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OSCILLATIONS WITH ONE DEGREE OF FREEDOM AND
DISCONTINUOUS ENERGY

MIGUEL V. S. FRASSON, MARTA C. GADOTTI,

SELMA H. J. NICOLA, PLÁCIDO Z. TÁBOAS

Abstract. In 1995 for a linear oscillator, Myshkis imposed a constant impulse
to the velocity, each moment the energy reaches a certain level. The main

feature of the resulting system is that it defines a nonlinear discontinuous

semigroup. In this note we study the orbital stability of a one-parameter family
of periodic solutions and state the existence of a period-doubling bifurcation

of such solutions.

1. Introduction

The solutions of the damped linear oscillator

ẍ+ 2αẋ+ ω2x = 0, ω > α > 0, (1.1)

are supposed to undergo a fixed instantaneous increase of velocity whenever they
reach a certain level E0 > 0 of energy. More precisely, the following condition is
imposed

1
2

(ẋ2(t) + ω2x2(t)) = E0 ⇒ lim
s→t+

ẋ(s) = ẋ(t) + σ, σ > 0.

This note concerns the resulting discontinuous dynamical system in the plane xẋ.
Motivated by a pioneering work by Myshkis [10], we obtain the existence of orbitally
asymptotically stable simple periodic solutions, i.e., solutions which have exactly
one impulse in the period. We accomplish a period-doubling bifurcation for such
solutions.

The main feature of the problem is to be autonomous; that is, besides the in-
volved equation being autonomous, the moments of impulses are not previously
known. Therefore the solution operator of the whole system defines a discontinu-
ous semigroup.

Specific references to the subject are Myshkis [12] and Samoilenko-Perestyuk
[14]. For a wider class of related poblems see [2, 3, 4, 5, 6, 7, 9, 11, 12, 13] and
references therein.

Section 2 aims to build a context for the problem. In Section 3 we state el-
ementary properties of positive simple periodic solutions. In Section 4 we prove
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the existence of orbitally unstable positive simple periodic solutions with small am-
plitude and of orbitally asymptotically stable with large amplitudes. Finally, in
Section 5 we give a sufficient condition for a period-doubling bifurcation of such
solutions.

2. Object of study and basic facts

By the time scaling τ = ωt and the change of variables ξ(τ) = (ω/
√

2E0)x(τ/ω)
Equation (1.1) is written as ξ′′ + 2aξ′ + ξ = 0, where ′ = d/dτ , a = α/ω ∈ (0, 1)
and the locus of level E0 of energy is taken to the circle S : ξ2 + ξ′

2 = 1 in the
plane ξξ′. Retrieving the original notation and formulating the problem in the xẋ
plane we obtain

ẋ = y,

ẏ = −x− 2ay
(2.1)

with the impulsive condition

(x(t), y(t)) ∈ S ⇒ (x(t+), y(t+)) = (x(t), y(t) + v). (2.2)

Solutions of (2.1) will be denoted by z and z(·; t0, z0), if z(t0; t0, z0) = z0, or
briefly z(·; z0) = z(·; 0, z0). As the eigenvalues of (2.1) are −a ± δi, with δ =√

1− a2 > 0, the origin is a stable focus and the energy decreases strictly along
nontrivial solutions, since

Ė(z(t)) = −2a(y(t))2, t ∈ R. (2.3)

Let a = sin b, b ∈ (0, π/2), so that δ = cos b. If z̄(·) = z(·; (0,−1)),

z̄(t) = −δ−1e−at
(
sin δt, cos(δt+ b)

)
, t ∈ R. (2.4)

As z̄(·) crosses the y axis at (0,−σ) = (0,−e−2aπ/δ), completing a lap around the
origin, if γ = z̄(R), the family {µγ}µ∈(σ,1] describes all nontrivial orbits of (2.1).
That is, the general nontrivial solution is

z(·) = µz̄(·+ τ), τ ∈ R, σ < µ ≤ 1.

Definition 2.1. A solution of (2.1), (2.2) through b0 ∈ R2 at t = t0 is a function
φ : [t0,∞)→ R2 such that φ(t0) = b0 and

(1) φ(t−) = φ(t), for all t ∈ (t0,∞);
(2) φ ∈ C1 and satisfies (2.1) in (t, t+ εt), for all t ∈ [t0,∞) and some εt > 0.
(3) φ is continuous in t if φ(t) ∈ R2 \ S and φ(t+) = φ(t) + (0, v) if φ(t) ∈ S.

