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MULTIPLE HOMOCLINIC SOLUTIONS FOR INDEFINITE
SECOND-ORDER DISCRETE HAMILTON SYSTEM WITH

SMALL PERTURBATION

LIANG ZHANG, XIANHUA TANG

Abstract. In this article, we sutdy the multiplicity of homoclinic solutions
to the perturbed second-order discrete Hamiltonian system

∆[p(n)∆u(n− 1)]− L(n)u(n) +∇W (n, u(n)) + θ∇F (n, u(n)) = 0,

where L(n) and W (n, x) are neither autonomous nor periodic in n. Under the

assumption that W (n, x) is only locally superquardic as |x| → ∞ and even in

x and F (n, x) is a perturbation term, we establish some existence criteria to
guarantee that the above system has multiple homoclinic solutions by minimax

method in critical point theory.

1. Introduction and statement of main results

In this article, we consider the second-order perturbed discrete Hamilton system

∆[p(n)∆u(n− 1)]− L(n)u(n) +∇W (n, u(n)) + θ∇F (n, u(n)) = 0, (1.1)

where n ∈ Z, u ∈ RN , ∆u(n) = u(n+ 1)− u(n) is the forward difference operator,
p(n) and L(n) are N × N real symmetric positive definite matrices for all n ∈ Z,
and W , F : Z × RN×N → R. As usual, we say that a solution u(n) of (1.1) is
homoclinic (to 0) if u(n) → 0 as n → ±∞. In addition, if u(n) 6≡ 0 then u(n) is
called a nontrivial homoclinic solution.

System (1.1) does have its applicable setting as evidenced by the excellent mono-
graphs (see [1, 3]), and some authors studied the existence of periodic solutions and
subharmonic solutions of (1.1) using the critical point theory (see [2, 4, 21, 22, 23]).
Moreover, the existence and multiplicity results of boundary value problems for
discrete inclusions, such as fourth-order discrete inclusion and partial difference
inclusions, have been established by the application of non-smooth version of crit-
ical point theory (see [8, 12, 13]). It is obvious that system (1.1) with θ = 0 is a
discretization of the following second-order Hamiltonian system:

d

dt
(p(t)u̇(t))− L(t)u(t) +∇W (t, u(t)) = 0. (1.2)
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In recent years, the study of homoclinic solution of system (1.2) is rapid by vari-
ational methods (see [5, 7, 9, 14, 17, 18]). It is well known that homoclinic orbits
play an important role in analyzing the chaos of dynamical systems. If a system has
the smoothly connected homoclinic orbits, then it can not stand the perturbation,
and its perturbed system probably produce chaotic phenomenon.

For system (1.1) with θ = 0, the existence and multiplicity of homoclinic so-
lutions of system (1.1) or its special forms have been investigated by the use of
critical point theory (see [6, 10, 11, 19, 24]). If p(n), L(n) and W (n, x) are periodic
in n, some authors dealt with the periodic case in [6, 11]. When the periodicity is
lost, this case is quite different from the one mentioned above, because of lack of
compactness of the Sobolev embedding. If W (n, x) is superquadratic as |x| → ∞
uniformly for n ∈ Z, the following well known global Ambrosetti-Rabinowitz su-
perquadratic condition is often required:

(A1) there exists µ > 2 such that

0 < µW (n, x) ≤ (∇W (n, x), x), (n, x) ∈ Z× RN \ {0},
where and in the sequel, (·, ·) denotes the standard inner product in RN ,
and | · | is the induced norm.

However, there are many indefinite functions not satisfying (A1). For example, let

W (n, x) = (n− 1)|x|s, 2 < s <∞. (1.3)

It is obvious that W (n, x) is only locally superquadratic as |x| → ∞. If W (n, x)
is even in x, the classical multiple critical point theorems can be applied to obtain
multiplicity results for system (1.1) with θ = 0. When θ 6= 0 and F (n, x) is not
even in x, then the perturbation term F (n, x) breaks the symmetry of the energy
functional of system (1.1). This case becomes different and more complicated. A
natural question is that whether multiple homoclinic solutions exist for system (1.1)
with indefinite functions W (n, x) under broken symmetry situation. As far as the
authors are aware, there are few papers discussing this question. In this paper, we
give a positive answer to this question. In detail, we obtain the following theorems.

