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GEOMETRICAL PROPERTIES OF SYSTEMS WITH SPIRAL
TRAJECTORIES IN R3

LUKA KORKUT, DOMAGOJ VLAH, VESNA ŽUPANOVIĆ

Abstract. We study a class of second-order nonautonomous differential equa-
tions, and the corresponding planar and spatial systems, from the geometrical

point of view. The oscillatory behavior of solutions at infinity is measured by

oscillatory and phase dimensions, The oscillatory dimension is defined as the
box dimension of the reflected solution near the origin, while the phase dimen-

sion is defined as the box dimension of a trajectory of the planar system in
the phase plane. Using the phase dimension of the second-order equation we

compute the box dimension of a spiral trajectory of the spatial system. This

phase dimension of the second-order equation is connected to the asymptotic
of the associated Poincaré map. Also, the box dimension of a trajectory of

the reduced normal form with one eigenvalue equals zero, and a pair of pure

imaginary eigenvalues is computed when limit cycles bifurcate from the origin.

1. Introduction and motivation

We found our mathematical inspiration in the book by Tricot [19], where the
author introduced a new approach for studying curves. He showed for some classes
of smooth curves, nonrectifiable near the accumulation point, that fractal dimension
called box dimension, can “measure” the density of accumulation. Tricot computed
box dimension for class of spiral curves and chirps. In this article by geometric
properties of systems we mean type of solution curves, which are here spirals and
chirps. Furthermore we distinguish rectifiable and nonrectifiable curves. Whereas
box dimension of rectifiable curve is trivial, we proceed to study nonrectifiable
curves using Tricot’s fractal approach, and compute the box dimension.

Since 1970, dimension theory for dynamics has evolved into an independent field
of mathematics. Together with Hausdorff dimension, box dimension was used to
characterize dynamics, in particular chaotic dynamics having strange attractors,
see [25]. We use the box dimension, because of countable stability of Hausdorff
dimension, its value is trivial on all smooth nonrectifiable curves, while the box
dimension is nontrivial, that is, larger than 1. The box dimension is suitable tool
for classification of nonrectifiable curves. Analogously, box dimension is a good
tool for analysis of discrete dynamical systems. Using box dimension we can study
orbits of one-dimensional discrete system near its fixed point. Slow convergence to
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stable point means higher density of an orbit near its fixed point, which implies
bigger box dimension. Fast convergence is related to trivial box dimension.

A natural idea is that higher density of orbits reveals higher multiplicity of the
fixed point. The multiplicity of the fixed points is related to the bifurcations which
could be produced by varying parameters of a given family of systems. Bifurcation
theory provides a strategy for investigating the bifurcations that occur within a
family.

Žubrinić and Županović [22] showed the number of limit cycles which could be
produced from weak foci and limit cycles is directly related to the box dimension
of any trajectory. It was discovered that the box dimension of a spiral trajectory of
weak focus signals a moment of Hopf and Hopf-Takens bifurcation. The result was
obtained using Takens normal form [18]. Using a numerical algorithm for computa-
tion of box dimension of trajectory, it is possible to predict change of stability of the
system, through Hopf bifurcation. Recent results Mardešić, Resman and Županović
[11], Resman [15, 16] and Horvat Dmitrović [7], show efficiency of this approach to
the bifurcation theory. From asymptotic expansion of ε-neighborhood of an orbit,
we read box dimension and Minkowski content from the leading term. In the men-
tioned articles, it has been showed that more information about dynamical system
could be read from other terms of the asymptotic expansion of ε-neighborhood.

In this article we study nonautonomous differential equation of second order,
and the corresponding systems with spiral trajectories, in R2 and R3. The planar
system has the same type of spiral as in Takens normal form, see [18], which is
spiral with analytic first return Poincaré map, also having the same asymptotics in
each direction. Here we studied graph of solution of differential equation, as well as
the corresponding trajectories in the phase plane. The system could produce limit
cycles under perturbation, but it is left for further research.

According to the idea of qualitative theory of differential equations, oscillations
of a class of second-order differential equations have been considered by phase plane
analysis, in Pašić, Žubrinić and Županović [13]. The novelty was a fractal approach,
connecting the box dimension of the graph of a solution and the box dimension of
a trajectory in the phase plane. Oscillatory and phase dimensions for a class of
second-order differential equations have been introduced.

On the other hand, in [22, 24], the box dimension of spiral trajectories of a
system with pure imaginary eigenvalues, near singular points and limit cycles, has
been studied using normal forms, and the Poincaré map. These results are based
on the fact that these spiral trajectories are of power type in polar coordinates.
Also, it is shown that the box dimension is sensitive with respect to bifurcations,
e.g., it jumps from the trivial value 1 to the value 4/3 when the Hopf bifurcation
occurs. Degenerate Hopf bifurcation or Hopf-Takens bifurcation can reach even
larger box dimension of a trajectory near a singular point. This value is related
to the multiplicity of the singular point surrounded with spiral trajectories. This
phenomenon has been discovered for discrete systems in Elezović, Županović and
Žubrinić [2] concerning saddle-node and period-doubling bifurcations, and general-
ized in [7]. Also, in [11] there are results about multiplicity of the Poincaré map
near a weak focus, limit cycle, and saddle-loop, obtained using the box dimension.
Isochronicity of a focus has been characterized by box dimension in Li and Wu
[20]. Formal normal forms for parabolic diffeomorphisms have been characterized
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by fractal invariants of the ε−neighborhood of a discrete orbit in [15]. All these
results are related to the 16th Hilbert problem.

