the reduction of
the quantity of pollution per unit of production (see [36] for an overview on applied
principles of environmental policies). For models involving two connected modules,
applying the same ideas to a slightly different context, see [24, 26, 27].

This article is organized as follows: The model is described in Section 2. The
dynamic analysis of the model is presented in Section 3. An associated optimal
control problem is formulated and analyzed in Section 4. Section 5 presents the
numerical simulations, and the results are discussed in Section 6.

2. The Model

In the first part of the paper we stick to the hypothesis that the decisions about
the consumption share of production (c) and the choice of the environmental tax
share (τ) are not available to the policy makers (c and τ are given parameters). We
drop this limitation in a following section, where it will be possible for the policy
maker to choose the consumption and taxation following the path of an optimal
control approach. Two partial differential equations are the building blocks of our
model, given by:

∂k

∂t
(x, t) = dk∆k +

g(k)(1− τ − c)
1 + θpp

− δkk,

∂p

∂t
(x, t) = dp∆p+

σg(k)
1 + θττ

− δpp,
(2.1)

where k and p designate capital and pollution, respectively. The reaction-diffusion
system (2.1) describes the mutual interaction between the economy and the envi-
ronment. The first equation of System (2.1) takes into account the evolution of
the capital k. The dynamics of the capital at position x depend on the production
function acting at x and the contribution of the diffusive term, ∆k. The capital can
diffuse in space, which means that the producers can decide to move their plants to
positions where they anticipate better returns. The higher the diffusion coefficient
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dk, the easier it is to move the capital from place to place (dk describes the level
of free circulation of the capital that the policy maker allows between positions x
and x + dx). In the neoclassical economic theory better returns realize where less
capital has been accumulated, thanks to the law of decreasing returns, an immedi-
ate consequence of the convexity of the production function. This is still true for a
convex-concave production function, provided that the level of accumulated capital
is above the poverty trap threshold. Not all the outcome of the process of produc-
tion is invested in the accumulation of new capital. A fraction of this outcome, c, is
dedicated to consumption. As a pollution counteracting measure, another share of
production, τ , is devoted to an environmental tax whose amount would be invested
to reduce the impact of pollution on the environment. This is a version of the
Solow Model of Growth Theory [34, 35] and of its recent extension to the spatial
dimension [38], where a constant fraction of production, 1 − c − τ , is invested in
the accumulation of the capital. It is important to underline how the parameter
A, the total factor productivity, reads in our model. Usually this parameter con-
veys information about the effect of technology on the production function, and it
can be either exogenously or endogenously determined. In our model, A = 1

1+θpp
;

that is, we allow the pollution to negatively impact the production through a term
that can be interpreted as a factor inhibiting the performance of the economy, or
a damage function. This formulation says that if pollution is zero, then there is
no externality on production. Otherwise the production decreases proportionally
with the increase in pollution. One can imagine, for example, that high levels of
pollution, by destroying environmental amenities, make disconsolate and/or less
productive human beings (see [37] for a study of the effect of the environmental
pollution on the productivity of labor). The depreciation of the capital is taken
into account by the term δkk, a rather standard assumption.

The second equation in (2.1) describes the accumulation and diffusion of pollu-
tion p. Pollution is a by-product of the production, as is clear from the source term
σg(k)
1+θττ

. The level of pollution at position x is also given by the amount of pollution
reaching x through the process of diffusion. The current model considers a compos-
ite pollutant, whose diffusion properties are summed up by the diffusion coefficient
dp. One can think about a combination of greenhouse gases. Moreover we observe
that the flow of pollution per unit of production, σ

1+θττ
, depends on the level of the

environmental tax share. The model assumes that the resources collected through
the environmental taxation are employed to develop cleaner industrial processes or
abatement activities that facilitate the reduction of pollution level, given the same
amount of production. The term δpp describes the self-cleaning capacity of the en-
vironment. In a more realistic approach the exponential decay of pollution must be
accompanied by a nonlinear feedback term that recounts the possible irreversibil-
ities and hysteresis connected to the environmental degradation. Indeed, it is not
always possible to restore the initial conditions of the environment by stopping the
economic activity that deteriorated the environment in the first place.