Theorem 1.1. Assume that L, W and F satisfy the following conditions:

(A2) L(n) is an N ×N real symmetric positive definite matrix for all n ∈ Z and
there exists a function l : Z→ (0,∞) such that l(n)→ +∞, |n| → ∞, and

(L(n)x, x) ≥ l(n)|x|2, (n, x) ∈ Z× RN ;

(A3) W (n, 0) ≡ 0, and there exist constants µ > 2 such that

µW (n, x) ≤ (∇W (n, x), x), (n, x) ∈ Z× RN ;

(A4) for every n ∈ Z, W is continuously differentiable in x, and there exists
constants a1 > 0 and 1 < ν1 ≤ ν2 <∞ such that

|∇W (n, x)| ≤ a1l(n)(|x|ν1 + |x|ν2), (n, x) ∈ Z× RN ;

(A5) there exists an infinite subset Λ ⊂ Z such that

lim
|x|→∞

W (n, x)
|x|2

=∞, n ∈ Λ,

and there exists r0 ≥ 0 such that

W (n, x) ≥ 0, (n, x) ∈ Λ× RN and |x| ≥ r0;
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(A6) W (n, x) = W (n,−x), (n, x) ∈ Z× RN ;
(A7) for every n ∈ Z, F is continuously differentiable in x, and there exists a

function γ1 ∈ l1(Z, [0,+∞)) such that

|F (n, x)| ≤ γ1(n), (n, x) ∈ Z× RN ;

(A8) there exists a function γ2 ∈ l2(Z, [0,+∞)) such that

|∇F (n, x)| ≤ γ2(n), (n, x) ∈ Z× RN .

Then for any j ∈ N, there exists εj > 0 such that if |θ| ≤ εj, system (1.1) possesses
at least j distinct homoclinic solutions.

Theorem 1.2. Assume that L, W satisfy (A2)–(A6). Then there exists an un-
bounded sequence of homoclinic solutions for system (1.1) with θ = 0.

Remark 1.3. We would like to point out that even in the symmetric case, our
results are also new. In fact, the condition (A5) implies that W (n, x) is only of
locally superquadratic growth as |x| → ∞, and our assumption (A5) is weaker than
the conditions presented in the reference.

Since F (n, x) is not even in x in Theorem 1.1, the classical multiple critical point
theorems fail to obtain multiplicity results for system (1.1). The main difficulty is to
find an appropriate class of sets due to indefinite character of the function W (n, x)
which is used to construct multiple critical values for the perturbed functional of
system (1.1). To overcome this difficulty, we construct an orthogonal sequence by
which a sequence of sets are introduced, then multiple critical values will be obtained
by minimax procedure over these sets, which correspond to multiple homoclinic
solutions of system (1.1).

The article is organized as follows. In Section 2, we present some preliminary
results and useful lemmas. The proof of Theorem 1.1 and Corollary 1.1 are given
in Section 3. In Section 4, we present an example to illustrate our results.

Throughout the article, we denote by Cn various positive constants which may
vary from line to line and are not essential to the proof.

2. Variational setting and preliminaries

Let

S =
{
{u(n)}n∈Z : u(n) ∈ RN , n ∈ Z

}
,

E =
{
u ∈ S :

∑
n∈Z

[(
p(n+ 1)∆u(n),∆u(n)

)
+
(
L(n)u(n), u(n)

)]
< +∞

}
.

For u, v ∈ E, let

〈u, v〉 =
∑
n∈Z

[(
p(n+ 1)∆u(n),∆v(n)

)
+
(
L(n)u(n), v(n)

)]
.

Then E is a Hilbert space with the above inner product, and the corresponding
norm is

‖u‖ :=
(∑
n∈Z

[(
p(n+ 1)∆u(n),∆u(n)

)
+
(
L(n)u(n), u(n)

)])1/2

, u ∈ E.
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Moreover, we use E∗ to denote the topological dual space with norm ‖ · ‖E∗ . As
usual, for 1 ≤ p <∞, k = 1 or N , set

lp(Z,Rk) =
{
{u(n)}n∈Z : u(n) ∈ Rk, n ∈ Z,

∑
n∈Z
|u(n)|p < +∞

}
,

l∞(Z,Rk) =
{
{u(n)}n∈Z : u(n) ∈ Rk, n ∈ Z, sup

n∈Z
|u(n)| < +∞

}
,

and their norms are defined by

‖u‖p =
(∑
n∈Z
|u(n)|p

)1/p

, u ∈ lp(Z,Rk); ‖u‖∞ = sup
n∈Z
|u(n)|, u ∈ l∞(Z,Rk).