This work is a part of our research, which has been undertaken in order to un-
derstand relation between the graph of certain type of oscillatory function, and the
corresponding spiral curve in the phase plane. We believed that chirp-like oscilla-
tions defined by X(τ) = τα sin 1/τ “correspond” to spiral oscillations r = ϕ−α in
the phase plane, in polar coordinates. The relation between these two objects has
been established in [10], introducing a new notion of the wavy spiral. Applications
include two directions. Roughly speaking, we consider spirals generated by chirps,
and chirps generated by spirals. If we know behavior in the phase plane, we can
obtain the behavior of the corresponding graph, and vice versa. As examples we
may consider weak foci of planar autonomous systems, including the Liénard equa-
tion, because all these singularities are of spiral power type r = ϕ−α, α ∈ (0, 1),
see [13, 22]. As an application of the converse direction, from a chirp to the spiral,
we were looking for the second-order equation with an oscillatory solution having
chirp-like behavior. The Bessel equation of order ν is a nice example of similar
behavior, see [9]. Whereas the Bessel equation is a second-order nonautonomous
equation, we interpret the equation as a system in R3, using t → ∞, instead of
the standard approach with a variable near the origin. The system studied in this
article, see (1.2), coincides with the Bessel system for p(t) = t−α, α = ν = 1/2, and
q(t) = t. We classify trajectories of the system with respect to their geometrical
and fractal properties.

Why we study functions which behave like X(τ) = τα sin 1/τ , and r = ϕ−α in
polar coordinates? Our starting point is Tricot’s book which gives us formulas for
box dimension of X(τ) = τα sin 1/τβ , 0 < α < β < 1, and r = ϕ−α, 0 < α < 1.
For other parameters α, β these curves are rectifiable. We wanted to analyze power
spirals which have same asymptotics of the Poincaré map in all directions. Poincaré
map which corresponds to weak focus is analytic, and limit cycles bifurcate in the
classical Hopf bifurcation. Poincaré maps near general foci, nilpotent or degenerate,
as well as near polycycles are not analytic and the logarithmic terms show up in
the asymptotic expansion, see Medvedeva [12] and Roussarie [17]. In that case
Poincaré map has different asymptotics, showing characteristic directions, see Han,
Romanovski [5]. Nilpotent focus has two different asymptotics, so we can relate
that focus with two chirps with different asymptotics. Here, we study foci related
to one chirp. Why we have chirps with β = 1? For α + 1 ≤ β we have curves
which do not accumulate in the origin, while for α + 1 > β, if β 6= 1 it is easy
to see that the spiral converges to zero in “oscillating” way. Wavy spirals appear
in that situation, see [9], [10]. Curves which are spirals with self intersections like
springs, could be defined by oscillatory integrals, so they appear as a generalization
of the clothoid defined by Fresnel integrals. Asymptotics of the oscillatory integrals,
which are related to singularity theory, could be found in Arnold [1]. Their fractal
analysis is our work in progress. Furthermore, fixing β = 1 we achieve the whole
interval of nonrectifiability both for spirals and corresponding chirps.

Also, the results about spiral trajectories in R3, from Žubrinić and Županović
[23, 21] are extended to the systems where some kind of Hopf bifurcation occurs.
The box dimension of a trajectory of the reduced normal form with one zero eigen-
value, and a pair of pure imaginary eigenvalues, has been computed at the moment
of the birth of a limit cycle. Essentially, the Hopf bifurcation studied here is a
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planar bifurcation, but the third equation affects the box dimension of the cor-
responding trajectory in the space. We show that in 3-dimensional space, a limit
cycle bifurcates with the box dimension of a spiral trajectory larger than 4/3, which
is the value of the standard planar Hopf bifurcation.

Our intention is to understand a fractal connection between oscillatority of so-
lutions of differential equations and oscillatority of their trajectories in the phase
space. Our work is mostly motivated by two nice formulas from the monograph of
C. Tricot [19, p. 121]. He computed the box dimension for a class of chirps and for
a class of spirals of power type in polar coordinates. We are looking for a model
to apply these formulas, and also to show that chirps and spirals are a different
manifestations of the same phenomenon. Here we study, as a model a class of
second-order nonautonomous equations, exhibiting both chirp and spiral behavior

ẍ−
[2 p′(t)
p(t)

+
q′′(t)
q′(t)

]
ẋ+

[
q′2(t) +

2 p′2(t)
p2(t)

− p′′(t)
p(t)

+
p′(t)q′′(t)
p(t)q′(t)

]
x = 0, (1.1)

for t ∈ [t0,∞), t0 > 0, where p and q are functions of class C2. The explicit
solution is x(t) = C1p(t) sin q(t) + C2p(t) cos q(t), which is a chirp-like function. If
z = (γ/(t− C3))γ , γ > 0, we obtain the cubic system

ẋ = y

ẏ = −U(z)x+ V (z)y

ż = −zδ, z ∈ (0, z0],

(1.2)

where δ := (γ + 1)/γ > 1 and

U(z) := q′2(γz−1/γ) +
2 p′2(γz−1/γ)
p2(γz−1/γ)

− p′′(γz−1/γ)
p(γz−1/γ)

+
p′(γz−1/γ)q′′(γz−1/γ)
p(γz−1/γ)q′(γz−1/γ)

,

V (z) :=
2 p′(γz−1/γ)
p(γz−1/γ)

+
q′′(γz−1/γ)
q′(γz−1/γ)

.

It has a spiral trajectory in R3. In the special case γ = 1, we obtain z = 1/(t−C3)
and δ = 2.

In this article we compute the box dimension of a spiral trajectory of the system
(1.2) exploiting the dimension of (α, 1)-chirp X(τ) = τα sin 1/τ , α ∈ (0, 1), for
τ > 0 small, and also the dimension of the wavy spiral, see [10]. Using a change of
variable for time variable τ 7→ τ−1, the infinity is mapped to the origin, and such
reflected solution of (1.1) with respect to time is called the reflected solution. We
use notation t = τ−1. If function p(t) in (1.1) is “similar” to t−α, and function q(t)
is “similar” to t, then the reflected solution of x(t)

X(τ) = C1p(
1
τ

) sin q(τ−1) + C2p(
1
τ

) cos q(τ−1)

=
√
C2

1 + C2
2 p(

1
τ

) sin(q(τ−1) + arctan
(C2

C1

)
, τ ∈ (0,

1
t0

],

is an (α, 1)-chirp-like function near the origin, see [8]. Before we obtained results
connecting functions “similar” to (α, 1)-chirps, and spirals “similar” to r = ϕ−α,
α ∈ (0, 1), in the phase plane, see [10]. Applications include nonautonomous planar
systems, so here we introduce the third variable z depending on the time t. Fur-
thermore, the box dimension of a trajectory depends on γ > 0. For some values of
γ trajectory in R3 is obtained as bi-Lipschitzian image of the spiral from the phase
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plane, which does not affect the box dimension. For other values, trajectory lies in
the Hölderian surface, affecting the box dimension. The Hölderian surface has an
infinite derivative at the origin, which is the point of accumulation of the spiral.
Spirals of the Hölderian type have the “tornado shape” with a small bottom and
wide top.