Remark 2.2. (1) φ is denoted by φ(·; t0, b0) or φ(·; b0) if t0 = 0.
(2) A function ψ : (τ,∞)→ R2 is solution of (2.1), (2.2) in (τ,∞) if ψ

∣∣
[ t0,∞)

=

φ(·; t0, ψ(t0)), for any t0 ∈ (τ,∞).
(3) The solution φ(·; t0, b0) is unique, but in general there is no uniqueness

for backward continuations. If |b0| ≥ 1, φ(·; t0, b0) has a continuation to
(−∞,∞). If |b0| < 1, in general a maximal interval of existence to the left
is bounded below.
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3. Positive simple solutions

For the dynamics of (2.1), (2.2) the only relevant solutions are φ(·; b) with |b| ≥ 1,
as they are the only that eventually undergo impulses. There is no loss of generality
in taking |b| = 1 and we do so. We denote by C the class of such solutions.

Definition 3.1. Let φ(·; b), |b| = 1, be a periodic solution of (2.1), (2.2) with
minimal period ω > 0. The point φ(0; b) is called vertex of γ = φ(·; b). We say
that φ(0; b) is simple if it has a unique impulse in [0, ω). If φ(·; b) = (x(·), y(·)), it
is positive when x(t) > 0 for all t.

We close this section by setting some standing notations. A number β, identified
to any β′ ≡ β mod 2π, indicates a point (cosβ, sinβ) ∈ S or its arc length coordi-
nate in S. The context will clarify the meaning in each case. For β ∈ S we denote
φβ = φ(·;β) and, if |β + (0, v)| > 1, we set t1 = t1(β) > 0 such that φβ(t1) ∈ S and
φβ(t) /∈ S for 0 < t < t1.

Definition 3.2. If D = {β ∈ S | |β + (0, v)| > 1}, we define the return map
Φv : D → S by Φv(β) = φβ(t1(β)) for all β ∈ D.

Clearly, if β∗ ∈ D is a fixed point of Φv, φβ∗ is a simple periodic solution
whose period is t1(β∗) and β∗ is the vertex of the simple cycle φβ∗(R). If β∗ is an
attractor fixed point, φβ∗ is orbitally asymptotically stable and, if it is repelling, φβ∗
is orbitally unstable. Here the orbital stability must be in the sense of conditional
stability relative to the class C, see [8], since if φ = φ(·; b), |b| = 1, there are points
b′ inside S arbitrarily close to b and therefore φ(t; b′)→ (0, 0), as t→∞.

If β ∈ S, let sβ be the vertical line sβ : x = cosβ and tβ > 0 such that z(−tβ ;β) =
(cosβ, yβ) ∈ sβ and z(t;β) /∈ sβ for −tβ < t < 0. We set vβ = yβ− sinβ, so that φβ
is a positive simple periodic solution of (2.1), (2.2), vβ > 0. We denote by α = αβ
the polar angle of z(−tβ ;β), according to Figure 1.

yβ

β

α

bβ

vβ

Figure 1. Positive simple cycle.
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Remark 3.3. For any v ∈ (0, eaπ/δ + 1), there exists exactly one positive simple
cycle of (2.1), (2.2) since β ∈ (−π/2, 0) 7→ vβ ∈ (0, eaπ/δ + 1) is a continuous
bijection.

4. Orbital stability

Now we show that, for some ζ > 0, the solution φβ of (2.1), (2.2) is orbitally
unstable if β ∈ (−ζ, 0) and orbitally asymptotically stable if β ∈ (−π/2,−π/2 + ζ).

Lemma 4.1. vβ = −2β + o(β) as β → 0−.

Proof. Let β ∈ (−π/2, 0). System (2.1) in polar coordinates,

ṙ = −(2a sin2 θ)r,

θ̇ = −(1 + a sin 2θ),

yields
r′ =

(
2a sin2 θ/(1 + a sin 2θ)

)
r, (′= d/dθ). (4.1)

and a parametrization of φβ is

rβ(θ) = eAβ(θ) = exp
[
2a
∫ θ

β

sin2 s

1 + a sin 2s
ds
]
, θ ∈ R. (4.2)

As the integrand in (4.2) will be a regular participant, we introduce the notation

qa(s) =
sin2 s

1 + a sin 2s
.

For any small ε > 0 such that α = −(1 + ε)β < π/2, the inequality

Aβ(θ) ≤ −2a(2 + ε)(1 + ε)2

1− a
β3, θ ∈ [β,−(1 + ε)β],

yields
rβ(−(1 + ε)β) = eAβ(−(1+ε)β) = 1 +O(β3) as β → 0−.