If the condition (A2) holds, E is continuously embedded in lp(Z,RN ) for all p ∈
[2,+∞]. Consequently, there exists τp > 0 such that

‖u‖p ≤ τp‖u‖, u ∈ E. (2.1)

Lemma 2.1. If condition (A2) holds. Then E is compactly embedded in l∞(Z,RN ).

Proof. Let {uk} be a bounded sequence in E, that is, there is a constant A such
that

‖uk‖ ≤ A, k ∈ N.

Since E is a reflexive space, passing to a subsequence, also denoted by {uk}, it can
be assumed that uk ⇀ u0, k →∞. Next we only need to prove

uk → u0 in l∞(Z,RN ). (2.2)

For any given number ε > 0, by (A2), we can choose a positive integer Π0 such
that

l(n) >
4A2

ε2
, |n| ≥ Π0. (2.3)

By (A2) and (2.3), we have

|uk(n)|2 ≤ 1
l(n)

(
L(n)uk(n), uk(n)

)
≤ ε2

4A2
‖uk‖2 ≤

ε2

4
, |n| ≥ Π0, k ∈ N. (2.4)

Since uk ⇀ u0 in E, it is easy to verify that uk(n) converges to u0(n) pointwise for
all n ∈ Z; that is,

lim
k→∞

uk(n) = u0(n), n ∈ Z. (2.5)

In view of (2.4) and (2.5), we have

|u0(n)| ≤ ε/2, |n| ≥ Π0. (2.6)

By (2.5), there exists k0 ∈ N such that

|uk(n)− u0(n)| ≤ ε, k ≥ k0, |n| < Π0. (2.7)

In combination with (2.4), (2.6) and (2.7)

|uk(n)− u0(n)| ≤ ε, k ≥ k0, n ∈ Z,

which implies that (2.2) holds. The proof is complete. �
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Next we introduce a functional I : R× E → R

Iθ(u) :=
‖u‖2

2
−
∑
n∈Z

W (n, u(n))− θ
∑
n∈Z

F (n, u(n)). (2.8)

By (A2), (A4), (A7) and (A8), for fixed θ0 ∈ R, Iθ0(u) is well defined and of class
C1(E,R). For u, v ∈ E,

〈I ′θ0(u), v〉 =
∑
n∈Z

[(
p(n+ 1)∆u(n),∆v(n)

)
+
(
L(n)u(n), v(n)

)]
−
∑
n∈Z

(
∇W (n, u(n)), v(n)

)
− θ0

∑
n∈Z

(
∇F (n, u(n)), v(n)

)
.

(2.9)

Furthermore, if u0 ∈ E is a critical point of Iθ0(u), then u0 is a homoclinic solution
for system (1.1) with θ = θ0.

Lemma 2.2. Assume that all the hypotheses of Theorem 1.1 hold. Then
(1) for any fixed θ0 ∈ R, Iθ0 satisfies the Palais-Smale condition;
(2) there exists a positive constant C0 such that

|Iθ(u)− I0(u)| ≤ C0|θ|, (θ, u) ∈ R× E.
where C0 :=

∑
n∈Z |γ1(n)|.

Proof. To prove (1), we first show that there exists a constant M such that {uk} ⊂
E is a sequence for which

|Iθ0(uk)| ≤M and I ′θ0(uk)→ 0, (2.10)

then {uk} is bounded. For large k, it follows (2.8) and (2.9) that

2µ−1‖uk‖+M ≥ Iθ0(uk)− 1
µ
〈I ′θ0(uk), uk〉

>
µ− 2

2µ
‖uk‖2 − C1‖uk‖ − C2,

(2.11)

which implies that ‖uk‖ is bounded in E, that is, there exists a constant A′ > 0
such that