The general form of the production function g(k) is

g(k) =
α1k

n

1 + α2kn
, n ∈ Z, α1, α2 ≥ 0. (2.2)

We consider two different shapes of the production function:

• S−shaped production function with n = 2 and α2 6= 0;
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• Concave production function with n = 1 and α2 6= 0.
The standard neoclassical (concave) production function, with n = 1 and α2 6= 0,
has convenient properties from the point of view of the neoclassical economic the-
ory: Positivity and decreasing return to capital. Yet there are circumstances that
are not properly modeled if some departures from pure concavity are not allowed
for. Hence, following the famous idea of Skiba [32], we allow for the existence of
non-concavity. With n = 2 and α2 6= 0 the function g(k) is a convex-concave
(S−shaped) production function, meaning that for values of k up to a certain
threshold the function exhibits convexity, and then concavity (it has the so-called
S−shaped form). In terms of the economic literature, the function exhibits in-
creasing and then decreasing return to capital. The S−shaped curve is not a pure
neoclassical production function because it does not respect the law of diminishing
return for all the values of k (the second derivative is not always negative), but it
gives rise to richer dynamics.

3. Dynamic Analysis

Let D = Ω× [0, T ], where Ω is a bounded domain. Consider the problem
∂k

∂t
(x, t) = dk∆k + f1(k, p) in D,

∂p

∂t
(x, t) = dp∆p+ f2(k, p) in D,

(3.1)

where

f1(k, p) =
g(k)(1− τ − c)

1 + θpp
− δkk, f2(k, p) =

σg(k)
1 + θττ

− δpp,

with g given by (2.2).

Table 1. Description and values of the model parameters

Parameters Description Typical value (range)
α1
α2

Maximum production level 10
1/α2 Half-saturation constant α2 = 0.1
δk Capital depreciation rate 0.02
θp Trade-off parameter 0.001
θτ Trade-off parameter 2
σ Trade-off parameter 2
δp Pollution abatement rate 0.4
τ Green tax rate Varies

The boundary conditions are the homogeneous Neumann conditions
∂k

∂n
= 0 for x ∈ ∂Ω, t ∈ [0, T ],

∂p

∂n
= 0 for x ∈ ∂Ω, t ∈ [0, T ],

(3.2)

where n designates a unit outward normal vector to ∂Ω. The initial conditions are
given by

k(x, 0) = k0(x) for x ∈ Ω,

p(x, 0) = p0(x) for x ∈ Ω,
(3.3)
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where functions k0 and p0 are smooth. The goal is to prove the existence of a
solution of this problem (we will also prove the uniqueness in this case) and to
study the steady-state solutions. We start by introducing several definitions and
results that will be useful for the study of Problem (3.1)–(3.3). The process we will
follow is based on finding what is referred to as lower and upper solutions in order
to prove the existence and, under suitable hypotheses, uniqueness of the solution of
Problem (3.1)–(3.3). This technique is introduced in details in [30] for the systems
of parabolic as well as elliptic partial differential equations. The current model
contains mixed quasimonotone functions, which will be elaborated in the following
section.

Preliminary results. To prove the existence of a solution of System (3.1), subject
to the boundary and initial conditions (3.2) and (3.3), we need to introduce some
preliminary results. These results can be found in more details in [30]. Consider
the system

∂ui
∂t

= Liui + gi(x, t, u1, u2) in D,

Biui = hi(x, t) for x ∈ ∂Ω, t ∈ [0, T ],

ui(x, 0) = ui,0(x) for x ∈ Ω,

(3.4)

for i = 1, 2, where ui,0 ∈ C0
L∞(Ω) and the operators Li are uniformly elliptic with

Hölder continuous coefficients and having the form

Li ≡
n∑

j,l=1

a
(i)
j,l (x, t)

∂2

∂xj∂xl
+

n∑
j=1

b
(i)
j (x, t)

∂

∂xj
,

and Bi are defined as

Bi ≡ βi(x, t)
∂

∂n
+ γi(x, t),

where βi and γi are continuous for i = 1, 2, βi ≥ 0, γi ≥ 0, βi + γi > 0, and n being
the unit outward normal vector to ∂Ω.