It is interesting to notice that our results about the box dimension of planar tra-
jectories of a system with pure imaginary eigenvalues, show that the box dimension
of any trajectory depends on the exponents of the system. In R3 we have already
found an example, see [23, 21], where dimension depends on the coefficients of the
systems, which will be the case in (1.2). See [21] for the computation of the box
dimension of the system

ṙ = a1rz, ϕ̇ = 1, ż = b2z
2, (1.3)

in cylindrical coordinates. If a1/b2 ∈ (0, 1] then any spiral trajectory Γ of (1.3) has
the box dimension dimB Γ = 2

1+a1/b2
near the origin.

2. Definitions

Let us introduce some definitions and notation. For A ⊂ RN bounded we define
ε-neighborhood of A as: Aε := {y ∈ RN d(y,A) < ε}. By lower s-dimensional
Minkowski content of A, s ≥ 0 we mean

Ms
∗(A) := lim inf

ε→0

|Aε|
εN−s

,

and analogously for the upper s-dimensional Minkowski contentM∗s(A). The lower
and upper box dimensions of A are

dimBA := inf{s ≥ 0Ms
∗(A) = 0}

and analogously dimBA := inf{s ≥ 0M∗s(A) = 0}. If these two values coincide, we
call it simply the box dimension ofA, and denote by dimB A. It will be our situation.
If 0 < Md

∗(A) ≤ M∗d(A) < ∞ for some d, then we say that A is Minkowski
nondegenerate. In this case obviously d = dimB A. In the case when lower or upper
d-dimensional Minkowski contents of A are 0 or∞, where d = dimB A, we say that
A is degenerate. For more details on these definitions see e.g. Falconer [3], and [22].

Let x : [t0,∞) → R, t0 > 0, be a continuous function. We say that x is
an oscillatory function near t = ∞ if there exists a sequence tk ↘ ∞ such that
x(tk) = 0, and functions x|(tk,tk+1) intermittently change sign for k ∈ N.

Let u : (0, t0] → R, t0 > 0, be a continuous function. We say that u is an
oscillatory function near the origin if there exists a sequence sk such that sk ↘ 0
as k →∞, u(sk) = 0 and restrictions u|(sk+1,sk) intermittently change sign, k ∈ N.

Let us define X : (0, 1/t0] → R by X(τ) = x(1/τ). We say that X(τ) is
oscillatory near the origin if x = x(t) is oscillatory near t = ∞. We measure the
rate of oscillatority of x(t) near t = ∞ by the rate of oscillatority of X(τ) near
τ = 0. More precisely, the oscillatory dimension dimosc(x) (near t =∞) is defined
as the box dimension of the graph of X(τ) near τ = 0. In Radunović, Žubrinić and
Županović [14] box dimension of unbounded sets has been studied.

Assume now that x is of class C1. We say that x is a phase oscillatory function
if the following stronger condition holds: the set Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)} in
the plane is a spiral converging to the origin.
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By a spiral here we mean the graph of a function r = f(ϕ), ϕ ≥ ϕ1 > 0, in polar
coordinates, where

f : [ϕ1,∞) → (0,∞) is such that f(ϕ) → 0 as ϕ → ∞, f is
radially decreasing (i.e., for any fixed ϕ ≥ ϕ1 the function N 3
k 7→ f(ϕ+ 2kπ) is decreasing),

(2.1)

which is the definition from [22]. By a spiral we also mean a mirror image of the
spiral (2.1), with respect to the x-axis.

The phase dimension dimph(x) of the function x(t) is defined as the box dimen-
sion of the corresponding spiral Γ = {(x(t), ẋ(t)) : t ∈ [t0,∞)}.

We use a result for box dimension of graph G(X) of standard (α, β)-chirps de-
fined by

Xα,β(τ) = τα sin(τ−β). (2.2)
For 0 < α < β we have

dimB G(Xα,β) = 2− (α+ 1)/(β + 1), (2.3)

and the same for Xα,β(τ) = τα cos(τ−β), see Tricot [19, p. 121]. Also we use a
result for box dimension of spiral Γ defined by r = ϕ−α, ϕ ≥ ϕ0 > 0, dimB Γ =
2/(1+α) when 0 < α ≤ 1, see Tricot [19, p. 121] and some generalizations from [22].
Oscillatory and phase dimensions are fractal dimensions, which are well known tool
in the study of dynamics, see survey article [25].

For two real functions f(t) and g(t) of real variable we write f(t) ' g(t), and say
that functions are comparable as t→ 0 (as t→∞), if there exist positive constants
C and D such that C f(t) ≤ g(t) ≤ Df(t) for all t sufficiently close to t = 0 (for
all t sufficiently large). For example, for a function F : U → V with U, V ⊂ R2,
V = F (U), the condition |F (t1)− F (t2)| ' |t1 − t2| means that f is a bi-Lipschitz
mapping, i.e., both F and F−1 are Lipschitzian.

We say that function f is comparable of class k to power t−α if f is class Ck

function, and f (j)(t) ' t−α−j as t→∞, j = 0, 1, 2, . . . , k.
Also, we write f(t) ∼ g(t) if f(t)/g(t) → 1 as t → ∞, and say that function f

is comparable of class k to power t−α in the limit sense if f is class Ck function,
f(t) ∼ t−α and f (j)(t) ∼ (−1)jα(α+ 1)(α+ j − 1)t−α−j as t→∞, j = 1, 2, . . . , k.