‖uk‖ ≤ A′, k ∈ N.
Since E is a reflexive space, passing to a subsequence, also denoted by {uk}, it can
be assumed that

uk ⇀ u0, k →∞. (2.12)
Moreover, ‖u0‖ ≤ A′ and it is easy to verify that

lim
k→∞

uk(n) = u0(n), n ∈ Z. (2.13)

For any given number ε > 0, by (A4), there exists a positive constant δ < 1 such
that

|∇W (n, x)| ≤ εl(n)|x|, (n, x) ∈ Z× RN , |x| ≤ δ. (2.14)
Arguing as in Lemma 2.1, there exists a positive integer Π0 such that

|uk(n)| ≤ δ and |u0(n)| ≤ δ, k ∈ N, |n| > Π0. (2.15)

It follows (2.13) and the continuity of ∇W (n, x) on x that there exists k0 ∈ N such
that ∑

|n|≤Π0

|∇W (n, uk(n))−∇W (n, u0(n))||uk(n)− u0(n)| < ε, k ≥ k0. (2.16)
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On the other hand, by (2.14) and (2.15),∑
|n|>Π0

|∇W (n, uk(n))−∇W (n, u0(n))||uk(n)− u0(n)|

≤
∑
|n|>Π0

(|∇W (n, uk(n))|+ |∇W (n, u0(n))|)(|uk(n|+ |u0(n)|)

≤ ε
∑
|n|>Π0

l(n)(|uk(n)|+ |u0(n)|)(|uk(n)|+ |u0(n)|)

≤ 2ε
∑
|n|>Π0

l(n)(|uk(n)|2 + |u0(n)|2)

≤ 2ε
∑
|n|>Π0

[(L(n)uk(n), uk(n)) + (L(n)u0(n), u0(n))]

≤ 2ε(‖uk‖2 + ‖u0‖2)

≤ 4εA′2, k ∈ N.

(2.17)

Since ε is arbitrary, combing (2.16) and (2.17),∑
n∈Z
|∇W (n, uk(n))−∇W (n, u0(n)||uk(n)− u0(n)| → 0, k →∞. (2.18)

By (A8), there exists a positive integer Π1 such that( ∑
|n|>Π1

|γ2(n)|2
)1/2

< ε. (2.19)

In view of (A8), (2.15) and (2.19), we have∑
|n|>Π2

|∇F (n, uk(n))−∇F (n, u0(n))||uk(n)− u0(n)|

≤ 2
( ∑
|n|>Π2

|γ2(n)|2
)1/2( ∑

|n|>Π2

|uk(n)− u0(n)|2
)1/2

≤ 2τ2
2 ‖uk − u0‖2ε

≤ 4τ2
2A
′2ε, k ∈ N.

(2.20)

where Π2 := max{Π0,Π1}. Moreover, it follows from the continuity of ∇F (n, x)
on x that there exists k1 ∈ N such that∑

|n|≤Π2

|∇F (n, uk(n))−∇F (n, u0(n))||uk(n)− u0(n)| < ε, k ≥ k1. (2.21)

Since ε is arbitrary, for any fixed θ0 ∈ R, in combination with (2.15) and (2.20),

θ0

∑
n∈Z
|∇F (n, uk(n))−∇F (n, u0(n))||uk(n)− u0(n)| → 0, k →∞. (2.22)

It follows from (2.10) and (2.12) that

〈I ′θ0(uk)− I ′θ0(u0), uk − u0〉 := εk → 0, k →∞. (2.23)

It follows from (2.18), (2.22) and (2.23) that

‖uk − u0‖2 ≤
∑
n∈Z
|∇W (n, uk(n))−∇W (n, u0(n))||uk(n)− u0(n)|
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+ θ0

∑
n∈Z
|∇F (n, uk(n))−∇F (n, u0(n))||uk(n)− u0(n)|+ |εk|,

which implies that uk → u0 in E. Hence, Iθ0 satisfies Palais-Smale condition.
To prove (2), by (A7) and direct computations,

|Iθ(u)− I0(u)| ≤ C0|θ|, (θ, u) ∈ R× E.

The proof is complete. �

Lemma 2.3. Suppose that (A5) holds. Then there exists a normalized orthogonal
sequence {φi}∞i=1 ⊂ E.