Definition 3.1. (g1, g2) = (g1(r, s), g2(r, s)) is called mixed quasimonotone when

∂g1

∂s
≤ 0 and

∂g2

∂r
≥ 0,

or vice versa.

Definition 3.2. Suppose that (g1, g2) is mixed quasimonotone. We call u =

(u1, u2) and u = (u1, u2) in
(
C2,1
L∞(Ω× [0, T ])

)2

coupled ordered upper and lower
solutions of (3.4) if they satisfy the following relations for i = 1, 2:

u ≥ u,
Biui ≥ hi(x, t) ≥ Biui,

ui(x, 0) ≥ ui,0(x) ≥ ui(x, 0),
∂u1

∂t
− L1u1 − g1(x, t, u1, u2) ≥ 0 ≥ ∂u1

∂t
− L1u1 − g1(x, t, u1, u2),

∂u2

∂t
− L2u2 − g2(x, t, u1, u2) ≥ 0 ≥ ∂u2

∂t
− L2u2 − g2(x, t, u1, u2).
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Theorem 3.3. Let (u1, u2) and (u1, u2) be coupled upper and lower solutions of
(3.4) and let (g1, g2) be mixed quasimonotone in

〈u, u〉 :=
{

(u1, u2) ∈
(
C2,1
L∞(Ω× [0, T ])

)2 : (u1, u2) ≤ (u1, u2) ≤ (u1, u2)
}
.

Then, Problem (3.4) has a unique solution u in 〈u, u〉.

Existence and uniqueness of a solution.

Theorem 3.4. Problem (3.1) subject to the conditions (3.2) and (3.3) has a solu-
tion and this solution is unique.

Proof. We first observe that f = (f1(k, p), f2(k, p)) is mixed quasimonotone. Indeed

∂f1

∂p
= g(k)(1− τ − c) (−θp)

(1 + θpp)2
≤ 0,

∂f2

∂k
=

σ

1 + θττ
g′(k) =

σ

1 + θττ

nα1k
n−1

(1 + α2kn)2
≥ 0.

We now prove the existence of lower and upper solutions of (3.1), denoted by (k, p)
and (k, p) respectively, satisfying the following conditions:

k ≥ k, p ≥ p,
∂k

∂n
≥ 0 ≥ ∂k

∂n
,

∂p

∂n
≥ 0 ≥

∂p

∂n
,

k(x, 0) ≥ k0(x) ≥ k(x, 0),

p(x, 0) ≥ p0(x) ≥ p(x, 0),

∂k

∂t
− dk∆k − f1(k, p) ≥ 0 ≥ ∂k

∂t
− dk∆k − f1(k, p),

∂p

∂t
− dp∆p− f2(k, p) ≥ 0 ≥

∂p

∂t
− dp∆p− f2(k, p).

Let k = 0 and note that it satisfies ∂k
∂t ≤ dk∆k + f1(k, p). Using k = 0, p satisfies

∂p

∂t
≤ dp∆p− δpp,

∂p

∂n
≤ 0,

p(x, 0) ≤ p0.

It is reasonable to choose p = min{0, infΩ p0}, which leads to p = 0 (since p0(x, t) ≥
0 for all valid (x, t), by definition). Considering k independent of x and noticing
that p = 0 the upper solution k satisfies

∂k

∂t
≥ g(k)(1− τ − c)− δkk,

∂k

∂n
≥ 0,

k(x, 0) ≥ k0.
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Denoting a := α1(1− τ − c),

∂k

∂t
≥ h(k)− δkk,

where h(x) = axn

1+α2xn
. Since h is increasing for x > 0 and limx→∞ h(x) = a

α2
, it is

sufficient to look for a k that satisfies

∂k

∂t
≥ a

α2
− δkk.