We write f(t) = O(g(t)) as t→ 0 (as t→∞) if there exists positive constant C
such that |f(t)| ≤ C|g(t)|. We write f(t) = o(g(t)) as t → ∞ if for every positive
constant ε it holds |f(t)| ≤ ε|g(t)| for all t sufficiently large.

In the sequel we shall consider the functions of the form y = p(τ) sin(q(τ)) or
y = p(τ) cos(q(τ)). If p(τ) ' τα, q(τ) ' τ−β , q′(τ) ' τ−β−1 as τ → 0 then we say
that y is an (α, β)-chirp-like function.

3. Spiral trajectories in R3

In this section we describe solutions of equation (1.1) and trajectories of system
(1.2), with respect to box dimension, specifying a class of functions p and q. Let p(t)
be comparable to power t−α, α > 0, in the limit sense, and let q(t) be comparable
to Kt, K > 0, in the limit sense. Depending on α, we have rectifiable spirals
with trivial box dimension equal to 1, or nonrectifiable spirals with nontrivial box
dimension greater than 1. The box dimension will not exceed 2 even in R3, because
these spirals lie on a surface. Mapping spiral from the plane to the Lipschitzian
surface does not affect the box dimension, see [23, 21], while mapping to Hölderian
surface affects the box dimension.
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To explain fractal behavior of the system (1.2) we need a lemma dealing with
a bi-Lipschitz map. The idea is to use a generalization of the result about box
dimension of a class of planar spirals from [10, Theorem 4], see Theorem 5.1 below.
It is well known result from [3], that box dimension is preserved by bi-Lipschitz
map. Putting together these two results we will obtain desired results about (1.2).
For the sake of simplicity, we deal with trajectory Γ of the solution of the system
(1.2) defined by

x(t) = p(t) sin q(t)

y(t) = p′(t) sin q(t) + p(t)q′(t) cos q(t)

z(t) = 1/tγ .
(3.1)

We can assume, without the loss of generality, that q(t) is comparable to t, in
the limit sense, by contracting time variable t by factor K and also contracting
x by factor Kα, y by factor Kα+1, and z by factor Kγ . Notice that rescaling of
spatial variables by a constant factor is a bi-Lipschitz map, so the box dimension
of trajectory Γ is preserved.

Trajectory Γ has projection Γxy to (x, y)-plane which is a planar spiral satisfying
conditions of Theorem 5.1 below. In the following lemma we will prove that the
mapping between planar spiral Γxy and spacial spiral Γ is bi-Lipschitzian near
the origin. We prove lemma using definition of bi-Lipschitz mapping. Interesting
phenomenon appeared in spiral Γxy, defined in polar coordinates and generated by
a chirp. The radius r(ϕ) is not decreasing function, there are some regions where
r(ϕ) increases causing some waves on the spiral. We introduced notion of wavy
spiral in [10]. Also, the waves are found in the spiral generated by Bessel functions,
and by generalized Bessel functions, depending on the parameters in the equation,
see [9]. Furthermore, the surface containing the space spiral Γ contains points with
infinite derivative, showing some vertical regions.

Lemma 3.1. Let the map B : R2 × {0} → R3 be defined as B(x(t), y(t), 0) =
(x(t), y(t), z(t)), where coordinate functions are given by (3.1). Let p(t) ∈ C2 is
comparable of class 1 to t−α, α ∈ (0, 1), in the limit sense, and p′′(t) ∈ o(t−α), as
t → ∞. Let q(t) ∈ C2 is comparable of class 1 to Kt, K > 0, in the limit sense,
and q′′(t) ∈ o(t−2), as t→∞. Let Γ is defined by parametrization (x(t), y(t), z(t))
from (3.1) and Γxy is the projection of Γ to (x, y)-plane. If γ ≥ α then map B|Γxy
is bi-Lipschitzian near the origin.

Proof. Without the loss of generality we assume K = 1. It is clear that B(Γxy) = Γ.
We have to prove that there exist two positive constants K1,K2 such that

K1d((x(t1), y(t1), 0), (x(t2), y(t2), 0))

≤ d(B(x(t1), y(t1), 0), B(x(t2), y(t2), 0))

≤ K2d((x(t1), y(t1), 0), (x(t2), y(t2), 0)),
(3.2)

where d is Euclidian metrics and t1, t2 > t0, for t0 sufficiently large. Notice that,
without loss of generality, t1 ≤ t2. It is obvious that by K1 = 1 the left hand side
inequality is satisfied. To prove right hand side inequality, first we prove

(z(t1)− z(t2))2 ≤ C
(
(x(t1)− x(t2))2 + (y(t1)− y(t2))2

)
,
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and then the right inequality will be satisfied. From the proof of the planar case,
Theorem 5.1, we know that

ϕ(t) = t+
π

2
+O(t−1) =

π

2
+ t
(
1 +O

(
t−2
))
, t→∞, (3.3)

f(ϕ) ' ϕ−α, ϕ→∞. (3.4)

From the generalization of [10, Lemma 3] used in the proof of Theorem 5.1, using
assumptions on p and q, it follows that there exists C1 ∈ (0, 1), such that for every
∆ϕ, π

3 ≤ ∆ϕ ≤ 2π + π
3 , holds

f(ϕ)− f(ϕ+ ∆ϕ) ≥ ∆ϕαC1ϕ
−α−1,

for ϕ sufficiently large. Let

ϕ1 = ϕ(t1) = π/2 + t1
(
1 +O

(
t−2
1

))
,

ϕ2 = ϕ(t2) = π/2 + t2
(
1 +O

(
t−2
2

))
.

(3.5)

We first consider several cases where α ≤ γ < 1. First, let |ϕ2 − ϕ1| ≤ π
3 . From

[9, Proposition 1], and (3.4), (3.5), we have√
(x(t1)− x(t2))2 + (y(t1)− y(t2))2

≥ 2
π

(ϕ2 − ϕ1) min{f(ϕ1), f(ϕ2)} ≥ C2(t2 − t1)t−α2 .