Proof. Since Λ ⊂ Z is an infinite set, there exist a strictly increasing sequence or a
strictly decreasing sequence {nk}∞k=1 ⊂ Λ. Without loss of generality, we assume

n1 < n2 < · · · < nk < · · · → +∞.

Define

φi(n) =

{
(1, 0, . . . , 0)> ∈ RN , n = ni,

0, n 6= ni.
(2.24)

It is obvious that {φi}∞i=1 forms a linearly independent sequence in E. By Gram-
Schmidt orthogonalization process, also denoted by {φi}, we can get a normalized
orthogonal sequence. The proof is complete. �

LetDm = span{φ1, . . . , φm}, m ∈ N. It is obvious thatDm is a finite dimensional
subspace in E. Next we prove that there exists a strictly increasing sequence of
numbers Rm such that

I0(u) ≤ 0, u ∈ Dm\BRm , (2.25)
where BRm denotes the open ball of radius Rm centered at 0 in E, and B̄Rm denotes
the closure of BRm in E.

Lemma 2.4. Under assumptions (A5), for any finite dimensional subspace Dm ⊂
E,

I0(u)→ −∞, ‖u‖ → ∞, u ∈ Dm. (2.26)

Proof. We prove (2.26) by contradiction. If (2.26) is false, there exists a sequence
{uk} ⊂ Dm with ‖uk‖ → ∞, there exists M > 0 such that I0(uk) ≥ −M for all
k ∈ N. Set vk = uk/‖uk‖, then ‖vk‖ = 1. Passing to subsequence, we may assume
vk ⇀ v in E. Since Dm is a finite dimensional space, then vk → v ∈ Dm, then
‖v‖ = 1. Set

Π = {n ∈ Z : v(n) 6= 0} and Θ = {n1, n2, . . . , nm},

then
Π 6= ∅ and Π ⊂ Θ, (2.27)

moreover,
lim
k→∞

|uk(n)| =∞, n ∈ Π. (2.28)

It follows from (A3) and (A4) that

|W (n, x)| ≤ a1l(n)(|x|ν1+1 + |x|ν2+1), (n, x) ∈ Z× RN . (2.29)

For 0 ≤ a < b, let
Ωk(a, b) =

{
n ∈ Θ : a ≤ |uk(n)| < b

}
,
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it follows from (2.28) that Π ⊂ Ωk(r0,∞) for large k ∈ N. By (A3), (A5), (2.27),
(2.28) and (2.29) that

0 ≤ lim
k→∞

I0(uk)
‖uk‖2

= lim
k→∞

[1
2
−
∑
n∈Z

W (n, uk)
‖uk‖2

]
= lim
k→∞

[1
2
−
∑
n∈Θ

W (n, uk)
‖uk‖2

]
= lim
k→∞

[1
2
−

∑
n∈Ωk(0,r0)

W (n, uk)
‖uk‖2

−
∑

n∈Ωk(r0,∞)

W (n, uk)
|uk|2

|vk|2
]

≤ lim sup
k→∞

[1
2

+mama1

(
rν1+1
0 + rν2+1

0

)
‖uk‖−2 −

∑
n∈Ωk(r0,∞)

W (n, uk)
|uk|2

|vk|2
]

≤ 1
2
− lim inf

k→∞

∑
n∈Ωk(r0,∞)

W (n, uk)
|uk|2

|vk|2 = −∞,

where am := max{l(n), n ∈ Θ}. But the above inequality can not hold. Thus (2.26)
holds. The proof is complete. �

3. Proofs of main results

Next we introduce some continuous maps in E. Set

Γm = {h ∈ C(Fm, E)| h is odd and h = id on ∂BRm ∩Dm}, (3.1)

where Fm := B̄Rm ∩Dm. By (3.1), we define a sequences of minimax values

bm = inf
h∈Γm

max
u∈Fm

I0(h(u)). (3.2)

Since E is a separable Hilbert space, there exists a total orthonormal basis {ej} of
E. Define Xj = Rej , j ∈ N and

Yk = ⊕kj=1Xj , Zk = ⊕∞j=k+1Xj , k ∈ N. (3.3)

It is obvious that
E = Yk ⊕ Zk, Zk = Y ⊥k , k ∈ N.

Next we give an intersection property which has been essentially proved by Rabi-
nowitz in Proposition 9.23 of [16].