Therefore, we consider the initial value problem

y′(t) =
a

α2
− δky,

y(0) = sup
Ω
k0.

(3.5)

The solution of (3.5) is

y(t) =
a

δkα2
+
(

sup
Ω
k0 −

a

δkα2

)
e−δkt.

Hence we can choose

k = max
{α1(1− τ − c)

δkα2
, sup

Ω
k0

}
.

Finally, suppose p is also space-independent. Then p must satisfy

∂p

∂t
≥ σg(k)

1 + θττ
− δpp,

along with the corresponding boundary and initial conditions. To identify p, we
similarly look for a solution of

z′(t) = µ− δpz,
z(0) = sup

Ω
p0,

(3.6)

where

µ =
σg(k)

1 + θττ
.

The solution of (3.6) is

z(t) =
µ

δp
+
(

sup
Ω
p0 −

µ

δp

)
e−δt.

One can therefore choose

p = max
{ σg(k)
δp(1 + θττ)

, sup
Ω
p0

}
.

We can now apply Theorem 3.3 to deduce the existence of a unique solution u to
(3.1)-(3.3), with

u ∈
〈

(0, 0),
(

max
{α1(1− τ − c)

δkα2
, sup

Ω
k0

}
,max

{ σg(k)
δp(1 + θττ)

, sup
Ω
p0

})〉
.

�
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Figure 1. Plot of k(x, t) and p(x, t) using the concave production function

Figure 2. Plot of k(x, t) and p(x, t) using the S−shaped produc-
tion function

A solution profile of k(x, t) and p(x, t) is provided in Figures 1 and 2.
The steady state solution of (3.1)-(3.3) is a pair of smooth functions (k?, p?)

satisfying

dk∆k? + f1(k?, p?) = 0 in Ω,

dp∆p? + f2(k?, p?) = 0 in Ω,
∂k?

∂n
=
∂p?

∂n
= 0 on ∂Ω.

This problem, although involving elliptic partial differential equations, can be ad-
dressed in a similar way as (3.1)-(3.3) by looking for upper and lower solutions
in order to deduce the existence of solutions of the problem; that is, equilibrium
solutions of (3.1)-(3.3). The tools needed for treating this problem are similar to
the ones used in the previous section and can be found in [30]. The steady state
solution profiles of k∗ and p∗ are provided in Figures 3 and 4.
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Figure 3. Plot of k∗ and p∗ using the concave production function

Figure 4. Plot of k∗ and p∗ using the S−shaped production function

4. Optimal control

So far the consumption share c and the taxation share τ have been considered
exogenous, meaning that their values have been treated as the result of exogenous
choices. Now we want to allow a social planner to choose these parameters in
such a way to optimize an objective function. The objective function takes into
account consumption as a source of utility and pollution as a source of disutility.
The planner’s problem reads

max
{c(x,t),τ(x,t)}

∫ T

0

∫ b

a

[θc(x, t)g(k(x, t))− γp(x, t)] dx dt,

subject to

∂

∂t
k(x, t) = dk

∂2k(x, t)
∂x2

+
g(k(x, t))[1− τ(x, t)− c(x, t)]

1 + θpp(x, t)
− δkk(x, t),

∂

∂t
p(x, t) = dp

∂2p(x, t)
∂x2

+
σg(k(x, t))

1 + θττ(x, t)
− δpp(x, t).