If rε = |pε|, pε being the intersection of the half lines s1 : θ = −(1 + ε)β and
s2 : r(θ) cos θ = cosβ, θ ∈ (0, π/2), the similarity of the triangles mnO and pεqO
seen in Figure 2 yields

rε =
cosβ

cos(1 + ε)β
= 1 +

(2 + ε)ε
2!

β2 +O(β4) as β → 0−.

For |β| small enough, the estimates above imply rβ(−(1 + ε)β) < rε, so that
yβ/ cosβ < − tan(1 + ε)β and

1 < − yβ
sinβ

<
tan(1 + ε)β

tanβ
.

Taking limits as β → 0−,

1 ≤ lim inf
β→0−

− yβ
sinβ

≤ lim sup
β→0−

− yβ
sinβ

≤ 1 + ε,

so that limβ→0− yβ/ sinβ = −1. Therefore yβ = −β + o(β) and hence vβ =
−2β + o(β), as β → 0−. �

The theorem below in what concerns orbital instability is a result by Myshkis
[10]. We give an alternative approach to extend it.
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Figure 2. vβ = −2β + o(β) as β → 0−.

Theorem 4.2. There is a number ζ > 0 such that if β ∈ (−ζ, 0), the simple periodic
solution φβ of (2.1), (2.2) is orbitally unstable and if β ∈ (−π/2,−π/2 + ζ), φβ is
orbitally asymptotically stable.

Proof. Let β ∈ (−π/2, 0) and ε1 6= 0 so that β + ε1 = β1 ∈ (−π/2, 0). We take |ε1|
smaller if necessary to assure the existence of Φvβ (β1) = β + ε2 ∈ (−π/2, 0), as it
is seen in Figure 3 for the case ε1 < 0.

Firstly we notice that ε1 and σ are related by the equation

vβ + sin(β + ε1)
cos(β + ε1)

= tan(α+ σ),

therefore, the implicit function theorem about (ε1, σ) = (0, 0) yields

σ =
vβ sinβ + 1
|bβ |2

ε1 + o(ε1), (4.3)

as ε1 → 0. By (4.2), if b1 = β1 + (0, vβ), ε2 must satisfy

|b1| exp
[
2a
∫ β+ε2

α+σ

qa(s) ds
]

= 1.

As |b1| =
√

(vβ + sin(β + ε1))2 + cos2(β + ε1), we have(
v2
β + 2vβ sin(β + ε1) + 1

)
exp

[
4a
∫ β+ε2

α+σ(ε1)

qa(s) ds
]

= 1

and the implicit function theorem leads to

ε2 =
1

qa(β)|bβ |2
[
qa(α)(1 + vβ sinβ)− vβ cosβ

2a
]
ε1 + o(ε1), (4.4)
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β

β1

β2

αα + σ

bβ
b1

Figure 3. β + ε2 = Φvβ (β + ε1).

as ε1 → 0. Let

F (β) =
1

qa(β)|bβ |2
[
qa(α)(1 + vβ sinβ)− vβ cosβ

2a
]
, (4.5)

so that F (β) < 0 and (4.4) is ε2 = F (β)ε1 + o(ε1), as ε1 → 0, for short. Since
limβ→−π/2 |bβ | = limβ→−π/2−(1 + vβ sinβ) = eaπ/δ,

|F (β)| → e−aπ/δ < 1, as β → −π/2. (4.6)

On the other hand, we have | sinβ| < | sinα| < yβ , see Figure 2, so that by
Lemma 4.1, qa(α)/qa(β) → 1 and vβ = O(β), as β → 0, therefore recalling that
qa(β) = O(β2) as β → 0,

|F (β)| → ∞ as β → 0. (4.7)

For some ζ > 0, Eqs. (4.6) and (4.7) imply that |F (β)| < 1 if β ∈ (−π/2,−π/2+ζ)
and |F (β)| > 1 if β ∈ (−ζ, 0). In other words, any β ∈ (−π/2,−π/2 + ζ) is an
attractor fixed point of the return map Φvβ and any β ∈ (−ζ, 0) is a repelling fixed
point of Φvβ . �
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5. Period doubling bifurcation

Solutions φβ of (2.1), (2.2) change from stable to unstable when β varies over
(−π/2, 0) from left to the right. Therefore it is natural to expect a bifurcation in
between. In this section we apply the theorem below [1, Theorem 12.7] to confirm
that this indeed occurs at least for small dampings.

Theorem 5.1 (Period doubling bifurcation). Let {fλ} a one-parameter family of
real functions and suppose that

(1) fλ(0) = 0 for all λ in an interval about λ0;
(2) f ′λ0

(0) = −1;

(3)
∂(f2

λ)′

∂λ

∣∣∣
λ=λ0

(0) 6= 0.