Hence,

(z(t1)− z(t2))2 =
( 1
tγ1
− 1
tγ2

)2

=
(tγ2 − t

γ
1)2

t2γ1 t2γ2

≤ (t2 − t1)2(tγ−1
2 + tγ−1

1 )2

t2γ1 t2γ2

≤ c2
(t2 − t1)2t

2(γ−1)
1

t2γ1 t2γ2
= c2

(t2 − t1)2

t21t
2γ
2

C2
2 t
−2α
2

C2
2 t
−2α
2

≤ c2
(x(t1)− x(t2))2 + (y(t1)− y(t2))2

C2
2 t

2
1t

2(γ−α)
2

≤ C
(
(x(t1)− x(t2))2 + (y(t1)− y(t2))2

)
.

(3.6)

For the case 2π + π
3 ≥ |ϕ2 − ϕ1| ≥ π

3 , we have√
(x(t1)− x(t2))2 + (y(t1)− y(t2))2

≥ f(ϕ1)− f(ϕ2)

= f(ϕ1)− f(ϕ1 + (ϕ2 − ϕ1)) ≥ C1(ϕ2 − ϕ1)αϕ1
−α−1

≥ C3t
−α−1
1 (t2 − t1).

Then again

(z(t1)− z(t2))2 = c3
(t2 − t1)2

t21t
2γ
2

≤ c3
(x(t1)− x(t2))2 + (y(t1)− y(t2))2

C2
3 t

2(γ−α)
1

≤ C
(
(x(t1)− x(t2))2 + ((y(t1)− y(t2))2

)
.

(3.7)

For the case |ϕ2 − ϕ1| ≥ 2π + π
3 , we define n := [ϕ2−ϕ1−π3

2π ]. Then we have√
(x(t1)− x(t2))2 + (y(t1)− y(t2))2 ≥ f(ϕ1)− f(ϕ2)



EJDE-2015/276 SYSTEMS WITH SPIRAL TRAJECTORIES 9

=
n−1∑
i=0

(f(ϕ1 + 2iπ)− f(ϕ1 + (i+ 1)2π)) + f(ϕ1 + 2nπ)− f(ϕ2)

≥
n−1∑
i=0

2παC1(ϕ1 + 2iπ)−α−1 +
π

3
αC1(ϕ1 + 2nπ)−α−1

≥ π

3
αC1

n∑
i=0

(ϕ1 + 2iπ)−α−1 =
π

3
αC1

n∑
i=0

(2π)−α−1(
ϕ1

2π
+ i)−α−1

≥ π

3
αC12π−α−1

∫ ϕ1
2π +n−1

ϕ1
2π

x−α−1dx

≥ C4ϕ
−α−1
1 (ϕ2 − ϕ1) ≥ C5t

−α−1
1 (t2 − t1).

Furthermore

(z(t1)− z(t2))2 = c5
(t2 − t1)2

t21t
2γ
2

≤ c5
(x(t1)− x(t2))2 + (y(t1)− y(t2))2

C2
5 t

2(γ−α)
1

≤ C
(
(x(t1)− x(t2))2 + (y(t1)− y(t2))2

)
.

(3.8)

From (3.6), (3.7), (3.8), the right hand side of inequality (3.2) follows with K2 =√
1 + C, where C is (in all three cases) sufficiently small if t0 is large enough.
For t0 sufficiently large, it is easy to see that

(z(t1)− z(t2))2 =
( 1
tγ1
− 1
tγ2

)2

≤
( 1
t21
− 1
t22

)2

,

if γ > 2. On the other hand, for 1 ≤ γ ≤ 2, considering

(z(t1)− z(t2))2 ≤ (t2 − t1)2(tγ−1
2 + tγ−1

1 )2

t2γ1 t2γ2
≤ c6

(t2 − t1)2t
2(γ−1)
2

t2γ1 t2γ2
= c6

(t2 − t1)2

t2γ1 t22
,

the rest of the proof is analogous as for the case α ≤ γ < 1. �

Theorem 3.2 (Trajectory in R3). Let p(t) ∈ C3 be a function comparable of class
2 to power t−α, α > 0, in the limit sense, and p(3)(t) ∈ O(t−α−3), as t → ∞. Let
q(t) ∈ C3 be a function comparable of class 1 to Kt, K > 0 in the limit sense,
q′′(t) ∈ o(t−3), as t→∞, and q(3)(t) ∈ o(t−2), as t→∞.

(i) The phase portrait Γxy = {(x(t), ẋ(t)) ∈ R2 : t ∈ [t0,∞)} of any solution is
a spiral near the origin. Phase dimension of any solution of the equation
(1.1) is equal to dimph(x) = 2

1+α , for α ∈ (0, 1).
(ii) The trajectory Γ of the system (1.2) has box dimension dimB Γ = 2

1+α for
α ∈ (0, 1) and γ ≥ α.

(iii) Trajectory Γ of the system (1.2) has box dimension dimB Γ = 2− α+γ
1+γ for

α ∈ (0, 1) and 0 < γ < α.
(iv) The trajectory Γ of the system (1.2) for α > 1 is rectifiable and dimB Γ = 1.

The graphs of trajectories (3.1) for different values of parameter α can be seen
in Figures 1–3.

Remark 3.3. In Theorem 3.2 the box dimension of the spiral Γ has been computed,
and all values satisfy 2

1+α ≤ dimB Γ < 2− α for α ∈ (0, 1).
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Figure 1. System (1.2) for p(t) = t−
1
4 , q(t) = t and γ = 1,

Lipschitz case.

Figure 2. System (1.2) for p(t) = t−1, q(t) = t and γ = 1, Lips-
chitz case.