(4.1)
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The planner can choose whatever values for c and τ (s)he considers optimal, pro-
vided that these two control variables are picked in a reasonable control set. c and
τ are shares, so they need to belong to the set [0, 1]. Moreover it is plausible to
think that there is a bottom limit for the investment in new capital that cannot be
crossed. In other words, the control set has been built in such a way that consump-
tion and tax shares do not exhaust the investment; that is, c+ τ ≤ θcτ . We chose
θcτ = 0.8, but other values do not affect our qualitative results. The Hamiltonian
function H is
H = θc(x, t)g(k(x, t))− γp(x, t)

+ λk(x, t)
[
dk
∂2k(x, t)
∂x2

+
g(k(x, t))[1− τ(x, t)− c(x, t)]

1 + θpp(x, t)
− δkk(x, t)

]
+ λp(x, t)

[
dp
∂2p(x, t)
∂x2

+
σg(k(x, t))

1 + θττ(x, t)
− δpp(x, t)

]
.

(4.2)

The first order conditions to the previous problem are

∂

∂t
λk(x, t) = −dk

∂2λk(x, t)
∂x2

− θc(x, t)gk(k(x, t))

− λk(x, t)gk(k(x, t))
[1− τ(x, t)− c(x, t)]

1 + θpp(x, t)

− λp(x, t)gk(k(x, t))
σ

1 + θττ(x, t)
+ δkλk(x, t),

∂

∂t
λp(x, t) = −dp

∂2λp(x, t)
∂x2

+ γ

+ λk(x, t)g(k(x, t))
θp[1− τ(x, t)− c(x, t)]

[1 + θpp(x, t)]2

+ δpλp(x, t),

(4.3)

subject to homogeneous Neumann boundary conditions and the final conditions

λk(x, T ) = λp(x, T ) = 0.

5. Numerical Simulations

Description of the algorithm. We implemented the forward-backward sweep
method for System (4.1), (4.2) and (4.3) as follows:

(1) Choose an initial guess: (c(0), τ (0)) = (c(0)(t), τ (0)(t)).
(2) Iterate for j ≥ 0: Using the spectral method, we solved

∂k(j+1)(x, t)
∂t

= dk
∂2k(j+1)(x, t)

∂x2
+
g(k(j+1)(x, t))[1− τ (j)(x, t)− c(j)(x, t)]

1 + θpp(j+1)(x, t)

− δkk(j+1)(x, t),

∂p(j+1)(x, t)
∂t

= dp
∂2p(j+1)(x, t)

∂x2
+
σg(k(j+1)(x, t))
1 + θττ (j)(x, t)

− δpp(j+1)(x, t),

subject to

k(j+1)(x, 0) = k0(x) in Ω,

p(j+1)(x, 0) = p0(x) in Ω,
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∂k(j+1)(x, t)
∂n

= 0 for x ∈ ∂Ω,

∂p(j+1)(x, t)
∂n

= 0 for x ∈ ∂Ω,

from t = 0 to t = T . We reversed the equations (4.3) in time, via the change of
variable t̄ = T − t, turning the problem into a forward problem with zero initial
conditions. Then, we solved

∂λ
(j+1)
k (x, t̄)
∂t̄

= dk
∂2λ

(j+1)
k (x, t̄)
∂x2

+ θc(j)(x, t̄)gk(k(j+1)(x, t̄))

+ λ
(j+1)
k (x, t̄)gk(k(j+1)(x, t̄))

[1− τ (j)(x, t̄)− c(j)(x, t̄)]
1 + θpp(j+1)(x, t̄)

+ λ(j+1)
p (x, t̄)gk(k(j+1)(x, t̄))

σ

1 + θττ (j)(x, t̄)
− δkλ(j+1)

k (x, t̄),

∂λ
(j+1)
p (x, t̄)
∂t̄

= dp
∂2λ

(j+1)
p (x, t̄)
∂x2

− γ

− λ(j+1)
k (x, t̄)g(k(j+1)(x, t̄))

θp[1− τ (j)(x, t̄)− c(j)(x, t̄)]
[1 + θpp(j+1)(x, t̄)]2

− δpλ(j+1)
p (x, t̄).