Lemma 3.1. For any m ∈ N, ρ < Rm and h ∈ Γm,

h(Fm) ∩ ∂Bρ ∩ Zm−1 6= ∅.

Lemma 3.2. Suppose that (A2) hold. Then

βk := sup
u∈Zk, ‖u‖=1

‖u‖∞ → 0, k →∞. (3.4)

Proof. In fact, it is obvious that βk ≥ βk+1 > 0, so βk → β ≥ 0 as k → ∞. For
k ∈ N, there exists uk ∈ Zk such that

‖uk‖ = 1 and ‖uk‖∞ > βk/2. (3.5)

By a similar proof in [20, Lemma 3.8], uk ⇀ 0 in E. By Lemma 2.1, we have

uk → 0 in l∞(Z,RN ). (3.6)

In combination with (3.5) and (3.6), (3.4) holds. The proof is complete. �
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Lemma 3.3. Assume (A3) and (A4) hold. Then

bm →∞, m→∞. (3.7)

Proof. By Lemma 3.1, for any h ∈ Γm and ρ < Rm, there exists um ∈ h(Fm) ∩
∂Bρ ∩ Zm−1, then

max
u∈Fm

I0(h(u)) ≥ I0(um) ≥ inf
u∈∂Bρ∩Zm−1

I0(u). (3.8)

In view of (A3) and (A4),

|W (n, x)| ≤ a1l(n)(|x|ν1+1 + |x|ν2+1), (n, x) ∈ Z× RN . (3.9)

By (A2), (2.8), (3.4) and (3.9), for u ∈ Zm−1,

I0(u) =
‖u‖2

2
−
∑
n∈Z

W (n, u(n))

≥ ‖u‖
2

2
− a1

∑
n∈Z

l(n)(|u(n)|ν1+1 + |u(n)|ν2+1)

≥ ‖u‖
2

2
− a1β

ν1−1
m−1 ‖u‖ν1+1 − a1β

ν2−1
m−1 ‖u‖ν2+1.

(3.10)

In view of (3.4) and (3.10), when m is large enough, for u ∈ Zm−1,

I0(u) ≥ ‖u‖
2

2
− 2a1β

ν1−1
m−1 ‖u‖ν2+1 − C3. (3.11)

Choose ρ := (8a1β
ν1−1
m−1 )

1
1−ν2 , if u ∈ Zm−1 and ‖u‖ = ρ,

I0(u) ≥ 1
4

(8a1β
ν1−1
m−1 )

2
1−ν2 − C3. (3.12)

In combination with (3.8) and (3.12), when m is large enough,

bm ≥
1
4

(8a1β
ν1−1
m−1 )

2
1−ν2 − C3,

which implies that (3.7) holds by (3.4). The proof is complete. �

Next we introduce some continuous maps in E. Set

Λm :=
{
H ∈ C(Um, E)| H|Fm ∈ Γm and H = id for

u ∈ Qm := (∂BRm+1 ∩Dm+1) ∪
(
(BRm+1\B̄Rm) ∩Dm

)}
,

(3.13)

where

Um :=
{
u = tφm+1 + ω : t ∈ [0, Rm+1], ω ∈ B̄Rm+1 ∩Dm, ‖u‖ ≤ Rm+1

}
. (3.14)

In view of Lemma 3.3, it is impossible that bm+1 = bm for all large m. Next we
can construct critical values of Iθ(u) as follows.

Lemma 3.4. Suppose bm+1 > bm > 0. For any δ ∈ (0, bm+1 − bm), define

Λm(δ) =
{
H ∈ Λm|I0(H(u)) ≤ bm + δ for u ∈ Fm

}
. (3.15)

For any |θ| < 2C−1
0 (bm+1 − bm − δ), where C0 is given in Lemma 2.2, let

cm(θ) = inf
H∈Λm(δ)

max
u∈Um

Iθ(H(u)). (3.16)

Then cm(θ) is a critical value of Iθ(u).
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Proof. By (2) in Lemma 2.2, we have

I0(u)− C0|θ| ≤ Iθ(u) ≤ I0(u) + C0|θ|, (θ, u) ∈ R× E. (3.17)

For any H ∈ Λm(δ), since Fm+1 = Um ∪ (−Um), then H can be continuously
extended to Fm+1 as an odd function H̄. Moreover, H̄ ∈ Γm+1. Since I0(u) is
even, by the construction of H̄, we have

max
x∈Um

I0(H(x)) = max
x∈Fm+1

I0(H̄(x)). (3.18)

It follows from (3.2), (3.17) and (3.18) that

max
x∈Um

Iθ(H(x)) ≥ max
x∈Um

I0(H(x))− C0|θ|

= max
x∈Fm+1

I0(H̄(x))− C0|θ|

≥ bm+1 − C0|θ|.