Remark 3.4. Regarding rectifiability of trajectory Γ of system (1.2) from Theorem
3.2, the assumptions on functions p and q could be weakened. For instance, for

p1(t) = t−α logk(t)

p2(t) = t−α log(log(. . . log(t))), k times

q1(t) = t logl(t)

q2(t) = t log(log(. . . log(t))), l times
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Figure 3. System (1.2) for p(t) = t−3, q(t) = t and γ = 1, Hölder case.

where α > 1 and k, l ∈ N if we take x(t) = pi(t) sin(qj(t)), i, j = 1, 2, it is easy
to see that curve Γ is also rectifiable. If α ≤ 1 we expect nonrectifiability and the
same box dimension as in the case with no logarithmic terms. This comes from [22,
Remark 9], saying that spirals r = ϕ−α(logϕ)β , ϕ ≥ ϕ1, where β 6= 0 and α ∈ (0, 1)
have box dimension equal to d := 2/(1 + α) (the same as for the spiral r = ϕ−α),
but their d-dimensional Minkowski content is degenerate. See that degeneracy at
Figures 4–6.

We did not prove that all our statements are valid for pi, qi, i = 1, 2 with loga-
rithmic terms, because in order to do it, we would have to extend theorems from [22]
for that cases, making this article too long. On the other hand, from the dynamical
point of view, spirals r = ϕ−α(logϕ)β are not trajectories of vector fields. The
Poincaré maps or first return maps of foci, which are not weak, have logarithmic
terms in the asymptotic expansion. Asymptotics is different in the characteristic
directions. These directions could be seen after blowing up when polycycle appears
from the focus. The directions with different asymptotic pass through singularities
of the polycycle. The logarithmic terms are produced by singularities of the poly-
cycle. Spiral r = ϕ−α(logϕ)β has the same asymptotics in all directions, which is
a different situation.

Remark 3.5. In the Introduction, it was briefly explained why we did not set
q(t) ∼ tβ for β 6= 1. Here we show figures concerning those cases. If X(τ) =
τα sin 1/τβ , for α + 1 ≤ β using the described procedure, we have a planar curve
which does not accumulate near the origin, see Figure 7.

If α + 1 > β and β 6= 1, we have spiral converging to zero in “oscillating” way,
see Figure 8. Figure 9 shows focus with different asymptotic in the direction of
x-axes.

Remark 3.6. System (1.2) coincides with the Bessel system of order ν for p(t) =
t−α, α = ν = 1/2, and q(t) = t. The Bessel equation of order ν has phase dimension
equal to 4/3, for the proof see [9, Corollary 1]. This is a consequence of a fact that
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Figure 4. Spiral r = ϕ−1/2, in polar coordinates
.

Figure 5. Spiral r = ϕ−1/2 logϕ, in polar coordinates
.

the Bessel functions in some sense “behave” like chirps x(t) = t−1/2 sin (t+ θ0),
θ0 ∈ R, as t → ∞. Although, this background connection is pretty intuitive, the
proof is long, complex and technically exhausting.

The following theorem gives sufficient conditions for rectifiability of a spiral lying
into the Hölderian surface z = g(r), g(r) ' rβ , β > 0. Spiral is called Hölder-focus
spiral if it lies in the Hölderian surface, and tend to the origin.
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Figure 6. Spiral r = ϕ−1/2 log2 ϕ, in polar coordinates
.

Figure 7. Part of unbounded curve Γ1 = {(x(t), ẋ(t)) : t ∈
[t0,∞)}, for x(1/τ) = X(τ) = τ1/2 sin(1/τ)7/4, rotated by π/2
clockwise.

Figure 8. Spiral Γ2 = {(x(t), ẋ(t)) : t ∈ [t0,∞)}, for x(1/τ) =
X(τ) = τ1/2 sin(1/τ)3/4.

Theorem 3.7 (Rectifiability in R3). Let f [ϕ1,∞) → (0,∞), ϕ1 > 0, f(ϕ) '
ϕ−α, |f ′(ϕ)| ≤ Cϕ−α−1, α > 1, r = f(ϕ) define a rectifiable spiral. Assume that
g (0, f(ϕ1))→ (0,∞) is a function of class C1 such that

g(r) ' rβ , |g′(r)| ≤ Drβ−1, β > 0.

Let Γ be a Hölder-focus spiral defined by r = f(ϕ), ϕ ∈ [ϕ1,∞), z = g(r), then Γ
is rectifiable spiral.

Proof. The corresponding parametrization of spiral Γ in Cartesian space coordi-
nates is

x = f(ϕ) cosϕ, y = f(ϕ) sinϕ z = g(f(ϕ)). (3.9)
For the length l(Γ) of this spiral we have

l(Γ) =
∫ ∞
ϕ1

√
ẋ2(ϕ) + ẏ2(ϕ) + ż2(ϕ)dϕ
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Figure 9. Nilpotent focus with characteristic direction along x-axes.

=
∫ ∞
ϕ1

√
f2(ϕ) + f ′2(ϕ) + g′2(f(ϕ))f ′2(ϕ)dϕ

≤ C
∫ ∞
ϕ1

√
ϕ−2α + ϕ−2α−2 + ϕ−α(2β−2)ϕ−2α−2dϕ

= C

∫ ∞
ϕ1

√
ϕ−2α + ϕ−2α−2 + ϕ−2αβ−2dϕ.

If −2αβ − 2 ≤ −2α, then

l(Γ) ≤ C
∫ ∞
ϕ1

ϕ−αdϕ <∞,

and if −2αβ − 2 > −2α, then

l(Γ) ≤ C
∫ ∞
ϕ1

ϕ−αβ−1dϕ <∞.