subject to

λ
(j+1)
k (x, 0) = 0 in Ω,

λ
(j+1)
k (x, 0) = 0 in Ω,

∂λ
(j+1)
k (x, t̄)
∂n

= 0 for x ∈ ∂Ω,

∂λ
(j+1)
k (x, t̄)
∂n

= 0 for x ∈ ∂Ω,

from t̄ = 0 to t̄ = T . We used the ‘fmincon’ function of MATLAB (dedicated
to finding the minimum of a constrained nonlinear multivariable function) defined
below

min
x
f(x) such that



c(x) ≤ 0,
ceq(x) = 0,
A · x ≤ b,
Aeq · x = beq,

lb ≤ x ≤ ub,
to determine the values of c(x, t) and τ(x, t) that maximize H. We achieved this
by finding the values of c(x, t) and τ(x, t) that minimized −H. Here, we define

A =


1 0
0 1
1 1
−1 −1

 , b =


1
1

0.8
0

 ,

lb =
(

0
0

)
, ub =

(
1
1

)
, x =

(
c(j+1)(x, t)
τ (j+1)(x, t)

)
.
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(3) We checked convergence by computing the difference between the respective
values of c(x, t), τ(x, t), k(x, t), p(x, t), λk(x, t) and λp(x, t) in two consecutive
iterations. If the maximum of the L2-norm of the difference was negligibly small,
we output the current function as a solution, otherwise we continued iterating.

Figure 5. Plot of k(x, t), p(x, t), c(x, t) and τ(x, t) using the con-
cave production function

Figure 6. Plot of k(x, t), p(x, t), c(x, t) and τ(x, t) using the S-
shaped production function

6. Conclusions

In this article we have studied the dynamics in space and time of a coupled
environment-growth model. In the first part the analysis focused on the existence
and uniqueness of solutions. This first part can be considered a short-run analysis of
the economy with fixed values for the control variables. Then we allowed for these
variables to be chosen by a social planner. The social planner wants to optimize
the objective function given the partial differential equations describing the coupled
environmental economic system. We used a generalized version of Pontryagin’s
maximum principle as in [36], but our analysis went through the complete dynamical
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study of the solutions. In the spatial environmental economic literature, see [20,
21, 16, 17, 38, 8, 11, 12, 6, 14, 5], only the study of the solutions around a space-
homogeneous steady state was performed. By applying the Sweep Algorithm to our
framework, we have been able to perform numerical simulations of all the spatio-
temporal path.

As we can see from Figures 5 and 6, both in the case of an concave production
function and in the case of a S-shaped function, the diffusion creates spatial ho-
mogeneity: The spatial heterogeneous initial time profiles of capital and pollution
are smoothed out. As for the temporal dynamics, we see that both capital and
pollution grow along a sustainable path. The social planner finds it optimum to
let consumption share grow over time, while the green taxation share decreases si-
multaneously. In other words, it is optimum to first dedicate the major part of the
available investment resources to abatement activities, and then progressively let
consumption increase while the taxation share is being reduced. This model pro-
poses a precise suggestion for the consumption and taxation policy to be followed
when the time horizon is set to T : Consumption is supposed to increase slowly,
giving the time to the abatement activities financed by the taxation share to do its
job, namely driving the growth path of capital and pollution toward a sustainable
outcome (this is in-line with the definition of green taxation that is mainly devoted
to pollution abatement) and with the recommendations of the Organization for
Economic Co-operation and Development (OECD) on green growth and taxation.
As pointed out in [29]: “Environmentally related taxes are increasingly being used
in OECD economies and can provide significant incentives for innovation, as firms
and consumers seek new, cleaner solutions in response to the price put on pollution.
These incentives also make it commercially attractive to invest in R&D activities
to develop technologies and consumer products with a lighter environmental foot-
print”. According to the economic conclusion of our model, there exist optimal
paths for consumption and taxation that allow to reach a sustainable level of pol-
lution, together with a hopefully satisfactory level of capital. This is an interesting
result from the economic perspective and extends similar results in the literature
(see [10]).
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