(3.19)

In view of (3.16) and (3.19), we obtain

cm(θ) ≥ bm+1 − C0|θ| > bm + δ + C0|θ|. (3.20)

If we choose Hm ∈ Λm(δ), then Hm can be continuously extended to Fm+1 as an
odd function H̄m. Moreover, H̄m ∈ Γm+1. Define

cm = max
x∈Um

I0(Hm(x)). (3.21)

It is obvious that cm < +∞ and cm is independent of θ. It follows from (3.2) and
(3.21) that

cm = max
x∈Um

I0(Hm(x)) = max
x∈Fm+1

I0(H̄m(x)) ≥ bm+1. (3.22)

Moreover, by (3.16), (3.17) and (3.21),

cm(θ) ≤ cm + C0|θ|. (3.23)

Next we show that cm(θ) is a critical value of Iθ(u). If cm(θ) is a regular value of
Iθ(u), by (3.20), choose

ε̄ = (cm(θ)− bm − δ − C0|θ|)/2, (3.24)

By the Deformation Theorem in [16], there exists ε ∈ (0, ε̄) and η ∈ C([0, 1]×E,E)
such that

η(1, u) = u, Iθ(u) 6∈ [cm(θ)− ε̄, cm(θ) + ε̄], (3.25)
and if Iθ(u) ≤ cm(θ) + ε, then

Iθ(η(1, u)) ≤ cm(θ)− ε. (3.26)

By (3.16), there exists H0 ∈ Λm(δ) such that

max
u∈Um

Iθ(H0(u)) < cm(θ) + ε. (3.27)

Define
H̄0(·) = η(1, H0(·)). (3.28)

Next we prove H̄0 ∈ Λm(δ). It is obvious that H̄0 ∈ C(Um, E). In view of H0 ∈
Λm(δ), (3.15), (3.17) and (3.24),

Iθ(H0(u)) ≤ I0(H0(u)) + C0|θ| ≤ bm + δ + C0|θ| < cm(θ)− ε̄, u ∈ Fm. (3.29)

In combination with (3.25), (3.28) and (3.29),

H̄0(u) = η(1, H0(u)) = H0(u), u ∈ Fm,
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which yields

H̄0|Fm ∈ Γm and I0(H̄0(u)) = I0(H0(u)) ≤ bm + δ, u ∈ Fm. (3.30)

In view of H0 ∈ Λm(δ) and the definitions of Rm and Rm+1

H0(u) = u and I0(H0(u)) ≤ 0, u ∈ Qm. (3.31)

By (3.17), (3.24) and (3.31), we have

Iθ(H0(u)) ≤ I0(H0(u)) + C0|θ| ≤ C0|θ| < cm(θ)− ε̄, u ∈ Qm. (3.32)

It follows (3.25), (3.31) and (3.32) that

H̄0(u) = η(1, H0(u)) = H0(u) = u, u ∈ Qm. (3.33)

In view of (3.30) and (3.33), H̄0 ∈ Λm(δ). Moreover, it follows (3.26) and (3.27)
that

max
u∈Um

Iθ
(
H̄0(u)

)
= max
u∈Um

Iθ
(
η(1, H0(u))

)
≤ cm(θ)− ε,

which is a contradiction to (3.16). The proof is complete. �

Proof of Theorem 1.1. First we can choose a subsequence {nk} ⊂ N such that
bnk+1 > bnk > 0. In view of Lemma 3.4, there exist two sequences {θk} and
{cnk(θ)} such that θk > 0 and cnk(θ) is a critical value for Iθ(u) with |θ| ≤ θk.
Moreover, by (3.20) and (3.23),

bnk − C0|θ| ≤ cnk(θ) ≤ cnk + C0|θ|. (3.34)

For any j ∈ N, choose strictly increasing integers pi such that for 1 ≤ i ≤ j,
pi ∈ {nk} and cpi < bp(i+1) .