�

Proof of Theorem 3.2. (i) Without the loss of generality we take solution x(t) =
p(t) sin q(t) of the equation (1.1). Spiral trajectory Γ of system (1.2) is defined by
(3.1). Then Γxy is the projection of Γ in (x, y)−plane. Using Theorem 5.1 below,
we obtain that Γxy is a spiral near the origin and dimB Γxy = dimph(x) = 2

1+α .
(ii) The map B (x(t), y(t), 0) → (x(t), y(t), z(t)) is a bi-Lipschitz map near the

origin for γ ≥ α, see Lemma 3.1. It is clear that Γ = B(Γxy) and it is easy
to see that subset S ⊆ Γ, for which B is not a bi-Lipschitz map, is rectifiable and
therefore dimB S = 1. The box dimension of set Γ is preserved under bi-Lipschitzian
mappings and under removing S ⊆ Γ such that dimB S = 1, see [3, p. 44], so it
follows form (i) that dimB Γ = 2

1+α .
(iii) Without the loss of generality we take K = 1. The rest of the proof is

similar as in (ii), but using [21, Theorem 9] instead of Lemma 3.1.
(iv) Without the loss of generality we take K = 1, because rectifiability is also

unaffected by rescaling of spatial variables. Let r = f(ϕ) define curve Γxy in polar
coordinates. Notice that f(ϕ) ' ϕ−α and |f ′(ϕ)| ≤ Cϕ−α−1, see the proof of
Theorem 5.1 from the Appendix. Respecting r(t) =

√
x(t)2 + ẋ(t)2, we take g(r)

such that g(r) ' z(t) and g′(r) ∈ O(z′(t)), using z(t) from (3.1). As r(t) ' t−α

and |r′(t)| ≤ D1t
−α−1, we obtain g(r) ' rγ/α and |g′(r)| ≤ Drγ/α−1, so using
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Theorem 3.7 and the fact that rectifiability is invariant to bi-Lipschitz mapping, as
g(r) ' z(t), we prove the claim. �

Remark 3.8. Notice that in the proof of Theorem 3.2 (iii), the Hölder case, we
used [21, Theorem 9], but in the proof of Theorem 3.2 (ii), the Lipschitz case; we
could not use the analogue to [21, Theorem 7] and we had to devise Lemma 3.1. The
reason is the fact that assumptions in [21, Theorem 9] about the spiral r = f(ϕ),
in polar coordinates, regarding function f being decreasing and |f ′(ϕ)| ' ϕ−α−1,
as t → ∞, can be replaced by weaker assumptions. By carefully examining the
proof, we see that function f does not have to be decreasing and we can take
|f ′(ϕ)| ∈ O(ϕ−α−1), as t → ∞. Regardlessly, these assumptions are necessary in
[21, Theorem 7].

It is interesting to study the Poincaré or the first return map associated to a
spiral trajectory. The following result is about asymptotics of the Poincaré map
near focus of the planar spiral from Theorem 3.2 (i).

Proposition 3.9 (Poincaré map). Assume Γ is the planar spiral from Theorem
3.2 (i). Let P : (0, ε) ∩ Γ → (0, ε) ∩ Γ be the Poincaré map with respect to any
axis that passes through the origin. Then the map P has the form P (r) = r+ d(r),
where −d(r) ' r 1

α+1 as r → 0.

Proof. Let Γ be defined by r = f(ϕ). Analogously as in the proof of Theorem 5.1,
see [10, Theorem 4], it is easy to see that −d(r) = f(ϕ) − f(ϕ + 2π) ' ϕ−α−1 as
ϕ→∞ and r ' ϕ−α as ϕ→∞. From this follows −d(r) ' r 1

α+1 as r → 0. �

The projection of a solution of system (1.2) is a spiral in (x, y)-plane. For other
two coordinate planes we have the following theorem.

Theorem 3.10 (Projections). Let p(t) ∈ C2 be a function comparable of class 1
to power t−α, α > 0, and p′′(t) ∈ O(t−α), as t → ∞. Let q(t) ∈ C2 be a function
comparable of class 1 to Kt, K > 0, and q′′(t) ∈ O(t−1), as t→∞.

If α ∈ (0, 1) then projections Gxz and Gyz of a trajectory (3.1), γ > 0 of the
system (1.2) to (x, z)−plane and (y, z)-plane, respectively, are (α/γ, 1/γ)-chirp-like
functions, and dimB Gxz = dimB Gyz = 2− α+γ

1+γ .

Proof. Without the loss of generality let K = 1. Projection Gyz is

Y (z) = y
(
z−1/γ

)
= p′

(
z−1/γ

)
sin q

(
z−1/γ

)
+ p
(
z−1/γ

)
q′
(
z−1/γ

)
cos q

(
z−1/γ

)
=
√
p′2
(
z−1/γ

)
+ p2

(
z−1/γ

)
q′2
(
z−1/γ

)
× sin

(
z−1/γ + arctan

p
(
z−1/γ

)
q′
(
z−1/γ

)
p′
(
z−1/γ

) )
.

For functions

P (z) =
√
p′2
(
z−1/γ

)
+ p2

(
z−1/γ

)
q′2
(
z−1/γ

)
and

Q(z) = z−1/γ + arctan
p
(
z−1/γ

)
q′
(
z−1/γ

)
p′
(
z−1/γ

)
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we have P (z) ' z
α
γ , P ′(z) ' z

α
γ−1, Q(z) ' z

−1
γ , Q′(z) ' z−

1
γ−1 as z → 0. So Y (z)

is (α/γ, 1/γ)-chirp-like function. To calculate the box dimension of Gyz we apply
[10, Theorem 5].

The proof for projection Gxz is analogous. �

Remark 3.11. In other words an oscillatory dimension of the solution of (1.1),
under assumptions of previous theorem concerning p and q, is equal to dimosc x =
3−α

2 , if α ∈ (0, 1).

4. Limit cycles

Limit cycles are interesting object appearing in differential equations. In partic-
ular, we consider a system having its linear part in Cartesian coordinates with a
conjugate pair ±ωi of pure imaginary eigenvalues with ω > 0, and the third eigen-
value is equal to zero. The corresponding normal form in cylindrical coordinates
is

ṙ = a1rz + a2r
3 + a3rz

2 +O(|r, z|)4

ϕ̇ = ω +O(|r, z|)2

ż = b1r
2 + b2z

2 + b3r
2z + b4z

3 +O(|r, z|)4,

(4.1)

where ai and bi ∈ R are coefficients of the system. Such systems and their bi-
furcations are treated in Guckenheimer-Holmes [4, Section 7.4]. The fold-Hopf
bifurcation and cusp-Hopf bifurcation have been studied in Harlim and Langford
[6] and the references therein, showing that system (4.1) can exhibit much richer
dynamics then singular points and periodic solutions. Notice that in system (1.2)
there are no limit cycles for any acceptable function p(t). We hypothesize that
the limit cycle could be induced by introducing perturbation in the last equation,
ż = −z2.