Then there is an interval I about 0 and a function p : I → R such that

fp(x)(x) 6= x and f2
p(x)(x) = x.

By the proof of Theorem 4.2 there is a β∗a ∈ (−π/2, 0), 0 < a < 1, such that
F (β∗a) = −1. Now we show that such a β∗a is a period doubling bifurcation point
of the family of periodic solutions φβ , −π/2 < β < 0, at least if a is small enough.

Theorem 5.2. If a ∈ (0, 1) is sufficiently small, then any β∗a ∈ (−π/2, 0) such that
F (β∗a) = −1 is a period doubling bifurcation point for the family φβ, −π/2 < β < 0.

Proof. Let us follow (4.4) to define the family of functions fβ , −π/2 < β < 0, in
such a way that

ε2 = fβ(ε1) = F (β)ε1 + o(ε1),

as ε1 → 0. Condition (1) of Theorem 5.1, fβ(0) = 0 for all β ∈ (−π/2, 0), is
immediate and, if ′ denotes for a moment d/dε1, Condition (2), f ′β∗a (0) = F (β∗a) =
−1, follows from the definition of β∗a.

Now it remains to show that[∂(f2
β)′

∂β

]
β=β∗a

(0) =
∂

∂β

[(
F (β)

)2]
β=β∗a

6= 0

for a small enough. Retaking the notation ′ = d /dβ this is equivalent to F ′(β∗a) 6= 0,
since F (β∗a) 6= 0. We note that if β = β∗a,

qa(β)|bβ |2 =
vβ cosβ

2a
+ qa(α)(−vβ sinβ − 1);

therefore,

F ′(β∗a) =
[ 1
qa(β)|bβ |2

(vβ cosβ
2a

+ qa(α)(−vβ sinβ − 1)
)]′

β=β∗a

1
qa(β∗a)|bβ∗a |2

[
q′a(β)|bβ |2 + 2qa(β)|bβ ||bβ |′ +

v′β cosβ − vβ sinβ
2a

+ q′a(α)α′(−vβ sinβ − 1) + qa(α)(−v′β sinβ − vβ cosβ)
]
β=β∗a

.

(5.1)

It suffices to show that the term in the brackets in the right side of (5.1) is nonzero.
Equation (4.2) implies |bβ | = exp

[
2a
∫ α
β
qa(s)ds

]
→ 1 as a → 0, uniformly in

β ∈ (−π/2, 0). This yields yβ → − sinβ and α → −β, as a → 0, uniformly in
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β2

β1

Figure 4. β1 = Φ2
v(β1) 6= Φv(β1) = β2.

β ∈ (−π/2, 0). Moreover, the implicit function theorem applied to the equation

exp
[
2a
∫ α

β

qa(s)ds
]

cosα = cosβ,

leads to

α′(β) =
sinβ(1 + a sin 2α)
yβ(1 + a sin 2β)

.

Thus α′ → −1 as a → 0, uniformly in β ∈ (−π/2, 0). Finally, we note that the
following limits, taken as a→ 0, are uniform in β ∈ (−π/2, 0):

lim qa(β) = sin2 β,

lim q′a(β) = sin 2β,
lim vβ = −2 sinβ,

lim v′β = −2 cosβ,

lim |bβ |′ = 0.

Therefore, the limit, as a→ 0, of the term in the brackets in the right side of (5.1)
is

sin 2β + lim
a→0

v′β cosβ − vβ sinβ
2a

− sin 4β
2

. (5.2)

Since lima→0(v′β cosβ−vβ sinβ) = −2 cos 2β, in order to assure the expression (5.2)
is nonzero, β∗a must be bounded away from −π/4 for a small enough. According to
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(4.5) lima→0−F (−π/4) =∞; therefore, for some η > 0, β∗a /∈ (−π/4−η,−π/4+η).
That is, F ′(β∗a) 6= 0 for a ∈ (0, 1) sufficiently small. �

Figure 4 shows a typical positive periodic orbit emanating from β∗a.

Final remarks. Smallness of a is a request of our proof of Theorem 5.2, possibly
this hypothesis can be weakened or even discarded.

The larger is the coefficient a ∈ (0, 1), the larger is the region of stability in
(−π/2, 0). In fact, by (4.2), r−π/2(π) = eaπ/δ → ∞ as a → 1. Therefore, for any
fixed β ∈ (−π/2, 0), one has |bβ | → ∞ as a → 1, so that the number ε2 in (4.4)
satisfies ε2 → 0, as a→ 1.
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Selma H. J. Nicola
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