Next we can choose εj > 0 small enough such that cpi(θ) with 1 ≤ i ≤ j are defined
for |θ| ≤ εj . Moreover, if |θ| ≤ εj , for 1 ≤ i ≤ j,

cpi + C0|θ| < bp(i+1) − C0|θ|. (3.35)

In view of (3.34) and (3.35), for |θ| ≤ εj , Iθ(u) has at least j critical values and

cp1(θ) < cp2(θ) < · · · < cpj (θ).

Therefore system (1.1) has at least j distinct solutions. The proof is complete. �

Proof of Theorem 1.2. By the Deformation Theorem and Lemma 3.4, we can prove
that {bm} is a sequence of critical values of I0(u) which converge to +∞. Hence the
corresponding critical points are solutions of system (1.1) with θ = 0. The proof is
complete. �

4. Examples

In this section, we give an example to illustrate our results. In system (1.1), let
p(n) be an N × N real symmetric positive definite matrix for all n ∈ Z, L(n) =
(n2 + 1)IN , and let

W (n, x) = (n2 − 10)|x|3 and F (n, x) =
sinx1

1 + n2
,

where x = (x1, x2, . . . xN ). Thus all conditions of Theorem 1.1 are satisfied with

µ = 3, ν1 = ν2 = 2, γ1(n) = γ2(n) =
1

1 + n2
.
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By Theorem 1.1, for any j ∈ N, there exists εj > 0 such that if |θ| ≤ εj , then
system (1.1) possesses at least j distinct solutions. Since F (n, x) in our example is
not even in x, the results in [6, 10, 11, 19, 24] can’t be applied to this example.

Acknowledgments. This research was supported by the National Natural Science
Foundation of China (No. 11171351, 11571370), the NSF of Shandong Province of
China (No. ZR2014AP011).

References

[1] R. P. Agarwal; Difference Equations and Inequalities: Theory, Methods, and Applications,

2nd ed., Marcel Dekker, Inc., New York, 2000.
[2] R. P. Agarwal, K. Perera and D. O’Regan; Multiple positive solutions of singular discrete

p-Laplacian problems via variational methods, Adv. Difference Equ., (2005), 93–99.

[3] C. D. Ahlbrandt and A. C. Peterson; Discrete Hamiltonian Systems: Difference Equations,
Continued Fraction and Riccati Equations, Kluwer Academic Publishers, Dordrecht, 1996.

[4] H. H. Bin, J. S. Yu, and Z. M. Guo; Nontrivial periodic solutions for asymptotically linear
resonant difference problem, J. Math. Anal. Appl., 322 (2006), 477–488.

[5] V. Coti Zelati and P. H. Rabinowitz; Homoclinic orbits for second order Hamiltonian systems

possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693–727.
[6] X. Q. Deng, G. Cheng and H. P. Shi; Subharmonic solutions and homoclinic orbits of second

order discrete Hamiltonian systems potential changing sign, Comput. Math. Appl., 58 (2009),

1198–1206.
[7] Y. H. Ding; Existence and multiplicity results for homoclinic solutions to a class of Hamil-

tonian systems, Nonlinear Anal., 25 (1995), 1095–1113.

[8] M. Galewskia, G. Molica Bisci and R. Wieteska; Existence and multiplicity of solutions to
discrete inclusions with the p(k)-Laplacian problem, J. Differ. Equ. Appl., 21 (2015), 887–903.

[9] J. Mawhin, M. Willem; Critical Point Theory and Hamiltonian Systems, Springer-Verlag,

New York, 1989.
[10] M. Ma, Z. M. Guo; Homoclinic orbits for second order self-adjoint difference equations, J.

Math. Anal. Appl., 323 (2006), 513–521.
[11] M. Ma, Z. M. Guo; Homoclinic orbits and subharmonics for nonlinear second order difference

equations, Nonlinear Anal., 67 (2007), 1737–1745.

[12] N. Marcu and G. Molica Bisci; Existence and multiplicity of solutions for nonlinear discrete
inclusions, Electron. J. Differ. Equ., (2012), 1–13.
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