Here we make a note about box dimension of a spiral trajectory of the simplified
system (4.1) at the moment of the birth of limit cycles in (x, y)-coordinate plane.
In [22], [24] we studied planar system consisting of first two equations from (4.2),
and made fractal analysis of the Hopf bifurcation of the system. We proved that
box dimension of a spiral trajectory becomes nontrivial at the moment of bifurca-
tion. The Hopf bifurcation occurs with box dimension equal to 4/3, furthermore
degenerate Hopf bifurcation or Hopf-Takens bifurcation occurs with the box di-
mension greater than 4/3. The more limit cycles have been related to larger box
dimension. Analogous results have been showed for discrete systems in [7], and
applied to continuous systems via Poincaré map. On the other hand in [23] and
[21] 3-dimensional spirals have been studied. Here we consider reduced system

ṙ = r(r2l +
l−1∑
i=0

air
2i)

ϕ̇ = 1

ż = b2z
2 + · · ·+ bnz

n.

(4.2)

First two equations are standard normal form of codimension l, where the Hopf-
Takens bifurcation occurs, see [18]. The third equation gives us the case where
spiral trajectories lie on Lipschitzian or Hölderian surface, depending on the first
exponent. The Hölderian surface has infinite derivative in the origin, geometrically
it is a cusp.
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We are interested in the change of the box dimension with respect to the third
equation at the moment of birth of limit cycles. We proved for the standard planar
model that the Hopf bifurcation occurs with box dimension equal to 4/3 and the
Hopf-Takens occurs with larger dimensions. Here we prove that on the Hölderian
surface a limit cycle occurs with the box dimension greater than 4/3.

Theorem 4.1 (Limit cycle). Let l = 1 in the system (4.2) and bp < 0 be the first
nonzero coefficient in the third equation and a0 = 0. Then then a trajectory Γ near
the origin has the following properties:

(i) if 2 ≤ p ≤ 3 then

dimB Γ =
4
3
,

(ii) if p ≥ 4 then

dimB Γ =
3
2
− 1

2p
. (4.3)

Proof. Using [22, Theorem 9], the solution of the first two equations of (4.2) satisfy
r ' ϕ−1/2, having dimB Γxy = 4/3, where Γxy is orthogonal projection of space
trajectory Γ to (x, y) plane. From the third equation we obtain z ' r

2
p−1 , so for

2 ≤ p ≤ 3 we obtain the Lipschitzian surface, while for p ≥ 4 surface is Hölderian.
Applying [21, Theorem 7 (a)] we obtain dimB Γ = 4/3 for 2 ≤ p ≤ 3, because
the box dimension is invariant for the Lipschitzian case. For the Hölderian case
we apply [21, Theorem 9 (a)], where α = 1/2 and β = 2/(p − 1). So, we obtain
dimB Γ = 3

2 −
1
2p . �

Remark 4.2. The box dimension of a trajectory at the moment of planar Hopf
bifurcation is equal to 4/3, also for 3-dimensional case with spiral trajectory lying
in the Lipschitzian surface. Situation is different for spiral trajectory contained in
the Hölderian surface, the box dimension of a space spiral trajectory tends to 3/2.
Only one limit cycle could be produced, but dimension increases caused by the
Hölderian behavior near the origin. Notice that if we apply formula (4.3) obtained
for the Hölderian case, to the Lipschitzian case p = 3 we will get correct result 4/3.
For l > 1 degenerate Hopf bifurcation or Hopf-Takens bifurcation appears, where l
limit cycles could be born, and the box dimension of the space spiral trajectory is
equal to dimB Γ = (4l−1)p−2l+1

2lp using the same arguments.

5. Appendix: Auxiliary results

First we have a Generalization of [10, Theorem 4].

Theorem 5.1. Let p(t) ∈ C3 be a function comparable of class 2 to power t−α,
α > 0, in the limit sense, and p(3)(t) ∈ O(t−α−3), as t → ∞. Let q(t) ∈ C3 be a
function comparable of class 1 to Kt, K > 0 in the limit sense, q′′(t) ∈ o(t−3), as
t→∞, and q(3)(t) ∈ o(t−2), as t→∞. Define x(t) = p(t) sin q(t) and continuous
function ϕ(t) by tanϕ(t) = ẋ(t)

x(t) .

(i) If α ∈ (0, 1) then the planar curve Γ := {(x(t), ẋ(t)) ∈ R2 : t ∈ [t0,∞)} is
a spiral r = f(ϕ), ϕ ∈ (−∞,−φ0], near the origin, and

dimph(x) := dimB Γ =
2

1 + α
.

(ii) If α > 1 then the planar curve Γ is a rectifiable spiral near the origin.
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Proof. After substitution of time variable by u = t/K and respective rescaling of
the x and y axes, we continue assuming K = 1. The rest of the proof is analogous
to the proof of [10, Theorem 4], but carefully taking care about the more general
conditions on q. Rescaling of the x and y axes in the plane is a bi-Lipschitz map,
so the box dimension remains preserved. �
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Monodromy and asymptotics of integrals, Translated from the Russian by Hugh Porteous,

Translation revised by the authors and James Montaldi.
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[23] Darko Žubrinić, Vesna Županović; Fractal analysis of spiral trajectories of some vector fields
in R3. C. R. Math. Acad. Sci. Paris, 342(12):959–963, 2006.

[24] Darko Žubrinić, Vesna Županović; Poincaré map in fractal analysis of spiral trajectories of pla-
nar vector fields. Bull. Belg. Math. Soc. Simon Stevin, 15(5, Dynamics in perturbations):947–

960, 2008.
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